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Epidemics on a graph: ST model
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is randomly selected
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Any interest
for Computer Networks?

7 Flooding
O Epidemic Routing in Delay Tolerant Networks
3 Chunk distribution in a P2P streaming
system (push algorithms)

A copy of the chunk is

‘ pushed to a randomly
selected neighbour



Time-slotted synchronous
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transmits the disease to
a randomly selected neighbour
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How do you model i1?

7 A Markov Chain

O System state at time k is a vector specifying if
every node is infected (1) or not (0)
- e.g.(1,1,0,0,0), size: 2°

\@
3

O Probability transitions among states
- e.g. Prob((1,1,0,0,0)->(1,1,1,0,0))=1/4



Asynchronous behaviour

Every infected node
transmits the disease

‘/‘ on each of its links according

to a Poisson Process with rate p

\@




How to model it?

3 A Continuous-time Markov process/Chain
(C-MC)
O System state at time t is a vector specifying if
every node is infected (1) or not (0)

O Rate transitions between state pairs
- eq,9((11,10,0)->(111,1,0))=2p

X



What to study and how

3 P the transition matrix (2Nx2N)

J Transient analysis
o m(k+1)=mt(k)P,
O m(k+1)=mr(0)Pk+1,
7 Stationary distribution (equilibrium)
O m=mtP
O If the Markov chain is irreducible and aperiodic

O Computational cost:
- O((2N)3) if we solve the system

O(K A) where A is the number of non-null entries in P
if we adopt the iterative procedure (K is the number

of iterations), in our case A £ O(|E|)



Similar for C-MC

7 Stationary distribution (equilibrium)
o m=mtP, D-MC
o mQ=0, C-MC

J Transient analysis
o mt(k+1)=mt(k)P, D-MC
o dn(1)/dt=n(+)Q, C-MC



Outline

3 Limit of Markovian models
7 Mean Field (or Fluid) models
exact results
extensions to graphs
applications



A motivating example:
epidemics

Susceptible

@,
‘ Infected
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that two given nodes meet.
Assume meetings to be independent. ‘ Infected
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Delay Tolerant Networks

(a.k.a. Intermittently Connected Networks)

vz

mobile wireless networks
no path at a given time instant between two nodes
because of power contraint, fast mobility dynamics

maintain capacity, when number of nodes (N) diverges
Fixed wireless networks: C = O(sqrt(1/N))  [Gupta99]
Mobile wireless networks: C = ©(1), [Grossglauser01]

a really challenging network scenario
No traditional protocol works




Some examples

= Network for disaster relief team
= Military battle-field network

. Inter-planetary backbone



Epidemic Routing

vz

7 Message as a disease, carried around and
transmitted




Epidemic Routing

vz

7 Message as a disease, carried around and
transmitted

O Store, Carry and Forward paradigm




How do you model i1?

7 A Markov Chain

O System state at time k is a vector specifying if
every node is infected (1) or not (0)
- e.g.(1,0,1,0,0), size: 2°

® @
@

O Probability transitions among states
* e.g. Prob((1,0,1,0,0)->(1,1,1,0,0))=?



Transition probabilities
Prob((1,0,1,0,0)->(1,1,1,0,0))=?

o
o0 b

@

At slot k, when there are I(=I(k)) infected nodes,
the prob. that node 2 gets infected is: q;=1-(1-p)*



Transition probabilities
Prob((1,0,1,0,0)->(1,1,1,0,0))=?

o
o0 b

@

Prob((1,0,1,0,0)->(1,1,1,0,0))=q.(1-g,)?
Where g;=1-(1-p)*



What to study and how

3 P the transition matrix (2Nx2N)

J Transient analysis
o m(k+1)=mt(k)P,
O m(k+1)=mr(0)Pk+1,
7 Stationary distribution (equilibrium)
O m=mtP
O If the Markov chain is irreducible and aperiodic

O Computational cost:
- O((2N)3) if we solve the system

O(K A) where A is the number of non-null entries in P
if we adopt the iterative procedure (K is the number

of iterations), in our case M £ O((2N)2)



Can we simplify the problem?

7 all the nodes in the same state (infected or
susceptibles) are equivalent

7 If we are interested only in the number of
nodes in a given status, we can have a more
succinct model

O state of the system at slot k: I(k)

o it is still a MC

O Prob(I(k+1)=I+n | I(k)=-I) = C"\ 1 q;" (1-g)N "t
. (T(k+1)-I(k) |I(k)=I) ~ Bin(N-I g;)
+ qr=1-(1-p)*



Some numerical examples
p=10-4, N=10, I(0)=N/10, 10 runs
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Some numerical examples
p=10-4, N=100, I(0)=N/10, 10 runs
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Some numerical examples
p=10-4, N=10000, I(0)=N/10, 10 runs
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Summary

7 For a large system of interacting equivalent
objects, the Markov model can be
untractable...

7 but a deterministic description of the
system seems feasible in terms of the
empirical measure (% of objects in each
status)

- intuition: kind of law of large numbers

I Mean field models describe the

deterministic limit of Markov models when
the number of objects diverges



Spoiler

7 iMN)(k), fraction of infected nodes at time k
7 Solve
di(+)/dt=i(+)(1-i(1)),
with i=i,
Solution: i(t)=1/((1/iy-1) e+1)

3 If iN0)=i,
iN(k) # i(k po/N)=1/((1/i5-1) exp(-k po/N)+1)
=1/((1/i,-1) exp(-k N p)+1)



Outline

m

m
exact results
extensions to graphs
applications
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Necessary hypothesis:
Objects’ Equivalence

3 t(k+1)=mt(k)P
J A state 0 =(vy.v,,..V), V; € V(| V=V, finite)
E.g. in our example ~{0,1}
7 P is invariant under any label permutation o:
P, o =Prob((vy,v,,..v)->(uy uy,...uy )=
Prob((Vy(ny V()Y Up(ayUg(zy--Yog))



Some notation and definitions

3 X, NY(Kk): state of node n at slot k

3 M MN(Kk): occupancy measure of state v at
slot k

M M (k)=%, 1(X N (k)=v)/N

ST model: M,™ (k)=IM) (k)/N=iMN)(k),

M, N(K)=SM (k)/N=sM(K)=1-iN(K)
3 MMN(Kk)=(M,MN(k),M,MN(k),...M, N(Kk))

. SI model: (1-iN) (k),i™N) (k))

3 fMN(mM)=E[MMN(k+1)-MM(K) | MN(k)=m]

Drift or intensity, it is the mean field



Other hypotheses

7 Intensity vanishes at a rate ¢(N)
— Limy,.. fN(m)/e(N)=f(m)

7 Second moment of number of object
transitions per slot is bounded

— #transitions<WN(k),
E[WN(k)2|MN)(k)=m]<cN2g(N)?
A3 Drift is a smooth function of m and 1/N

— fN)(m)/e(N) has continuous derivatives in
m and in 1/N on [0,1]Vx[0,B], with B>0



Convergence Result

3 Define MN)(1) with T real, such that
« MMk e(N))=MMN)(K) for k integer
« MMN)(1) is affine on [k e(N),(k+1)e(N)]
7 Consider the Differential Equation
— du(t)/dt=f(u), with p(0)=m,
3 Theorem
— For all T>0, if MN)(0) — m,, in probability
(/mean square) as N — o, then
SUPgper| IMMN(H)-p(t)[| —0 in probability (/
mean square)



Convergence
of random variables

7 The sequence of random variables XN)
converges to X in probability if
— for all 80 Limy,__Prob(|X™ - X|>8)=0
7 The sequence of random variables XN
converges to X in mean square if
— Limg_ E[IX™N - X]2]=0
7 Convergence in mean square implies
convergence in probability



Application to the SI model

7 Assumptions’ check

v Nodes are equivalent

- Intensity vanishes at a rate ¢(N)
fMN(m)=E[MM(k+1)-MMN(K) | MN)(K)=m]
M, MN(K)=IMN(k)/N=iN(k),M,N(k)=1-M,N(K)
(TN(k+1)-IMN(K) [IMN(K)=I) ~ Bin(N-I ;) =>
E[IM(k+1)-TN(K) |TN(K)=I] = q; (N-T)
E[iN(k+1)-iM(K)[iN(K)=i] = (1-i) q;
= (1-i)(1-(1-p)'N) -> (1-i) when N diverges!



Application to the SI model

7 Out of the impasse: introduce a scaling for p
If pMN=p,/N2 a>1 => (1-i)(1-(1-p™)i N)->0
Consider a=2
- (1-)(1-(1-pMI)iN) ~ (1-i) i pg/N (for N large)
e(N)=po/N
Fom)=fo((s.0)= s i = i (1-i)

7 Lesson to keep: often we need to introduce

some parameter scaling



Application to the SI model

7 Assumptions’ check
v Nodes are equivalent

v Intensity vanishes at a rate ¢(N)=p,/N

- Second moment of number of object
transitions per slot is bounded

#transitions< WN(k),
E[WN(k)2| MMN)(k)=m1<cN2g(N)?
WN(k)=#trans. ~ Bin(N-I(k),q;)

E[WN(K)*1=((N-I(k))qr)? + (N-I(k))qz(1-qz)
is in O(N? ¢(N)?)



Application to the SI model

7 Assumptions’ check
v Nodes are equivalent
v Intensity vanishes at a rate ¢(N)=p,/N

v Second moment of number of object
transitions per slot is bounded

v Drift is a smooth function of m and 1/N
fo,N(m)/e(N) =
=(1-i) (1 - (1-(po/N2=))N)/(po/N)
continuous derivatives ini and in 1/N
(not evident)



Practical use of the
convergence result

3 Theorem
— For all T>0, if MN)(0) — m,, in probability
(/mean square) as N — o, then
SUPg.r.t| IMMN(H)-u(+)[| =0 in probability (/
mean square)
— Where (1) is the solution of

du(t)/dt=f(n), with p(0)=m,

7 MMN(0)=mg, , MO(k)=MM(ke(N))xp(ke(N))



Application to the SI model

3 fo(m)=1,((s,i))=i(1-i)

3 dy, (1)/dt=f, (ua(1))=12(T)(1-p(1)),
with UZ(O):UO'Z
» Solution: py(1)=1/((1/yg ,-1) e '+1)

3 If iN(0)=i, ,
iN(k) 2 p, (ke(N))=1/((1/iy-1) exp(-k po/N)+1)
=1/((1/i,-1) exp(-k N p)+1)



%infected nodes (I(k)/N)

Back to the numerical examples
p=10-4, I(0)=N/10, 10 runs

N=10000

I

x103 iterations x102 iterations iterations



Advantage of Mean Field

3 If iN(0)=i, ,
iN(k) 2 p, (ke(N))=1/((1/i5-1) exp(-k py/N)+1)
=1/((1/i,-1) exp(-k N p)+1)
solved for each N with negligible
computational cost

3 In general: solve numerically the solution of a
system of ordinary differential equations
(size = #of possible status)

simpler than solving the Markov chain



