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There is more: Independence

7 Theorem 2

— Under the assumptions of Theorem 1,
and that the collection of objects at
time O is exchangeable

(X,N(0).X,N(0),.. X, N(O)),
then for any fixed n and t:
limy,_...Prob(X,N(1)=i, X,N(t)=i,,..X N(t)=i )=
STHG TR WING
7 MF Independence Property, a.k.a.
Decoupling Property, Propagation of Chaos



Remarks

3 (XMN0),X,N(0),..XN(0)) exchangeable
— Means that all the states that have the

same occupancy measure m, have the
same probability

A XNk e(N))=XMN)(k) for k integer

3 XN)(1) is constant on [k €(N),(k+1)e(N))

3 limg_ Prob(X,N(+)=i, X,N(+)=i,,..X N(t)=i )=
(Db (). 41 ()

— Application
Prob(X N(k)=i;, X,N(k)=i,,...X N(k)=i )=

1y (Ke(N)Ho(Ke(N))...4, (Ke(N))



Probabilistic interpretation of

the occupancy measure
(SI model with p=10-4, N=100)
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%infected nodes (I(k)/N)

On approximation quality
p=10-4, I(0)=N/10, 10 runs
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%infected nodes (I(k)/N)

On approximation quality
p=10-4, I(0)=N/10, 10 runs

Model vs Simulations

Why this
Difference?

N=10000

x103 iterations x102 iterations

iterations



Why the difference?

3 N should be large (the larger the better)
3 p should be small
p(N):PO/NZ
3 For N=10% p=10-* is not small enough!
3 What if we do the correct scaling?



%infected nodes (I(k)/N)

On approximation quality
p=104/N2, I1(0)=N/10, 10 runs

Model vs Simulations
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Lesson

7 You need to check (usually by simulation) in
which parameter region the fluid model is a
good approximation.

e.g. N>N* p<p*/Nz?

10 N* 102 104



SIS model

K-
0 —O \Q
(—Q Q Susceptible

At each slot there is a probability p

that two given nodes meet, ' Infected
a probability r that a node recovers.



SIS model

& o

At each slot there is a probability p
that two given nodes meet,
a probability r that a node recovers.



Let's practise

7 Can we propose a Markov Model for SIS?

No need to calculate the transition
matrix

7 If it is possible, derive a Mean Field model
for SIS

Do we need some scaling?



Study of the SIS model

7 We need pMN=p,/N? and riN=r,/N
7 If we choose e(N)=1/N, we get
di(t)/dt= pg i(t)(1-i(1)) - rq i(t)

pO > r.O po < r'o
di/dr, di/dT,

Epidemic Threshold: py/r,
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Study of the SIS model

3 u,(1)=i(1)
3 di(t)/dt=pg i(1)(1-i(1)) - ry i(t)
3 Equilibria, di(t)/dt=0
= i(o0)=1-ro/py or i(«)=0
- Ifi(0)0 and pporg => Wy(e0)=1-ro/pg



Study of the SIS model

3 If i(0)0 pp>ro, Ha(e2)=1-ro/po
A Prob(X;M(k)=1) % i(ke(N))
- Prob(XMN(ee)=1) & p,(ee) = i(ee) =1-ro/pg
7 What is the steady state distribution of
the MC?

—(0,0,0,..0) is the unique absorbing state
and it is reachable from any other state

— Who is lying here?



Back to the Convergence Result

7 Define MMN)(1) with T real, such that
« MM(ke(N))=MMN)(k) for k integer
« MMN)(t) is affine on [ke(N),(k+1)e(N)]
7 Consider the Differential Equation
— du(t)/dt=Ff(u), with p(0)=m,
3 Theorem
—For all T>0, if MMN)(0) — m,, in probability
(/mean square) as N — o, then

SUPg.iot| [MMN(H)-p(t)|| —0 in probability (/
mean square)



Some examples
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Nothing to do with t=?

I Theorem 3: The limits when N diverges of
the stationary distributions of MN) are
included in the Birkhoff center of the ODE

— Birkhoff center: the closure of all the
recurrent points of the ODE
(independently from the initial conditions)

— What is the Birkhoff center of
di(t)/dt=py i(1)(1-i(1)) - rg i(1)?



Nothing to do with t=?

I Theorem 3: The limits when N diverges of
the stationary distributions of MN) are
included in the Birkhoff center of the ODE

3 Corollary: If the ODE has a unique stationary
point m*, the sequence of stationary
distributions M(N) converges to m*



Outline

O
O

- Extensions
- Epidemics on graphs

- Reference: ch. 9 of Barrat, Barthélemy,
Vespignani "Dynamical Processes on
Complex Networks", Cambridge press

- Applications to networks



ST on a graph

‘/Q

At each time slot, each link outgoing
from an infected node spreads the
disease with probability p,



Can we apply Mean Field theory?

3 Formally not, because in a graph the
dif ferent nodes are not equivalent...

7 ..but we are stubborn

‘/Q

\ e



Derive a Mean Field model

3 Consider all the nodes equivalent
7 e.g. assume that at each slot the graph
changes, while keeping the average degree <d>

Starting from an empty network we add a link
with probability <d>/(N-1)

— k=1
—O
O




Derive a Mean Field model

3 Consider all the nodes equivalent
7 e.g. assume that at each slot the graph
changes, while keeping the average degree <d>

Starting from an empty network we add a link
with probability <d>/(N-1)




Derive a Mean Field model

Ji.e. at every slot we consider a sample of an ER
graph with N nodes and probability <d>/(N-1)

Starting from an empty network we add a link
with probability <d>/(N-1)

k=2

e e



Derive a Mean Field model

A If I(k)=I, the prob. that a given susceptible
hode is infected is q;=1-(1-<d>/(N-1) p )

3 and (I(k+1)-I(k)|I(k)=T) =4 Bin(N-I, q;)

k=2

e e



Derive a Mean Field model

3 If I(k)=I, the prob. that a given susceptible
hode is infected is q;=1-(1-<d>/(N-1) p )
7 and (I(k+1)-I(k)|I(k)=I) =4 Bin(N-I, g;)
Equivalent to first SI model where p=<d>/(N-1) p,
We know that we need pM™=p,/N?
3 iMN(k) & p, (ke(N))=1/((1/i4-1) exp(-k po/N)+1)=
= 1/((1/iy-1) exp(-k <d> p,)+1)

The percentage of infected nodes becomes
significant after the outbreak time 1/(<d>p,)

7 How good is the approximation practically?
It depends on the graphl!



Let's try on Erdds-Rényi graph

7 Remark: in the calculations above we had a
different sample of an ER graph at each
slot, in what follows we consider a single
sample



ER <d>=20, p,=0.1, 10 runs

iMN(k) = 1/((1/i5-1) exp(-k <d> p )+1)
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Lesson 1

7 System dynamics is more deterministic
the larger the network is

3 For given <d> and p,, the MF solution shows
the same relative error



ER <d>=20, 10 runs
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Lesson 2

3 For given <d>, the smaller the infection
probability p, the better the MF
approximation

—  Why?



Changing the degree
ER N=1000, <d>p,=0.1, 10 runs

0
0 50 70 %0 100 110

N(K) » 1/((1/.0 1) exp( k <d> p,)+1)



Lesson 3

7 Given <d>p,, the more the graph is
connec’red the better the MF
approximation

O Why?



A different graph Ring(N k)




Ring vs ER, N=2000, <k>=10
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Lesson 4

7 The smaller the clustering coefficient, the
better the MF approximation

O Why?



Heterogeneous Networks

7 Denote P(d) the probability that a node has
degree d

I If the degree does not change much, we
can replace d with <d>
— what we have done for ER graphs (N,p)
* Binomial with parameters (N-1,p)
3 How should we proceed (more) correctly?
— Split the nodes in degree classes
— Write an equation for each class

3 Remark: following derivation will not be as
rigorous as previous ones



Heterogeneous Networks

3 Ny number of nodes with degree d (=N*P(d))
3 I number of infected nodes with degree d

7 Given node i with degree d and a link e;;, what
is the prob. that j has degree d?

— P(d')? NO

7 and if degrees are uncorrelated? i.e.
Prob(neighbour has degree d'|node has a
degree d) independent from d,
—P(d)? NO
—Is equal to d'/<d>P(d")



Heterogeneous Networks

7 Given n (susc.) with degree d and a link e
I Prob. that j has degree d' is
—d'/«d> P(d)
I Prob. that j has degree d' and is infected
—d'/<«d> P(d") I,/Ny
— more correct (d'-1)/<d> P(d") I,/N,
3 Prob. that n is infected through link e,; is
—p = pg 24 (d-1)/<d> P(d’) T4/Ny
3 Prob. that n is infected through one link
- 1-(1-p)?



Heterogeneous Networks

3 E[(T4(k+1)-I4 (KT (K)=I)] = (N4-I5)(1-(1-p)?)
~ p=p, 2y (d-1)/<d>P(d) I4/Ny
3 £4MN(0)=(1-ig)(1-(1-p)%)
— ig= I/N,
— if we choose p, = pyg /N
= f4(i)= pgo (1-ig) d Zy(d'-1)/<d> P(d') ig

e
3 dig(t)/dt=f4(i(1))=pyo (1-i4(1)) d O(*)



Heterogeneous Networks

3 dig(t)/dt=f4(i(1))=pyo (1-i4(t)) d O(1),
— ford=12..
— O(t)=Z 4(d'-1)/<d> P(d") i4(t)
— i4(0)=ig4g, for d=1,2...
3 If iy(0O)<1, for smallt
- diy(t)/dt # p o d O(Y)
— dO(t)/dt = Z4(d'-1)/<d> P(d") di(t)/dt
R pgo Zg(d-1)/<d> P(d) d O(F) =
= Pgo (<d?> - <d>)/<d> O(t)



Heterogeneous Networks

7 dO(H)/dt # po(<d?>-<d>)/<d> O(t)
— Qutbreak time: <d>/((<d?>-<d>) Pg0)

For ER <d?>=<d>(<d>+1), we find the
previous result, 1/ (<d>p90)

What about for Power-law graphs,
P(d)~d¥?
3 For the SIS model:
- dO(1)/d # po(<d?>-<d>)/<d> O(F) - ry O(t)
— Epidemic threshold: p,q (<d*>-<d>)/(<d>r)



Outline

O
W

Applications
- Bianchi's model
- Epidemic routing



Decoupling assumption in
Bianchi's model

J Assuming that retransmission processes at
different nodes are independent

Not true: if node i has a large backoff window,
it is likely that also other nodes have large
backoff windows
3 We will provide hints about why it is
possible to derive a Mean Field model...

7 then the decoupling assumption is
guaranteed asymptotically
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Bianchi's model

7 N nodes,

7 K possible stages for each node, in stage i
(i=1,..V) the node transmits with
probability gN). (e.g. gV, =1/WN),)

I If a node in stage i experiences a collision,
It moves to stage i+1

I If a node transmits successfully, it moves
to stage 1



Mean Field model

7 We need to scale the transmission
probability: gN). =q./N

3 FN(M)=E[MN)(k+1)-MMN(K) [ MMN)(k)=m]

3 £, (m)=E[M;NV(k+1)-M;MN(k) | M;MN(k)=m]

3 Pigie=Mig y(1-gMN)mN

7 The number of nodes in stage 1

increases by one if there is one successful
transmission by a node in stage i<>1

Decreases if a node in stage 1 experiences a
collision



Mean field model

3 Pigie=Mizg _y(1-gN)MN -> exp(-Z,q; m;)
Define T(m)= Z,q; m.
7 The number of nodes in stage 1

increases by one if there is one successful
transmission by a node in stage i<>1

- with prob. Z.; m: N g™ P.,./(1-qN)
Decreases if a node in stage 1 experiences a
collision

- with prob. m; N q,™) (1-P,,./(1-q,(\))
7 £, (m)=E[M;M(k+1)-M;MN(K) | MMN(k)=m]=
= Z51migMPig./ (1-¢N)
- m,q;N(1-P, ./ (1-9,N))



Mean field model

3 Pigie=Miz y(1-gM)mN -> exp(-Z,q; m;)
Define T(m)= Z.q, m.
3 £, (m)=2;, ;miq NP/ (1-M))
- mq;M(1-P,y../(1-q,M))
3,0 (m) ~ 1/N (Z;,,mq; e™™-myq,(1-e 7))

3 f,N) (m) vanishes and £(N)=1/N, continuously
differentiable in m and in 1/N

3 This holds also for the other components
3 Number of transitions bounded
=> We can apply the Theorem



