Performance Evaluation

Lecture 2: Epidemics

Giovanni Neglia INRIA – EPI Maestro 6 January 2014

There is more: Independence

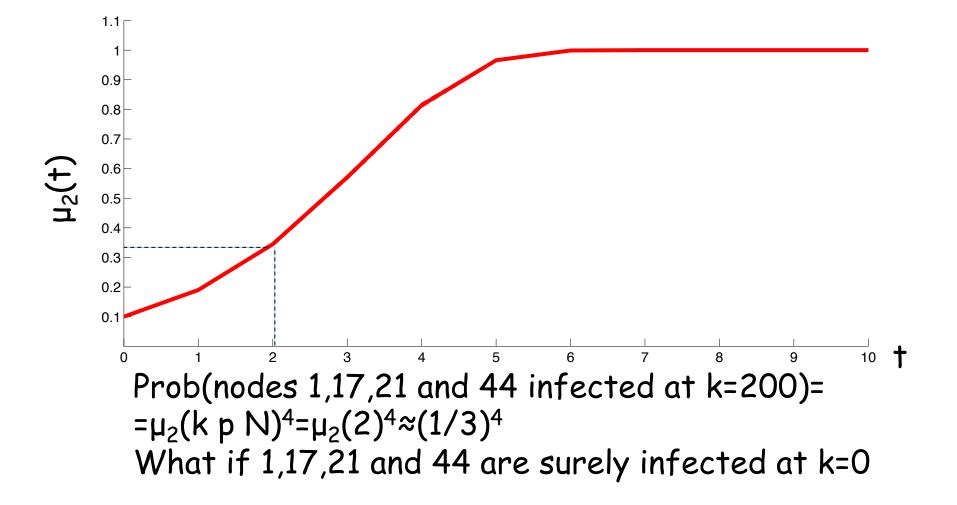
Theorem 2

- Under the assumptions of Theorem 1, and that the collection of objects at time 0 is exchangeable $(X_1^N(0), X_2^N(0), ..., X_N^N(0)),$ then for any fixed n and t: $\lim_{N\to\infty} \operatorname{Prob}(\underline{X}_1^N(t)=i_1, \underline{X}_2^N(t)=i_2, ..., \underline{X}_n^N(t)=i_n)=$ $=\mu_{i1}(t)\mu_{i2}(t)...\mu_{in}(t)$
- MF Independence Property, a.k.a. Decoupling Property, Propagation of Chaos

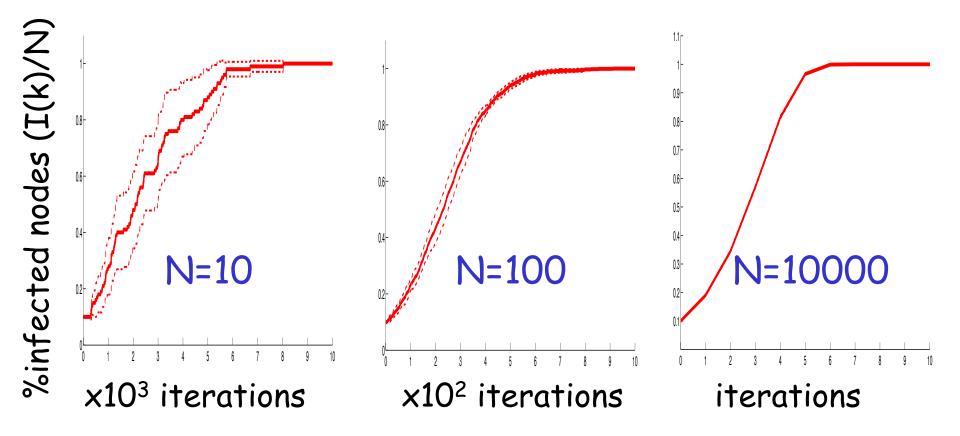
Remarks

- □ $(X_1^N(0), X_2^N(0), ..., X_N^N(0))$ exchangeable
 - Means that all the states that have the same occupancy measure \mathbf{m}_0 have the same probability
- $\Box X^{(N)}(k \epsilon(N))=X^{(N)}(k) \text{ for } k \text{ integer}$
- $\Box X^{(N)}(t)$ is constant on [k $\epsilon(N),(k+1)\epsilon(N)$)
- □ $\lim_{N\to\infty} \operatorname{Prob}(\underline{X}_1^{N}(t)=i_1,\underline{X}_2^{N}(t)=i_2,...,\underline{X}_n^{N}(t)=i_n)=$ = $\mu_{i1}(t)\mu_{i2}(t)...\mu_{in}(t)$
 - Application
 - $Prob(X_1^{N}(k)=i_1,X_2^{N}(k)=i_2,...,X_n^{N}(k)=i_n) \approx \\ \approx \mu_{i1}(k\epsilon(N))\mu_{i2}(k\epsilon(N))...\mu_{in}(k\epsilon(N))$

Probabilistic interpretation of the occupancy measure (SI model with p=10⁻⁴, N=100)

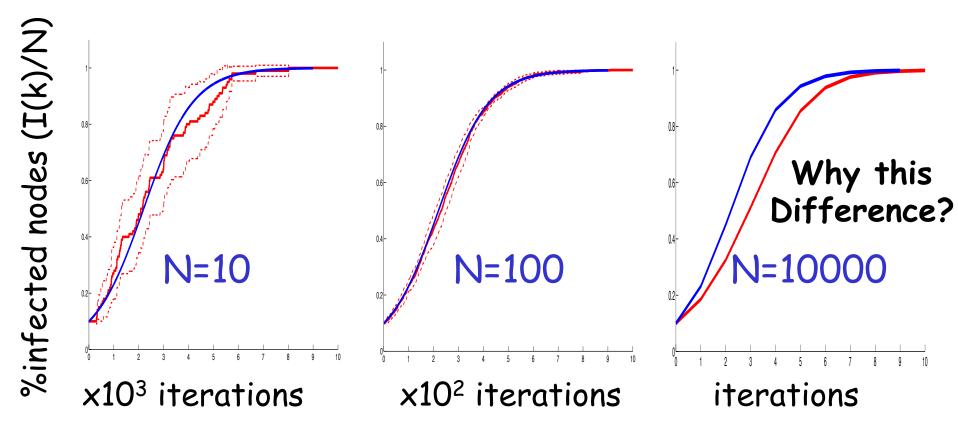


On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs



On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs

Model vs Simulations



Why the difference?

N should be large (the larger the better)
p should be small

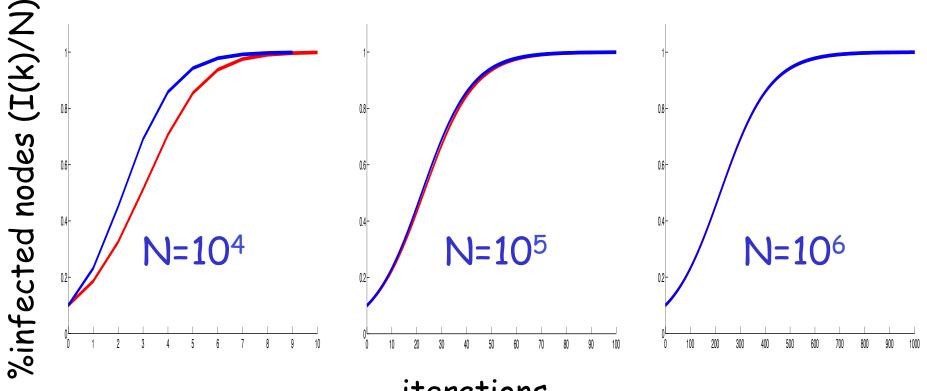
•
$$p^{(N)}=p_0/N^2$$

□ For N=10⁴ p=10⁻⁴ is not small enough!

What if we do the correct scaling?

On approximation quality $p=10^4/N^2$, I(0)=N/10, 10 runs

Model vs Simulations

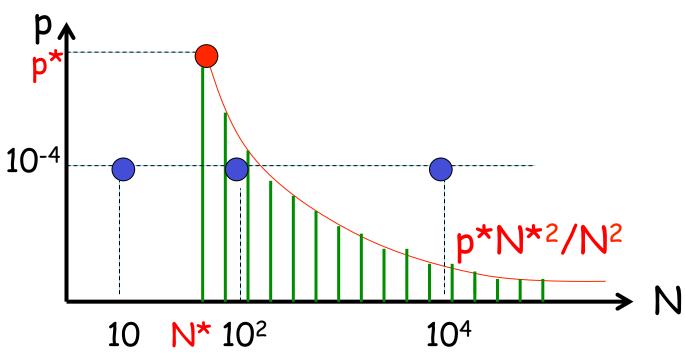


iterations

Lesson

You need to check (usually by simulation) in which parameter region the fluid model is a good approximation.

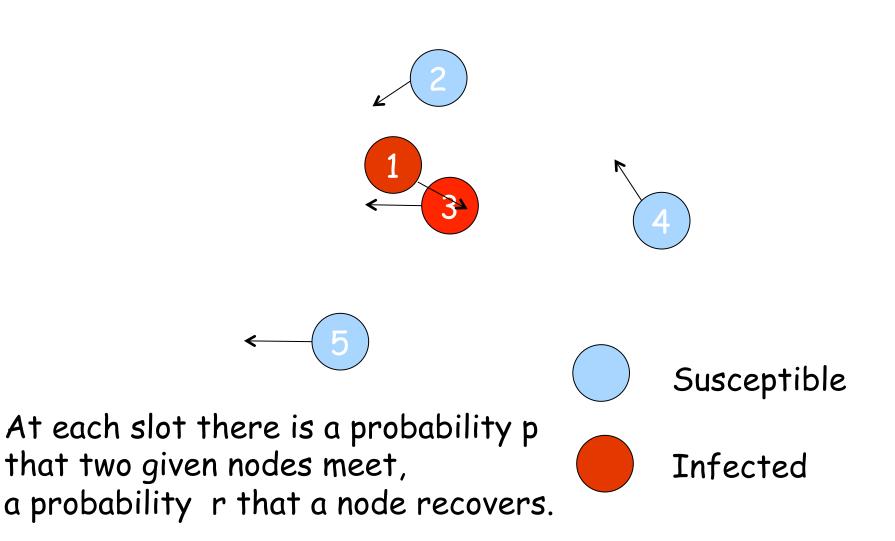
• e.g. N>N* p<p*/N²



SIS model



SIS model



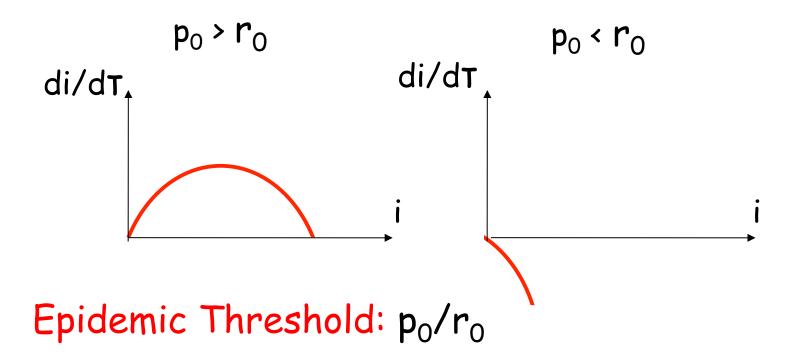
Let's practise

Can we propose a Markov Model for SIS?

- No need to calculate the transition matrix
- If it is possible, derive a Mean Field model for SIS
 - Do we need some scaling?

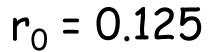
Study of the SIS model

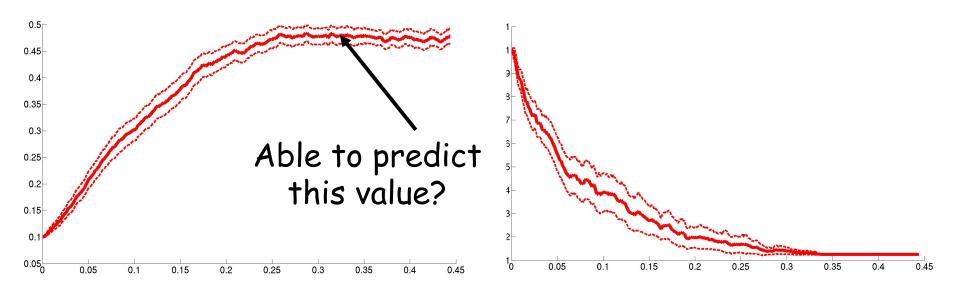
We need p^(N)=p₀/N² and r^(N)=r₀/N
 If we choose ε(N)=1/N, we get
 di(t)/dt= p₀ i(t)(1-i(t)) - r₀ i(t)



N=80, p₀=0.1

 $r_0 = 0.05$





Study of the SIS model

 $\mu_2(t)=i(t)$ $di(t)/dt=p_0 i(t)(1-i(t)) - r_0 i(t)$

Equilibria, di(t)/dt=0

- If i(0)>0 and $p_0>r_0 \Rightarrow \mu_2(\infty)=1-r_0/p_0$

Study of the SIS model

- What is the steady state distribution of the MC?
 - (0,0,0,...0) is the unique absorbing state and it is reachable from any other state
 - Who is lying here?

Back to the Convergence Result

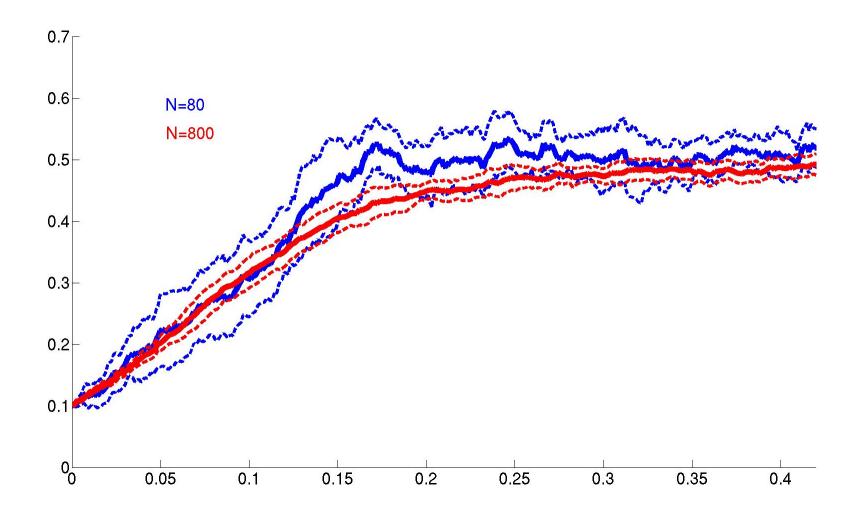
 \Box Define <u>**M**</u>^(N)(t) with t real, such that

- $\underline{\mathbf{M}}^{(N)}(k\epsilon(N))=\mathbf{M}^{(N)}(k)$ for k integer
- $\underline{\mathbf{M}}^{(N)}(t)$ is affine on $[k\epsilon(N),(k+1)\epsilon(N)]$
- Consider the Differential Equation
 - $-d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$

Theorem

– For all T>O, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) - \mu(t)|| \rightarrow 0$ in probability (/ mean square)

Some examples



Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
 - Birkhoff center: the closure of all the recurrent points of the ODE (independently from the initial conditions)
 - What is the Birkhoff center of di(t)/dt=p₀ i(t)(1-i(t)) - r₀ i(t)?

Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
- Corollary: If the ODE has a unique stationary point m*, the sequence of stationary distributions M^(N) converges to m*

Outline

Limit of Markovian models

Mean Field (or Fluid) models

- exact results
- Extensions
 - Epidemics on graphs
 - Reference: ch. 9 of Barrat, Barthélemy, Vespignani "Dynamical Processes on Complex Networks", Cambridge press
- Applications to networks

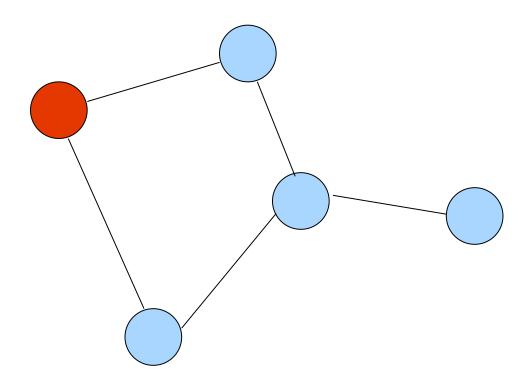
SI on a graph

Susceptible Infected

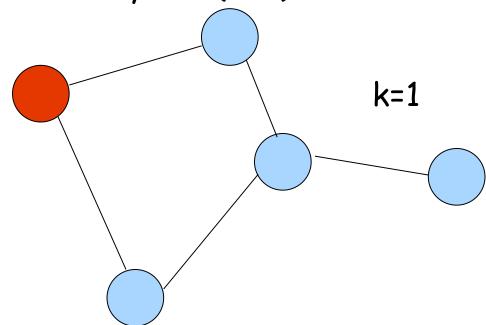
At each time slot, each link outgoing from an infected node spreads the disease with probability p_a

Can we apply Mean Field theory?

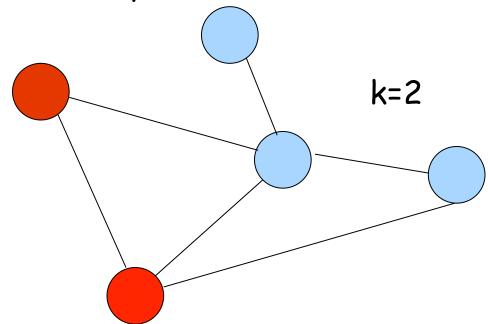
- Formally not, because in a graph the different nodes are not equivalent...
- ...but we are stubborn



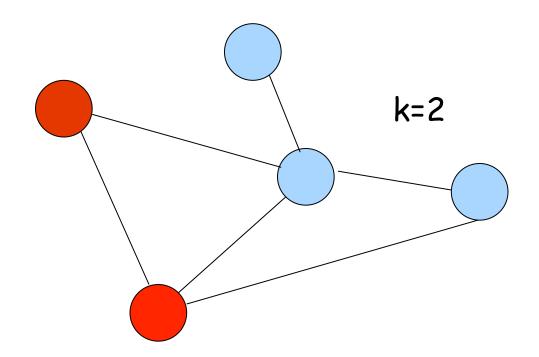
- Consider all the nodes equivalent
- e.g. assume that at each slot the graph changes, while keeping the average degree <d>
 - Starting from an empty network we add a link with probability <d>/(N-1)



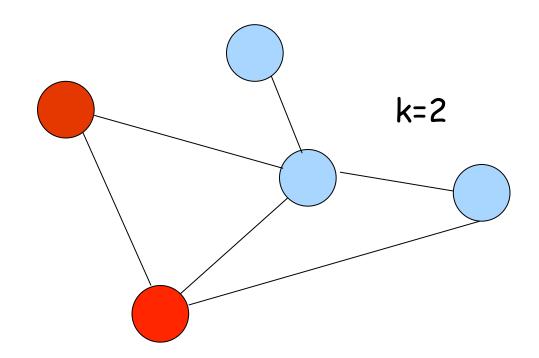
- Consider all the nodes equivalent
- e.g. assume that at each slot the graph changes, while keeping the average degree <d>
 - Starting from an empty network we add a link with probability <d>/(N-1)



- i.e. at every slot we consider a sample of an ER graph with N nodes and probability <d>/(N-1)
 - Starting from an empty network we add a link with probability <d>/(N-1)



If I(k)=I, the prob. that a given susceptible node is infected is q_I=1-(1-<d>/(N-1) p_g)^I
 and (I(k+1)-I(k)|I(k)=I) =_d Bin(N-I, q_I)



- □ If I(k)=I, the prob. that a given susceptible node is infected is q_I=1-(1-<d>/(N-1) p_g)^I
- **and** $(I(k+1)-I(k)|I(k)=I) =_d Bin(N-I, q_I)$
 - Equivalent to first SI model where $p=\langle d \rangle/(N-1) p_q$
 - We know that we need $p^{(N)}=p_0/N^2$
- □ $i^{(N)}(k) \approx \mu_2 (k\epsilon(N))=1/((1/i_0-1) \exp(-k p_0/N)+1)=$
 - = $1/((1/i_0-1) \exp(-k < d > p_g)+1)$
 - The percentage of infected nodes becomes significant after the outbreak time 1/(<d>p_q)

How good is the approximation practically?

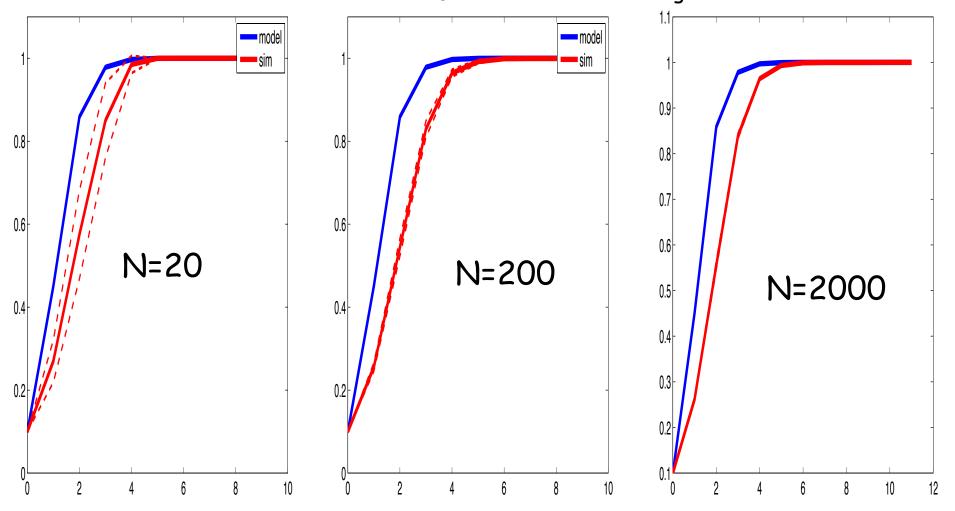
• It depends on the graph!

Let's try on Erdös-Rényi graph

Remark: in the calculations above we had a different sample of an ER graph at each slot, in what follows we consider a single sample

ER <d>=20, p_g =0.1, 10 runs

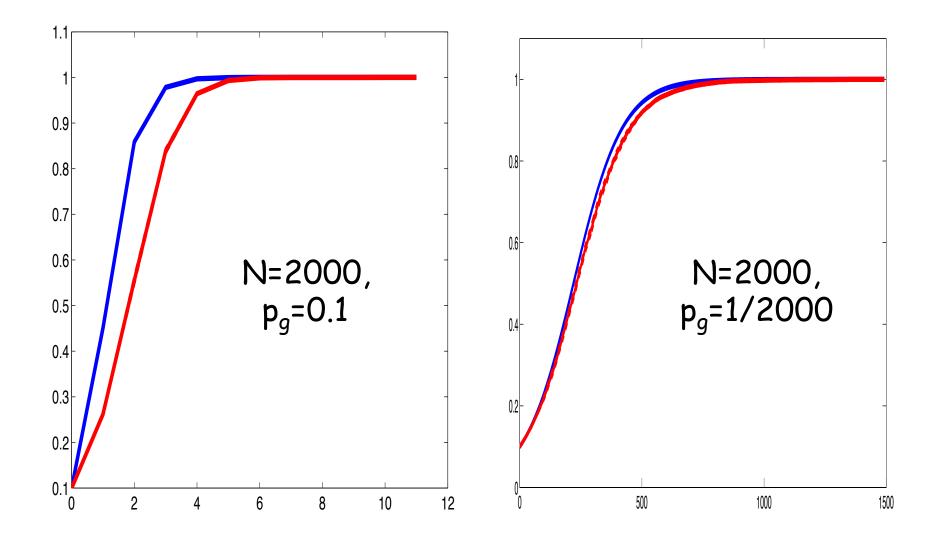
 $i^{(N)}(k) \approx 1/((1/i_0-1) \exp(-k < d > p_q)+1)$



Lesson 1

- System dynamics is more deterministic the larger the network is
- For given <d> and p_g, the MF solution shows the same relative error

ER <d>=20, 10 runs

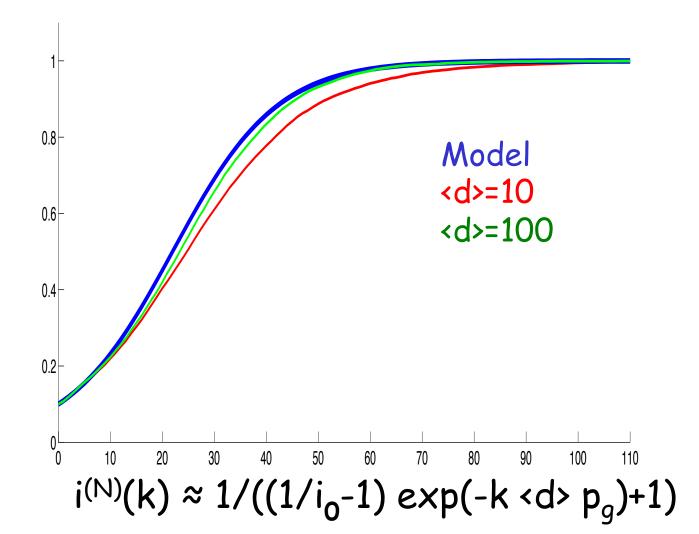


Lesson 2

For given <d>, the smaller the infection probability p_g the better the MF approximation

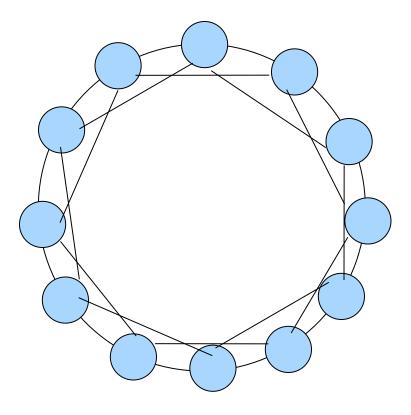
– Why?

Changing the degree ER N=1000, $\langle d \rangle p_g = 0.1$, 10 runs

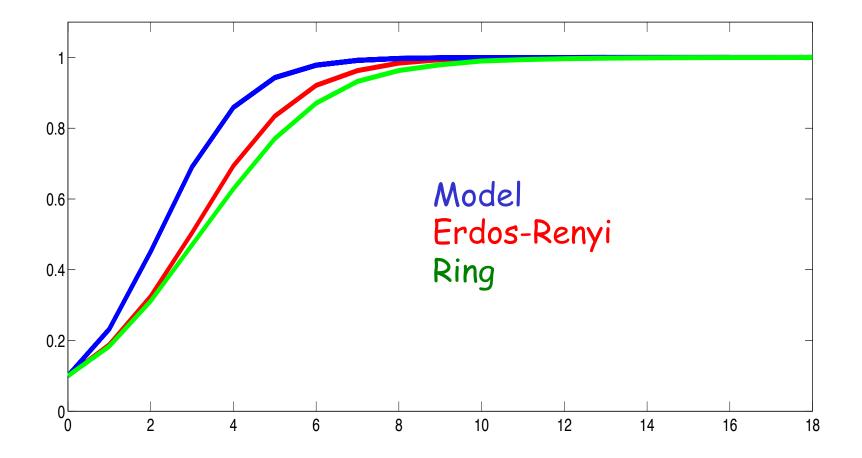


Given <d>pg, the more the graph is connected, the better the MF approximation
 Why?

A different graph Ring(N,k)



Ring vs ER, N=2000, <k>=10



Lesson 4

The smaller the clustering coefficient, the better the MF approximation
 Why?

- Denote P(d) the probability that a node has degree d
- If the degree does not change much, we can replace d with <d>
 - what we have done for ER graphs (N,p)
 - Binomial with parameters (N-1,p)
- □ How should we proceed (more) correctly?
 - Split the nodes in degree classes
 - Write an equation for each class
- Remark: following derivation will not be as rigorous as previous ones

- \Box N_d number of nodes with degree d (=N*P(d))
- \Box I_d: number of infected nodes with degree d
- Given node i with degree d and a link e_{ij}, what is the prob. that j has degree d'?

– P(ď)? NO

- and if degrees are uncorrelated? i.e. Prob(neighbour has degree d'|node has a degree d) independent from d,
 - P(ď')? NO
 - Is equal to $d'/\langle d \rangle P(d')$

- **\Box** Given n (susc.) with degree d and a link e_{nj}
- Prob. that j has degree d' is
 - d'/<d> P(d')
- Prob. that j has degree d' and is infected – d'/<d>
 - more correct (d'-1)/<d> P(d') $I_{d'}/N_{d'}$
- Prob. that n is infected through link e_{ni} is

$$-p = p_g \Sigma_{d'} (d'-1)/\langle d \rangle P(d') I_{d'}/N_{d'}$$

Prob. that n is infected through one link

 $\Box E[(I_d (k+1)-I_d (k)|I(k)=I)] = (N_d-I_d)(1-(1-p)^d)$ $- p = p_a \Sigma_{d'} (d'-1)/\langle d \rangle P(d') I_{d'}/N_{d'}$ $\Box f_d^{(N)}(i) = (1 - i_d)(1 - (1 - p)^d)$ $-i_d = I_d/N_d$ - if we choose $p_q = p_{q0} / N$ - $f_d(i) = p_{q0} (1-i_d) d \Sigma_{d'}(d'-1)/\langle d \rangle P(d') i_{d'}$ $\Box di_{d}(t)/dt = f_{d}(i(t)) = p_{q0} (1 - i_{d}(t)) d \Theta(t)$

- $\Box di_{d}(t)/dt = f_{d}(i(t)) = p_{g0} (1 i_{d}(t)) d \Theta(t),$
 - for d=1,2...
 - $\Theta(t) = \Sigma_{d'}(d'-1)/\langle d \rangle P(d') i_{d'}(t)$
 - $-i_d(0)=i_{d0}$, for d=1,2...
- □ If i_d(0)<<1, for *small* +
 - $di_d(t)/dt \approx p_{g0} d \Theta(t)$
 - $dΘ(t)/dt = Σ_{d'}(d'-1)/<d>P(d') di_{d'}(t)/dt$ $≈ p_{g0} Σ_{d'}(d'-1)/<d>P(d') d' Θ(t) =$ $= p_{g0} (<d^2> - <d>)/<d>P(d') Θ(t)$

$\Box d\Theta(t)/dt \approx p_{g0}(\langle d^2 \rangle - \langle d \rangle)/\langle d \rangle \Theta(t)$

- Outbreak time: <d>/((<d²>-<d>) p_{q0})
 - For ER <d²>=<d>(<d>+1), we find the previous result, 1/(<d>p_{g0})
 - What about for Power-law graphs, P(d)~d^{-v}?
- □ For the SIS model:
 - $d\Theta(t)/d \approx p_{g0}(\langle d^2 \rangle \langle d \rangle)/\langle d \rangle \Theta(t) r_0 \Theta(t)$
 - Epidemic threshold: $p_{g0} (\langle d^2 \rangle \langle d \rangle)/(\langle d \rangle r_0)$

Outline

- Limit of Markovian models
 Mean Field (or Fluid) models
 - exact results
 - extensions
 - Applications
 - Bianchi's model
 - Epidemic routing

Decoupling assumption in Bianchi's model

- Assuming that retransmission processes at different nodes are independent
 - Not true: if node i has a large backoff window, it is likely that also other nodes have large backoff windows
- We will provide hints about why it is possible to derive a Mean Field model...
- then the decoupling assumption is guaranteed asymptotically

References

- Benaïm, Le Boudec, "A Class of Mean Field Interaction Models for Computer and Communication Systems", LCA-Report-2008-010
- Sharma, Ganesh, Key, "Performance Analysis of Contention Based Medium Access Control Protocols", IEEE Trans. Info. Theory, 2009
- Bordenave, McDonarl, Proutière, "Performance of random medium access control, an asymptotic approach", Proc. ACM Sigmetrics 2008, 1-12, 2008

Bianchi's model

□ N nodes,

- K possible stages for each node, in stage i (i=1,...V) the node transmits with probability q^(N); (e.g. q^(N); =1/W^(N);)
- If a node in stage i experiences a collision, it moves to stage i+1
- If a node transmits successfully, it moves to stage 1

Mean Field model

- We need to scale the transmission probability: q^(N); =q;/N
- $\Box f^{(N)}(m) = E[M^{(N)}(k+1) M^{(N)}(k) | M^{(N)}(k) = m]$
- $\Box f_1^{(N)}(m) = E[M_1^{(N)}(k+1) M_1^{(N)}(k) | M_1^{(N)}(k) = m]$
- $\square P_{idle} = \prod_{i=1,...,V} (1 q_i^{(N)})^{m_i^{(N)}}$
- The number of nodes in stage 1
 - increases by one if there is one successful transmission by a node in stage i<>1
 - Decreases if a node in stage 1 experiences a collision

Mean field model

- $\square P_{idle} = \prod_{i=1,\dots,V} (1 q_i^{(N)})^{m_i^N} \rightarrow exp(-\Sigma_i q_i^{m_i^N})$
 - Define $\tau(m) = \Sigma_i q_i m_i$
- The number of nodes in stage 1
 - increases by one if there is one successful transmission by a node in stage i<>1
 - with prob. $\Sigma_{i>1} m_i N q_i^{(N)} P_{idle} / (1-q_i^{(N)})$
 - Decreases if a node in stage 1 experiences a collision
 - with prob. $m_1 N q_1^{(N)} (1-P_{idle}/(1-q_1^{(N)}))$

 $\Box f_1^{(N)}(m) = E[M_1^{(N)}(k+1) - M_1^{(N)}(k)]M_1^{(N)}(k) = m] =$

- = $\sum_{i>1} m_i q_i^{(N)} P_{idle} / (1 q_i^{(N)})$
- $m_1 q_1^{(N)} (1 P_{idle} / (1 q_1^{(N)}))$

Mean field model

$$\square P_{idle} = \prod_{i=1,\dots,V} (1 - q_i^{(N)})^{m_i^N} \rightarrow exp(-\Sigma_i q_i^{m_i})$$

• Define
$$\tau(\mathbf{m}) = \Sigma_i q_i m_i$$

 $\Box f_{1}^{(N)}(m) = \sum_{i>1} m_{i}q_{i}^{(N)}P_{idle}/(1-q_{i}^{(N)})$

$$- m_1 q_1^{(N)} (1 - P_{idle} / (1 - q_1^{(N)}))$$

- $\Box f_{1}^{(N)}(\mathbf{m}) \sim 1/N \left(\Sigma_{i>1} m_{i} q_{i} e^{-\tau(\mathbf{m})} m_{1} q_{1} (1 e^{-\tau(\mathbf{m})}) \right)$
- □ $f_1^{(N)}(\mathbf{m})$ vanishes and $\epsilon(N)=1/N$, continuously differentiable in \mathbf{m} and in 1/N
- This holds also for the other components
- Number of transitions bounded
- => We can apply the Theorem