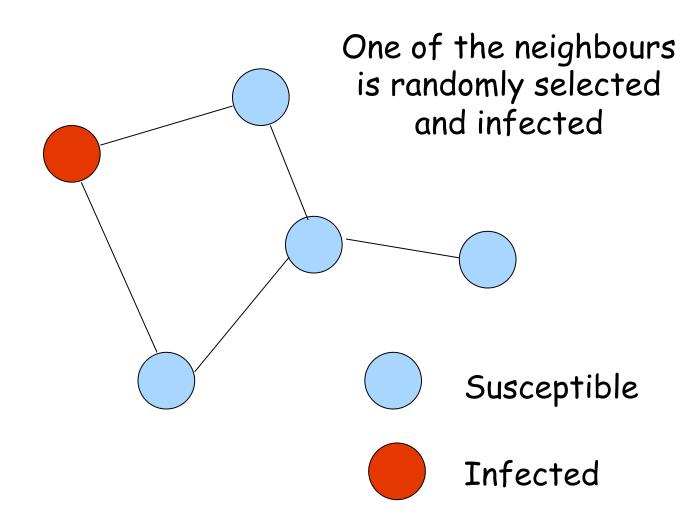
Performance Evaluation

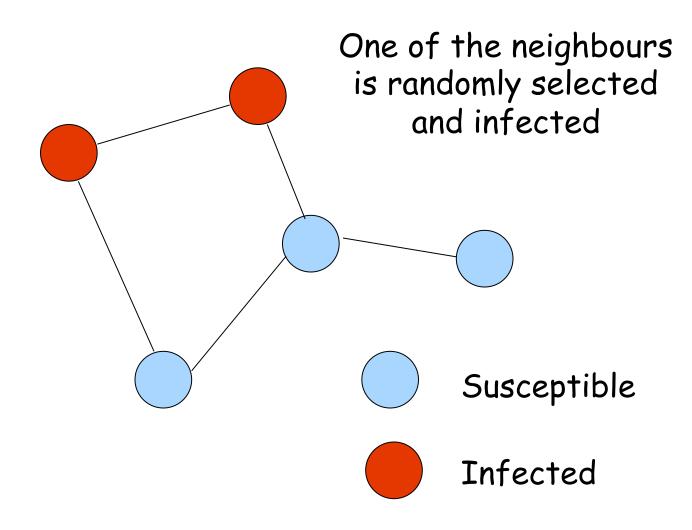
Lecture 2: Epidemics

Giovanni Neglia
INRIA – EPI Maestro
16 December 2013

Epidemics on a graph: SI model

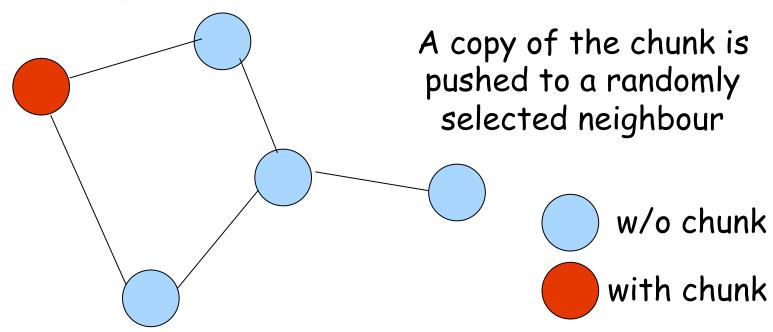


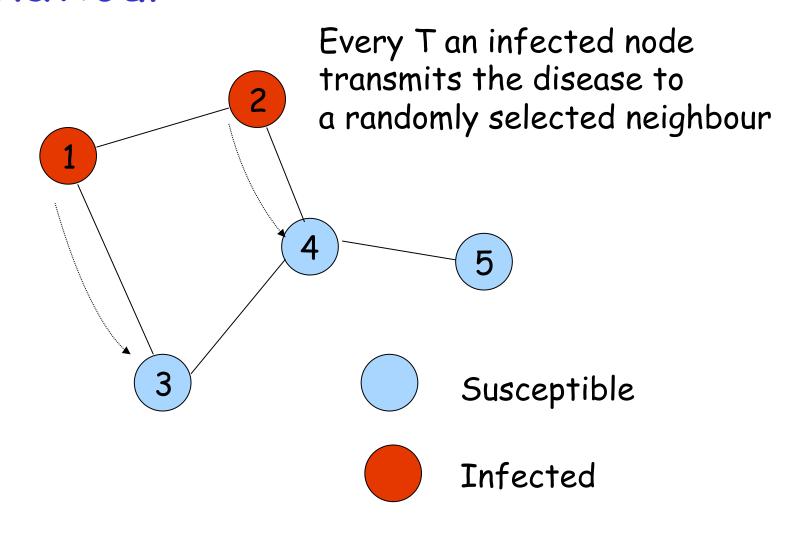
Epidemics on a graph: SI model

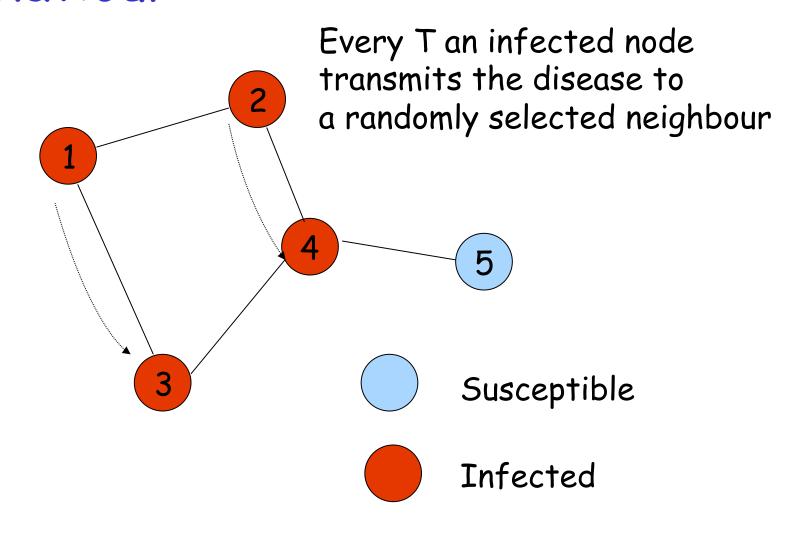


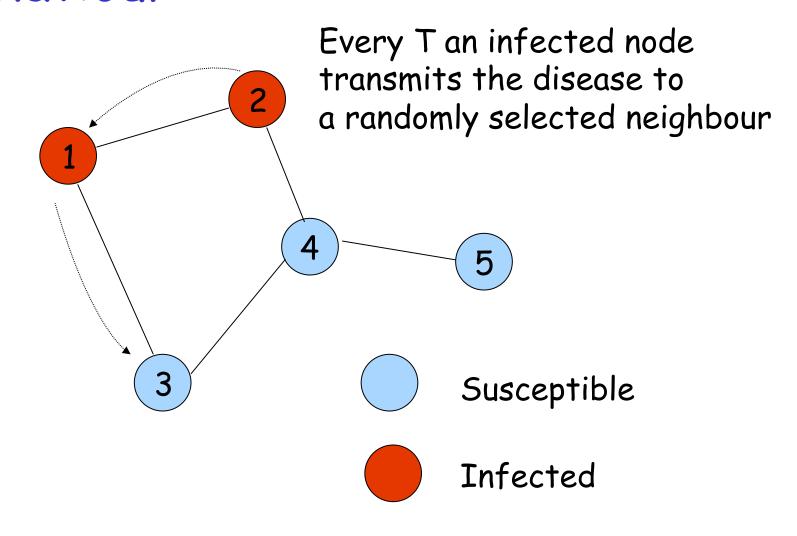
Any interest for Computer Networks?

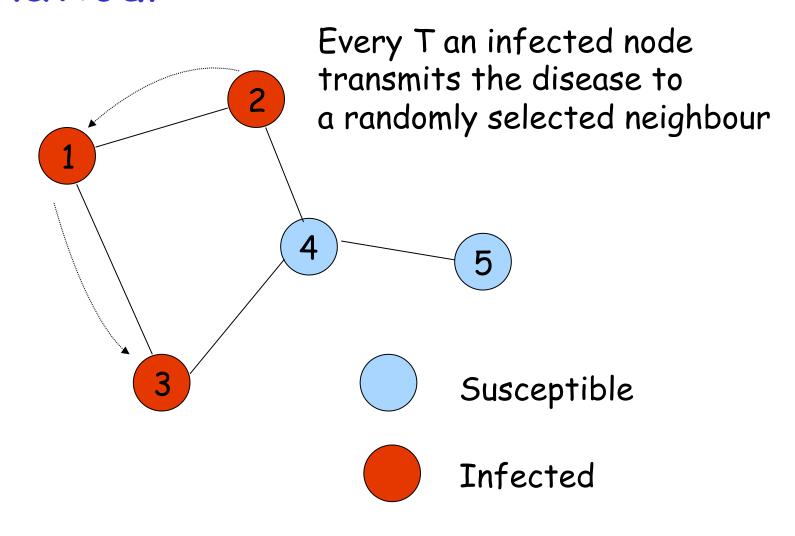
- Flooding
 - Epidemic Routing in Delay Tolerant Networks
- Chunk distribution in a P2P streaming system (push algorithms)









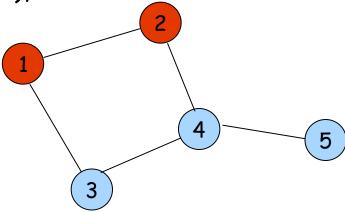


How do you model it?

A Markov Chain

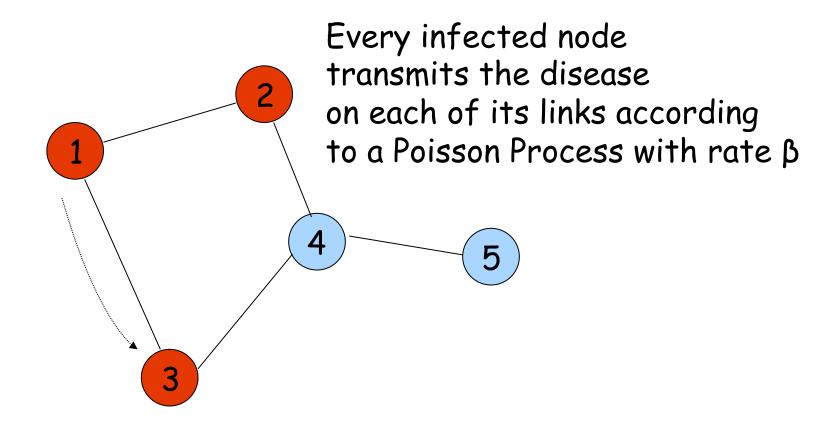
 System state at time k is a vector specifying if every node is infected (1) or not (0)

• e.g. (1,1,0,0,0), size: 2^5



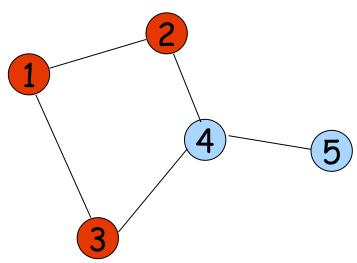
- Probability transitions among states
 - e.g. $Prob((1,1,0,0,0) \rightarrow (1,1,1,0,0)) = 1/4$

Asynchronous behaviour



How to model it?

- □ A Continuous-time Markov process/Chain (C-MC)
 - System state at time t is a vector specifying if every node is infected (1) or not (0)
 - O Rate transitions between state pairs
 - · e.g, q((1,1,1,0,0)->(1,1,1,1,0))=2β



What to study and how

- \square P the transition matrix (2 N x2 N)
- Transient analysis
 - \circ $\pi(k+1)=\pi(k)P$,
 - $\circ \pi(k+1)=\pi(0)P^{k+1}$
- Stationary distribution (equilibrium)
 - \circ π = π P
 - If the Markov chain is irreducible and aperiodic
 - Computational cost:
 - $O((2^N)^3)$ if we solve the system
 - O(K A) where A is the number of non-null entries in P if we adopt the iterative procedure (K is the number of iterations), in our case A ϵ O(|E|)

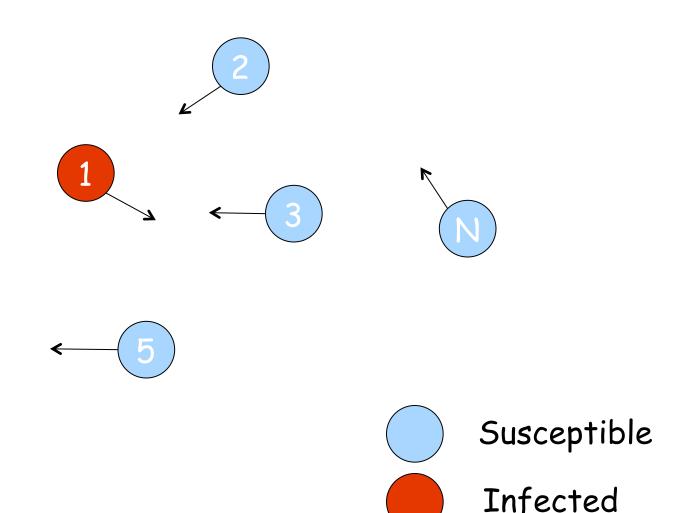
Similar for C-MC

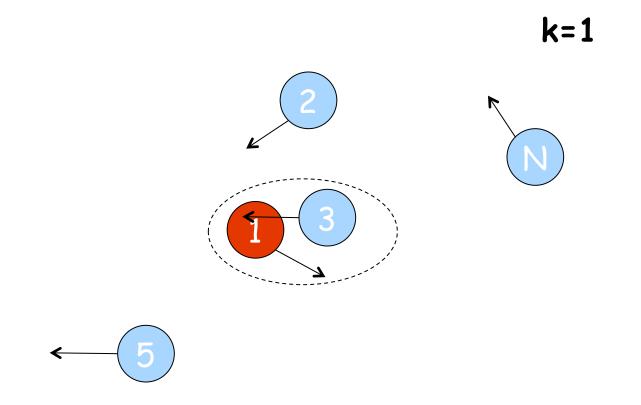
- Stationary distribution (equilibrium)
 - \circ π = π P, D-MC
 - \circ π Q=0, C-MC

- Transient analysis
 - \circ $\pi(k+1)=\pi(k)P$, D-MC
 - \circ d π (t)/dt= π (t)Q, C-MC

Outline

- □ Limit of Markovian models
- □ Mean Field (or Fluid) models
 - exact results
 - extensions to graphs
 - applications

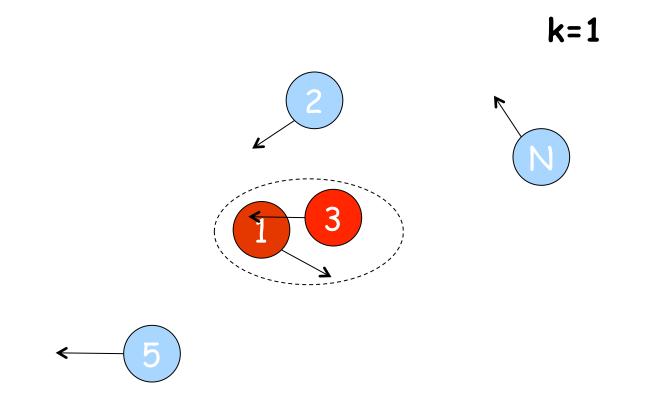




At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.

Susceptible

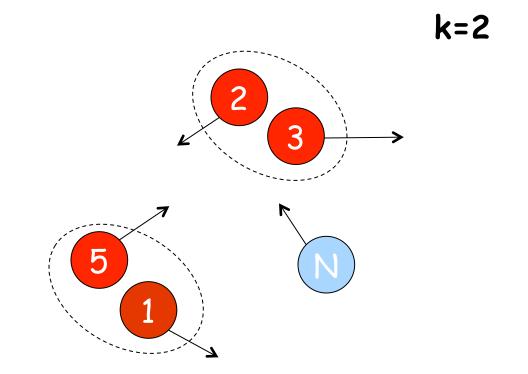
Infected



At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.

Susceptible

Infected



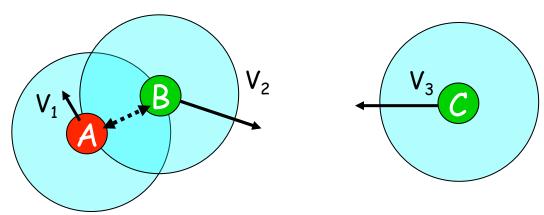
At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.

Susceptible

Infected

Delay Tolerant Networks

(a.k.a. Intermittently Connected Networks)



mobile wireless networks

no path at a given time instant between two nodes because of power contraint, fast mobility dynamics maintain capacity, when number of nodes (N) diverges

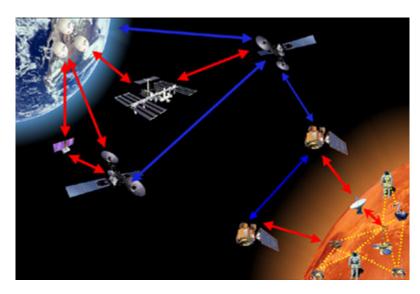
Fixed wireless networks: $C = \Theta(\text{sqrt}(1/N))$ [Gupta99]

Mobile wireless networks: $C = \Theta(1)$, [Grossglauser01]

a really challenging network scenario No traditional protocol works

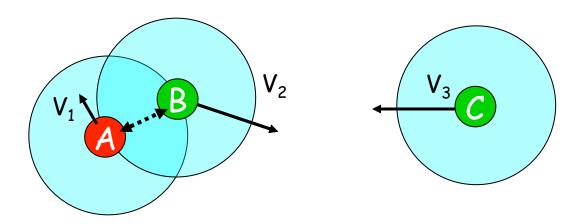
Some examples

- Network for disaster relief team
- Military battle-field network
- ...



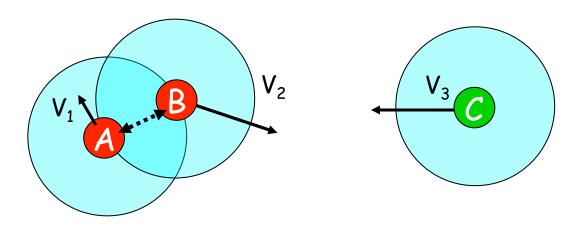
Inter-planetary backbone

Epidemic Routing



□ Message as a disease, carried around and transmitted

Epidemic Routing

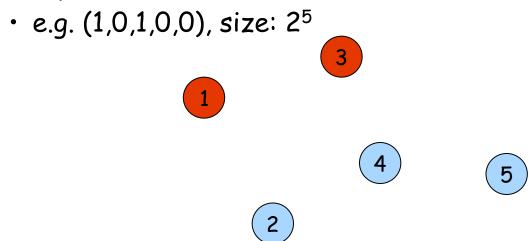


- Message as a disease, carried around and transmitted
 - Store, Carry and Forward paradigm

How do you model it?

A Markov Chain

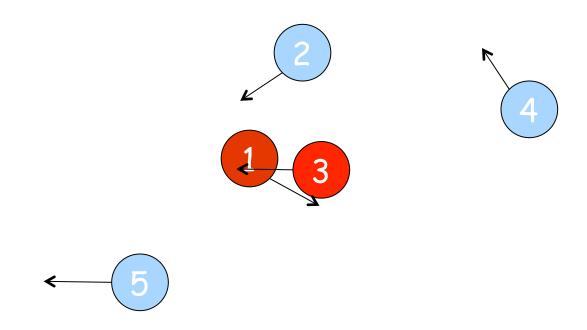
 System state at time k is a vector specifying if every node is infected (1) or not (0)



- Probability transitions among states
 - e.g. Prob((1,0,1,0,0)->(1,1,1,0,0))=?

Transition probabilities

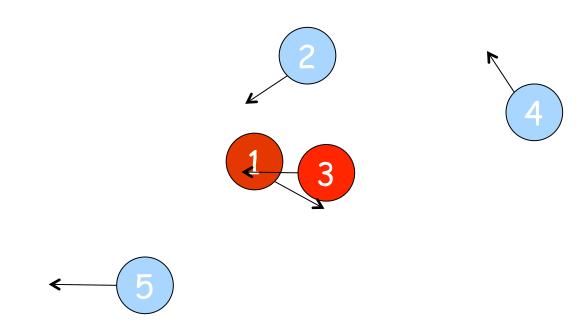
Prob((1,0,1,0,0)->(1,1,1,0,0))=?



At slot k, when there are I(=I(k)) infected nodes, the prob. that node 2 gets infected is: $q_I=1-(1-p)^I$

Transition probabilities

Prob((1,0,1,0,0)->(1,1,1,0,0))=?



Prob((1,0,1,0,0)->(1,1,1,0,0))= $q_2(1-q_2)^2$ Where q_1 =1-(1-p)^I

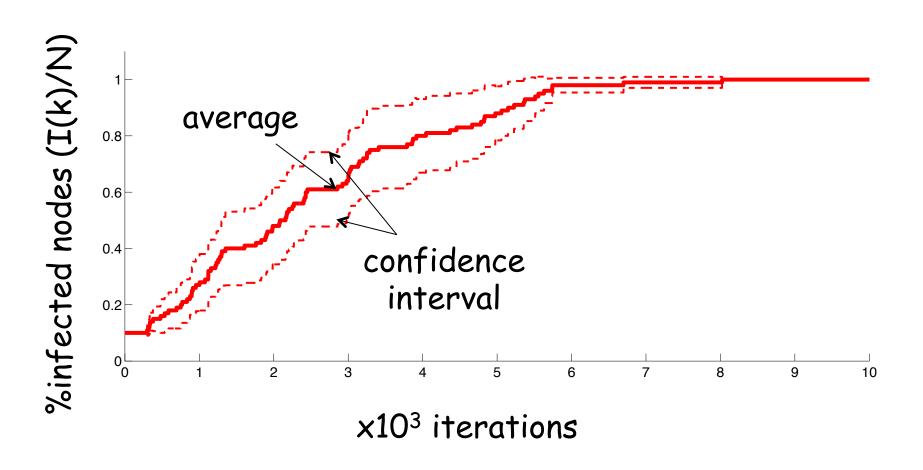
What to study and how

- \square P the transition matrix (2Nx2N)
- Transient analysis
 - \circ $\pi(k+1)=\pi(k)P$,
 - $\circ \pi(k+1)=\pi(0)P^{k+1}$
- Stationary distribution (equilibrium)
 - \circ π = π P
 - If the Markov chain is irreducible and aperiodic
 - Computational cost:
 - $O((2^N)^3)$ if we solve the system
 - O(K A) where A is the number of non-null entries in P if we adopt the iterative procedure (K is the number of iterations), in our case M ε $O((2^N)^2)$

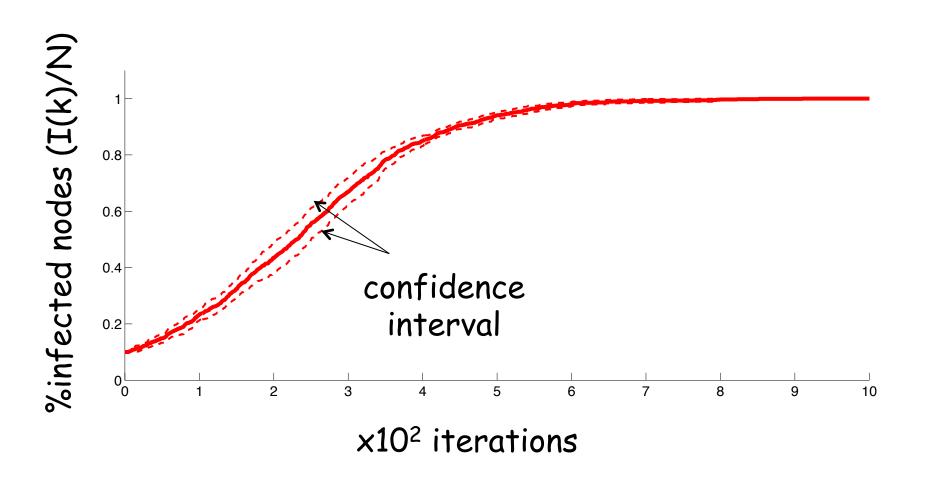
Can we simplify the problem?

- all the nodes in the same state (infected or susceptibles) are equivalent
- □ If we are interested only in the number of nodes in a given status, we can have a more succinct model
 - o state of the system at slot k: I(k)
 - o it is still a MC
 - \circ Prob(I(k+1)=I+n | I(k)=I) = $C^{n}_{N-I} q_{I}^{n} (1-q_{I})^{N-n-I}$
 - $(I(k+1)-I(k) | I(k)=I) \sim Bin(N-I,q_I)$
 - $q_{I}=1-(1-p)^{I}$

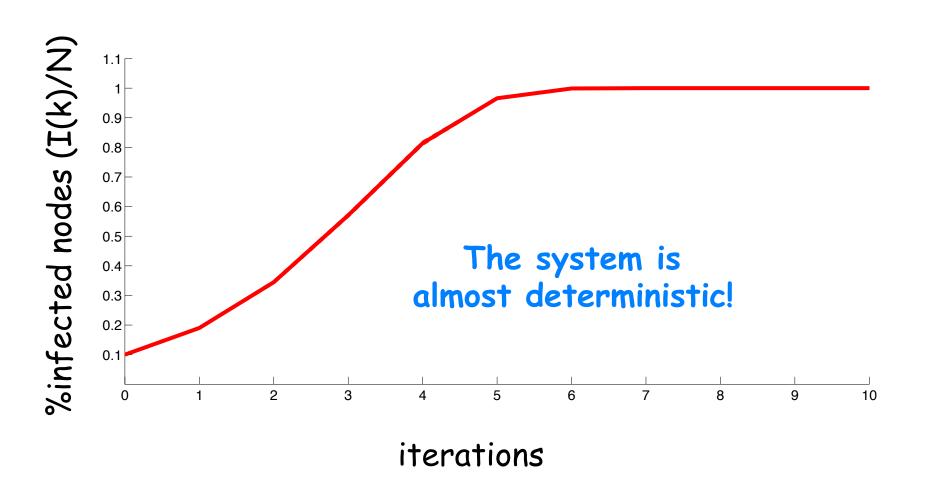
Some numerical examples $p=10^{-4}$, N=10, I(0)=N/10, 10 runs



Some numerical examples $p=10^{-4}$, N=100, I(0)=N/10, 10 runs



Some numerical examples $p=10^{-4}$, N=10000, I(0)=N/10, 10 runs



Summary

- □ For a large system of interacting equivalent objects, the Markov model can be untractable...
- but a deterministic description of the system seems feasible in terms of the empirical measure (% of objects in each status)
 - intuition: kind of law of large numbers
- Mean field models describe the deterministic limit of Markov models when the number of objects diverges

Spoiler

- \Box i^(N)(k), fraction of infected nodes at time k
- □ Solve

 di(t)/dt=i(t)(1-i(t)),

 with i=i₀
 - Solution: $i(t)=1/((1/i_0-1) e^{-t}+1)$
- □ If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx i(k p_0/N)=1/((1/i_0-1) \exp(-k p_0/N)+1)$ $=1/((1/i_0-1) \exp(-k N p)+1)$

Outline

- □ Limit of Markovian models
- □ Mean Field (or Fluid) models
 - exact results
 - extensions to graphs
 - applications

References

- Results here for discrete time Markov Chains
 - Benaïm, Le Boudec "A Class of Mean Field
 Interaction Models for Computer and
 Communication Systems", LCA-Report-2008-010
- A survey with pointers to continuous time Markov processes and links to stochastic approximation and propagation of chaos
 - Ch. 2 of Nicolas Gast's PhD thesis "Optimization and Control of Large Systems, Fighting the Curse of Dimensionality"

Necessary hypothesis: Objects' Equivalence

- $\blacksquare \pi(k+1)=\pi(k)P$
- \square A state $\sigma = (v_1, v_2, ..., v_N), v_j \in V(|V| = V, finite)$
 - E.g. in our example $V=\{0,1\}$
- P is invariant under any label permutation φ:
 - $P_{\sigma,\sigma}$:=Prob(($v_1,v_2,...v_N$)->($u_1,u_2,...u_N$))= Prob(($v_{\phi(1)},v_{\phi(2)},...v_{\phi(N)}$)->($u_{\phi(1)},u_{\phi(2)},...u_{\phi(N)}$))

Some notation and definitions

- $\square X_n^{(N)}(k)$: state of node n at slot k
- \square $M_v^{(N)}(k)$: occupancy measure of state v at slot k
 - $M_v^{(N)}(k) = \sum_n 1(X_n^{(N)}(k) = v)/N$
 - SI model: $M_2^{(N)}(k)=I^{(N)}(k)/N=i^{(N)}(k)$, $M_1^{(N)}(k)=S^{(N)}(k)/N=s^{(N)}(k)=1-i^{(N)}(k)$
- \square $M^{(N)}(k) = (M_1^{(N)}(k), M_2^{(N)}(k), ..., M_V^{(N)}(k))$
 - SI model: $(1-i^{(N)}(k),i^{(N)}(k))$
- $\Box f^{(N)}(m) = E[M^{(N)}(k+1) M^{(N)}(k) | M^{(N)}(k) = m]$
 - Drift or intensity, it is the mean field

Other hypotheses

- \square Intensity vanishes at a rate $\varepsilon(N)$
 - $-\operatorname{Lim}_{N\to\infty} f^{(N)}(\mathbf{m})/\varepsilon(N)=f(\mathbf{m})$
- Second moment of number of object transitions per slot is bounded
 - #transitions<W^N(k), E[W^N(k)²|**M**^(N)(k)=**m**]<cN² ϵ (N)²
- □ Drift is a smooth function of **m** and 1/N
 - $-\mathbf{f}^{(N)}(\mathbf{m})/\epsilon(N)$ has continuous derivatives in \mathbf{m} and in 1/N on $[0,1]^{V}\times[0,\beta]$, with $\beta>0$

Convergence Result

- \square Define $\underline{\mathbf{M}}^{(N)}(t)$ with t real, such that
 - $\underline{\mathbf{M}}^{(N)}(k \ \epsilon(N)) = \mathbf{M}^{(N)}(k)$ for k integer
 - $\underline{\mathbf{M}}^{(N)}(t)$ is affine on $[k \ \epsilon(N), (k+1)\epsilon(N)]$
- Consider the Differential Equation
 - $-d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$
- □ Theorem
 - For all T>0, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) \mathbf{\mu}(t)|| \rightarrow 0 \text{ in probability (/mean square)}$

Convergence of random variables

- □ The sequence of random variables X^(N) converges to X in probability if
 - for all $\delta > 0$ $\lim_{N\to\infty} Prob(|X^{(N)} X| > \delta) = 0$
- □ The sequence of random variables X^N converges to X in mean square if
 - $\lim_{N\to\infty} E[|X^{(N)} X|^2] = 0$
- □ Convergence in mean square implies convergence in probability

- □ Assumptions' check
 - Nodes are equivalent
 - Intensity vanishes at a rate $\varepsilon(N)$ $f^{(N)}(m) = E[M^{(N)}(k+1) - M^{(N)}(k)]M^{(N)}(k) = m]$ $M_2^{(N)}(k)=I^{(N)}(k)/N=i^{(N)}(k),M_1^{(N)}(k)=1-M_2^{(N)}(k)$ $(I^{(N)}(k+1)-I^{(N)}(k) | I^{(N)}(k)=I) \sim Bin(N-I,q_T) \Rightarrow$ $E[I^{(N)}(k+1)-I^{(N)}(k)|I^{(N)}(k)=I]=q_T(N-I)$ $E[i^{(N)}(k+1)-i^{(N)}(k)|i^{(N)}(k)=i] = (1-i) q_T$ = $(1-i)(1-(1-p)^{i}) -> (1-i)$ when N diverges!

- Out of the impasse: introduce a scaling for p
 - If $p^{(N)}=p_0/N^a a>1 \Rightarrow (1-i)(1-(1-p^{(N)})^{i}) >0$
 - Consider a=2
 - $(1-i)(1-(1-p^{(N)})^{i}) \sim (1-i) i p_0/N \text{ (for N large)}$
 - $\varepsilon(N)=p_0/N$
 - $f_2(\mathbf{m}) = f_2((s,i)) = s i = i (1-i)$
- Lesson to keep: often we need to introduce some parameter scaling

- □ Assumptions' check
 - Nodes are equivalent
 - ✓ Intensity vanishes at a rate $\epsilon(N)=p_0/N$
 - Second moment of number of object transitions per slot is bounded #transitions $W^N(k)$, $E[W^N(k)^2|\mathbf{M}^{(N)}(k)=\mathbf{m}] < cN^2 \epsilon(N)^2$ $W^N(k)=\#$ trans. $\sim Bin(N-I(k),q_I)$ $E[W^N(k)^2]=((N-I(k))q_I)^2+(N-I(k))q_I(1-q_I)$ is in $O(N^2 \epsilon(N)^2)$

- Assumptions' check
 - Nodes are equivalent
 - ✓ Intensity vanishes at a rate $\epsilon(N)=p_0/N$
 - Second moment of number of object transitions per slot is bounded
 - ✓ Drift is a smooth function of **m** and 1/N
 - $f_2^{(N)}(\mathbf{m})/\epsilon(N) =$ =(1-i) (1 - (1-(p₀/N²))^{i N})/(p₀/N)
 - continuous derivatives in i and in 1/N (not evident)

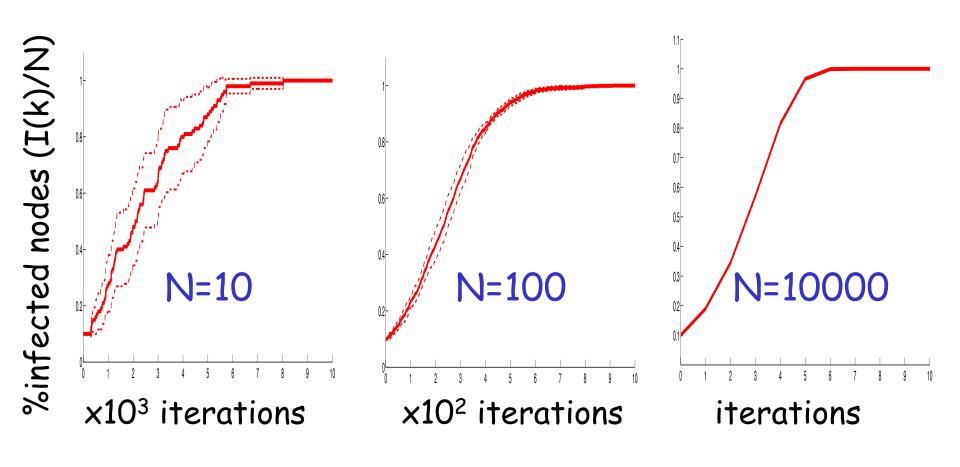
Practical use of the convergence result

□ Theorem

- For all T>0, if $\mathbf{M}^{(N)}(0) \to \mathbf{m}_0$ in probability (/mean square) as $N \to \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) \mathbf{\mu}(t)|| \to 0 \text{ in probability (/mean square)}$
- Where $\mu(t)$ is the solution of $d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$

- $\Box f_2(\mathbf{m}) = f_2((s,i)) = i(1-i)$
- $\Box d\mu_2(t)/dt=f_2(\mu_2(t))=\mu_2(t)(1-\mu_2(t)),$ with $\mu_2(0)=\mu_{0,2}$
 - Solution: $\mu_2(t)=1/((1/\mu_{0.2}-1) e^{-t}+1)$
- □ If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx \mu_2 (kε(N))=1/((1/i_0-1) exp(-k p_0/N)+1)$ =1/((1/i_0-1) exp(-k N p)+1)

Back to the numerical examples $p=10^{-4}$, I(0)=N/10, 10 runs



Advantage of Mean Field

- □ If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx \mu_2 (kε(N))=1/((1/i_0-1) exp(-k p_0/N)+1)$ =1/((1/i₀-1) exp(-k N p)+1)
 - solved for each N with negligible computational cost
- □ In general: solve numerically the solution of a system of ordinary differential equations (size = #of possible status)
 - simpler than solving the Markov chain