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Any interest  
for Computer Networks? 
❒  Flooding 

❍ Epidemic Routing in Delay Tolerant Networks 
❒  Chunk distribution in a P2P streaming 

system (push algorithms)  

w/o chunk 

with chunk 

A copy of the chunk is  
pushed to a randomly  
selected neighbour 
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How do you model it? 

❒ A Markov Chain 
❍ System state at time k is a vector specifying if 

every node is infected (1) or not (0) 
•  e.g. (1,1,0,0,0), size: 25 

 
 
 
 
 
 

❍  Probability transitions among states 
•  e.g. Prob((1,1,0,0,0)->(1,1,1,0,0))=1/4 
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Asynchronous behaviour 
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Every infected node  
transmits the disease  
on each of its links according  
to a Poisson Process with rate β 



How to model it? 

❒ A Continuous-time Markov process/Chain 
(C-MC) 
❍ System state at time t is a vector specifying if 

every node is infected (1) or not (0) 
❍ Rate transitions between state pairs 

•  e.g, q((1,1,1,0,0)->(1,1,1,1,0))=2β 
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What to study and how 

❒  P the transition matrix (2Nx2N) 
❒ Transient analysis 

❍ π(k+1)=π(k)P,   
❍ π(k+1)=π(0)Pk+1,   

❒ Stationary distribution (equilibrium) 
❍ π=πP 
❍ If the Markov chain is irreducible and aperiodic 
❍ Computational cost: 

•  O((2N)3) if we solve the system 
•  O(K A) where A is the number of non-null entries in P 

if we adopt the iterative procedure (K is the number 
of iterations), in our case A ε O(|E|)  

 
 



Similar for C-MC 

❒ Stationary distribution (equilibrium) 
❍ π=πP,  D-MC 
❍ πQ=0, C-MC 

 
 
❒ Transient analysis 

❍ π(k+1)=π(k)P,  D-MC 
❍ dπ(t)/dt=π(t)Q,  C-MC 



Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions to graphs  
•  applications 
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At each slot there is a probability p  
that two given nodes meet.  
Assume meetings to be independent. 
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A motivating example: 
epidemics 
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At each slot there is a probability p  
that two given nodes meet.  
Assume meetings to be independent. 



Delay Tolerant Networks  
(a.k.a. Intermittently Connected Networks) 

mobile wireless networks 
no path at a given time instant between two nodes 

because of power contraint, fast mobility dynamics 
maintain capacity, when number of nodes (N) diverges 

Fixed wireless networks:   C = Θ(sqrt(1/N))  [Gupta99] 
Mobile wireless networks:     C = Θ(1),  [Grossglauser01]  

a really challenging network scenario 
No traditional protocol works 

A 

V2 V3 V1 B C 



Some examples 

Inter-planetary backbone 

DakNet, Internet to rural area 

DieselNet,  
bus network 

ZebraNet, Mobile sensor networks 
n  Network for disaster relief team 
n  Military battle-field network 
n   … 



Epidemic Routing 

A 

V2 V3 V1 B C 

❒ Message as a disease, carried around and 
transmitted 

 



Epidemic Routing 

A 

V2 V3 V1 B C 

❒ Message as a disease, carried around and 
transmitted 
❍ Store, Carry and Forward paradigm 



How do you model it? 

❒ A Markov Chain 
❍ System state at time k is a vector specifying if 

every node is infected (1) or not (0) 
•  e.g. (1,0,1,0,0), size: 25 

 
 
 
 
 
 

❍  Probability transitions among states 
•  e.g. Prob((1,0,1,0,0)->(1,1,1,0,0))=? 
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Transition probabilities 
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At slot k, when there are I(=I(k)) infected nodes,  
the prob. that node 2 gets infected is: qI=1-(1-p)I 

Prob((1,0,1,0,0)->(1,1,1,0,0))=? 



Transition probabilities 
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Prob((1,0,1,0,0)->(1,1,1,0,0))=q2(1-q2)2 

Where qI=1-(1-p)I 

Prob((1,0,1,0,0)->(1,1,1,0,0))=? 



What to study and how 

❒  P the transition matrix (2Nx2N) 
❒ Transient analysis 

❍ π(k+1)=π(k)P,   
❍ π(k+1)=π(0)Pk+1,   

❒ Stationary distribution (equilibrium) 
❍ π=πP 
❍ If the Markov chain is irreducible and aperiodic 
❍ Computational cost: 

•  O((2N)3) if we solve the system 
•  O(K A) where A is the number of non-null entries in P 

if we adopt the iterative procedure (K is the number 
of iterations), in our case M ε O((2N)2)  

 
 



Can we simplify the problem? 

❒  all the nodes in the same state (infected or 
susceptibles) are equivalent 

❒  If we are interested only in the number of 
nodes in a given status, we can have a more 
succinct model 
❍  state of the system at slot k: I(k) 
❍  it is still a MC 
❍  Prob(I(k+1)=I+n | I(k)=I) = Cn

N-I qI
n (1-qI)N-n-I 

•  (I(k+1)-I(k) |I(k)=I) ~ Bin(N-I,qI) 
•  qI=1-(1-p)I 

 
 



Some numerical examples 
p=10-4, N=10, I(0)=N/10, 10 runs 
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Some numerical examples 
p=10-4, N=100, I(0)=N/10, 10 runs 
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Some numerical examples 
p=10-4, N=10000, I(0)=N/10, 10 runs 
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The system is  
almost deterministic! 



Summary 

❒  For a large system of interacting equivalent 
objects, the Markov model can be 
untractable… 

❒  but a deterministic description of the 
system seems feasible in terms of the 
empirical measure (% of objects in each 
status) 
•  intuition: kind of law of large numbers 

❒ Mean field models describe the 
deterministic limit of Markov models when 
the number of objects diverges 



Spoiler 

❒  i(N)(k), fraction of infected nodes at time k 
❒ Solve 
   di(t)/dt=i(t)(1-i(t)),  

 with i=i0 
•  Solution: i(t)=1/((1/i0-1) e-t+1)  
 

❒  If i(N)(0)=i0 ,  
 i(N)(k) ≈ i(k p0/N)=1/((1/i0-1) exp(-k p0/N)+1) 
 =1/((1/i0-1) exp(-k N p)+1) 



Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions to graphs 
•  applications 
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Necessary hypothesis:  
Objects’ Equivalence 
❒ π(k+1)=π(k)P 
❒ A state σ =(v1,v2,...vN), vj є V (|V|=V, finite) 

•   E.g. in our example V={0,1} 
❒  P is invariant under any label permutation φ: 

•  Pσ,σ'=Prob((v1,v2,...vN)->(u1,u2,...uN))= 
  Prob((vφ(1),vφ(2),...vφ(N))->(uφ(1),uφ(2),...uφ(N))) 



Some notation and definitions 

❒ Xn
(N)(k): state of node n at slot k 

❒ Mv
(N)(k): occupancy measure of state v at 

slot k 
•  Mv

(N) (k)=Σn 1(Xn
(N) (k)=v)/N 

•  SI model: M2
(N) (k)=I(N) (k)/N=i(N)(k),  

   M1
(N)(k)=S(N) (k)/N=s(N)(k)=1-i(N)(k)  

❒ M(N)(k)=(M1
(N)(k),M2

(N)(k),...MV
(N)(k)) 

•  SI model: (1-i(N) (k),i(N) (k)) 
❒  f(N)(m)=E[M(N)(k+1)-M(N)(k)|M(N)(k)=m] 

•  Drift or intensity, it is the mean field 



Other hypotheses 

❒  Intensity vanishes at a rate ε(N) 
– LimN->∞ f(N)(m)/ε(N)=f(m) 

❒ Second moment of number of object 
transitions per slot is bounded 
– #transitions<WN(k),  

  E[WN(k)2|M(N)(k)=m]<cN2ε(N)2 

❒ Drift is a smooth function of m and 1/N 
– f(N)(m)/ε(N) has continuous derivatives in 
m and in 1/N on [0,1]Vx[0,β], with β>0 



Convergence Result 
❒ Define M(N)(t) with t real, such that 

• M(N)(k ε(N))=M(N)(k) for k integer 
• M(N)(t) is affine on [k ε(N),(k+1)ε(N)] 

❒ Consider the Differential Equation 
– dµ(t)/dt=f(µ), with µ(0)=m0  

❒ Theorem 
– For all T>0, if M(N)(0) → m0 in probability 

(/mean square) as N → ∞, then         
sup0≤t≤T||M(N)(t)-µ(t)|| →0 in probability (/
mean square) 



Convergence  
of random variables 
❒ The sequence of random variables X(N) 

converges to X in probability if 
– for all δ>0 LimN→∞Prob(|X(N) – X|>δ)=0 

❒ The sequence of random variables XN 
converges to X in mean square if 
–   LimN→∞E[|X(N) – X|2]=0 

❒ Convergence in mean square implies 
convergence in probability 



Application to the SI model 

❒ Assumptions’ check 
ü  Nodes are equivalent 
-  Intensity vanishes at a rate ε(N)  
  f(N)(m)=E[M(N)(k+1)-M(N)(k)|M(N)(k)=m] 
  M2

(N)(k)=I(N)(k)/N=i(N)(k),M1
(N)(k)=1-M2

(N)(k) 
  (I(N)(k+1)-I(N)(k) |I(N)(k)=I) ~ Bin(N-I,qI) => 
  E[I(N)(k+1)-I(N)(k) |I(N)(k)=I] = qI (N-I) 
  E[i(N)(k+1)-i(N)(k)|i(N)(k)=i] = (1-i) qI  
  = (1-i)(1-(1-p)i N) -> (1-i) when N diverges! 



Application to the SI model 

❒ Out of the impasse: introduce a scaling for p 
•  If p(N)=p0/Na a>1 => (1-i)(1-(1-p(N))i N)->0   
•  Consider a=2 

-  (1-i)(1-(1-p(N))i N) ~ (1-i) i p0/N (for N large) 
•  ε(N)=p0/N 
•  f2(m) =f2((s,i))= s i = i (1-i) 

❒  Lesson to keep: often we need to introduce 
some parameter scaling 



Application to the SI model 

❒ Assumptions’ check 
ü  Nodes are equivalent 
ü  Intensity vanishes at a rate ε(N)=p0/N 
-  Second moment of number of object 

transitions per slot is bounded 
  #transitions<WN(k),  
  E[WN(k)2|M(N)(k)=m]<cN2ε(N)2 

   WN(k)=#trans. ~ Bin(N-I(k),qI) 
  E[WN(k)2]=((N-I(k))qI)2 + (N-I(k))qI(1-qI) 
  is in O(N2 ε(N)2) 



Application to the SI model 

❒ Assumptions’ check 
ü  Nodes are equivalent 
ü  Intensity vanishes at a rate ε(N)=p0/N 
ü  Second moment of number of object 

transitions per slot is bounded 
ü  Drift is a smooth function of m and 1/N 

•  f2
(N)(m)/ε(N) = 

     =(1-i) (1 – (1-(p0/N2))i N)/(p0/N) 
•  continuous derivatives in i and in 1/N 

(not evident) 

  



Practical use of the 
convergence result 

❒ Theorem 
– For all T>0, if M(N)(0) → m0 in probability 

(/mean square) as N → ∞, then         
sup0≤τ≤T||M(N)(t)-µ(t)|| →0 in probability (/
mean square) 
– Where µ(t) is the solution of  

 dµ(t)/dt=f(µ), with µ(0)=m0  
 

❒ M(N)(0)=m0 , M(N)(k)=M(N)(kε(N))≈µ(kε(N)) 



Application to the SI model 

❒  f2(m)=f2((s,i))=i(1-i) 
❒ dµ2 (t)/dt=f2 (µ2(t))=µ2(t)(1-µ2(t)),  

 with µ2(0)=µ0,2  
•  Solution: µ2(t)=1/((1/µ0,2-1) e-t+1)  
 

❒  If i(N)(0)=i0 ,  
 i(N)(k) ≈ µ2 (kε(N))=1/((1/i0-1) exp(-k p0/N)+1) 
 =1/((1/i0-1) exp(-k N p)+1) 



Back to the numerical examples 
p=10-4, I(0)=N/10, 10 runs 
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x102 iterations iterations 

N=10 N=100 N=10000 



Advantage of Mean Field 
 

❒  If i(N)(0)=i0 ,  
 i(N)(k) ≈ µ2 (kε(N))=1/((1/i0-1) exp(-k p0/N)+1) 
 =1/((1/i0-1) exp(-k N p)+1) 

•  solved for each N with negligible 
computational cost 

❒  In general: solve numerically the solution of a 
system of ordinary differential equations 
(size = #of possible status) 
•  simpler than solving the Markov chain 

  


