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2-hop routing

Model the number of occurrences of the message
as an absorbing Continuous Time Markov Chain (C-
MC):
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State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



Epidemic routing

Model the number of occurrences of the message
as an absorbing C-MC:
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State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



Message delay

Proposition: The Laplace transform of the message
delay under the two-hop multicopy protocol is:

T;(9)=§i(N—1)!( A )z,
i=1

(N-iN\ AN +6
and
i (N-1)!

P(N, =i) = i=1,..,N

N (N =)



Message delay

Proposition: The Laplace transform of the message
delay under epidemic routing is:
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Expected message delay

Corollary: The expected message delay under the
two-hop multicopy protocol is
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and under the epidemic routing is
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Where y = 0.57721 is Euler’ s constant.




Relative performance

The relative performance of the two relay protocols:
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Note that these are independent of Al



Some remarks

These expressions hold for any mobility model
which has exponential meeting times.

Two mobility models which give the same A also
have the same message delay for both relay
protocols! (mobility pattern is “hidden” in A)

Mean message delay scales with mean first-
meeting times.

A depends on:
- mobility pattern
- surface area
- transmission radius



Example: two-hop multicopy
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Example: two-hop multicopy
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Example: two-hop multicopy
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Example: two-hop multicopy
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Example: two-hop multicopy
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Example: two-hop multicopy
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Example: unrestricted
multicopy
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Outline

Introduction on Intermittently Connected
Networks (or Delay/Disruption Tolerant
Networks)

Markovian models
the key to Markov model

Markovian analysis of epidemic routing

Fluid models



Why a fluid approach?

[Groenevelt05]
Markov models can be developed

States: n;=1,.., N: num. of infected nodes, different from
destination; A: packet delivered to the destination

Infection rate:
rN(I) = MI(N_nI)

Delivery rate:
An,

Transient analysis to derive delay, copies made by delivery;
hard to obtain closed form, specially for more complex
schemes



Modeling Works:
Small and Haas

Mobicom 2003 [small03]

ODE introduced in a naive way for simple epidemic
scheme  ['(1) = AI(t)(N - 1(1))

N is the total number of nodes,

I the total humber of infected nodes

A is the average pairwise meeting rate
Average pair-wise meeting rate obtained from
simulations

TON 2006 [haas06]

consider a Markov Chain with N-1 different meeting
rates depending on the number of infected nodes
(obtained from simulations)

Numerical solution complexity increases with N



Our contribution [Zhang07]

A unified ODE framework...

limiting process of Markov processes as N increases
[Kurtz 1970]



How do we proceed?
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This is not a
Discrete-Time Markov chain

1. We show in an intuitive way why we expect
to be able to derive the same results

2. We present rigorous results for fluid
models for C-MC



C-MC

7 N states, q,,, is the transition rate from
state n to state m

Jif C-MC is in state n, the exit time is the
minimum of at most N-1 independent
exponential r.v. with rates q, . for men

7 An equivalent description is that the C-MC
abandons state n with rate q, =2, q, . and
then jumps to state m with probability q, ./

Zm<>n qn,m
3 It follows that the sequence of states of a
C-MC is a D-MC (the embedded MC).



C-MC: Uniformization

7 Let q be a rate such that g>=q, for every n

7 Assume that all transitions occur at rate q,
but that in state n, they lead only with
prob q,/q to a different state, and with
prob 1-q,/q they leave the system in state n

7 This is an equivalent description



From a C-MC to a D-MC

3 Consider a uniformized C-MC with rate g
and state X (1)

7 Consider its embedded D-MC with state
Xy(k), k=0,1,2...

7 We can consider that
Xp(k)xX(k/q)

3 Then from a MF result for X, (k), we can
derive an analogous one for X (1)



MF for Epidemic Routing

7 Let's ignore at the moment state D
7 Transition Rates (under MF approximation)

A n(N-n) to state n+l1 (with 1 infected node
more)

Then g, = A n (N-n)
JLet's choose g = A N?

7 in the embedded MC the probabilities of
moving to n+l1 and staying in n are

1. n/N (1-n/N) and 2. 1-n/N (1-n/N)



MF for Epidemic Routing

7 Measure occupancy: (i,™(1),s,MN(1))
3 Drift:

Only one component is necessary, e.g.
that for the infected nodes

f,MN(m)=1/N n/N (1-n/N)
7 All the conditions are satisfied!
and ¢(N)=1/N



MF for Epidemic Routing

T Let iy(T) be the solution of the ODE
dij(t)/dt=i (+)(1-i,(1)),
with i5(0)=i,

3 If i,™M(0)=i(0), then i,™M(k)=iy (t €(N))

3 But i (k/q)%i,N)(k), then i .(+)=i,(tq/
N)=iy(AT)

5 di, (t)/dt= [@ L (1(L-i (1))

- We need The pairwise meeting rate to
go to zero A=A,/N



[Kurtz1970]

{Xn(1), N natural}

a family of Markov process in Z™
with rates ry(k,k+h), khinZnm

It is called density dependent if it exists a

continuous function f() in R™ such that

ru(kkeh) = N F(I/N K, h), hoO
Define F(x)=Z, h f(x,h)
Kurtz's theorem determines when {X\(1)} are close

to the solution of the differential equation:

0x(S)
A

= F(x(s)),



The formal result [Kurtz1970]

Theorem. Suppose there is an open set E in R™ and a
constant M such that

F(x)-F(y)[<M|x-y|, xyinE
sup, i eZ,lh| f(x,h) <eo,
imd_>°°SUPx in Ez|h|>d|h| f(x,h) =0

Consider the set of processes in {X\(t)} such that
limye 1/N X ((0) = x5 in E
and a solution of the differential equation
ox(s
WP, x(0)=
such that x(s) is in E for O<=s<=t, then for each &0

>5}=O

L X, ()= x(s)

lim Prlsu
foupi

N—0

O<s<t



Application to epidemic routing

ra(np)=A np (N-ng) = N (AN) (n/N) (1-n/N)
assuming p = A N keeps constant (e.g. node
density is constant)

f(x,h)=Ff(x)=x(1-x), F(x)=f(x)
as N—o, n;/N — i(t), s.t.
i'(1) = pi()(1-i(2))

with initial condition
i(0) =limn,(0)/N

N —0

multiplying by N
I'(t) = AL(t)(N - 1(1))



What can we do
with the fluid model?

Derive an estimation of the number of
infected nodes at time t

e.g. if I(0)=1 -> I(1)=N/(1+(N-1)e-Nrt)



What can we do
with the fluid model?

Delivery delay T time from pkt generation at
the src until the dst receives the pkt
CDF of Ty, P(1) := Pr(T«t) given by:
P'(1) = A (t)(1- P(1))
g [ T prob. that pkt is

delivamyyeadelay not delivered yet
at time t  infegyy deJ’épL P())dt

Avg. num. of copies senqga’r dellver'y

E[C] = f [(t)P (t)dt -1



What can we do
with the fluid model?

Consider recovery process, eg IMMUNE (dest.
node cures infected node):

I't)=AI(N-1I-R)-Al
R'(t)=A \ R(t): num. of recovered nodes
Num. of susceptible nodes

Total num. of copies made:  1im R(¢)

00 [—>0

Total buffer usage f / (t )dt
0



More flexible
than Markov models

to model all the different variants,
e.g. limited-time forwarding

L'() =AU+ DN -1()-T () -1) -, (2),
I'(t) = ul ()

or probabilistic forwarding, K-hop forwarding...

under different recovery schemes (VACCINE,
IMMUNE,...)



Our contribution

Closed formulas for average delay, nhumber of
copies and CDF in many cases

Asymptotic results

Numerical evaluation always possible without
scaling problems

Study of delay vs buffer occupancy or delay
vs power consumption for different
forwarding schemes



Epidemic Routing Average delay
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Delay distribution
CDF of delay under epidemi
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Some results

Extensible to other schemes

(IM _TX)

I(¢),P(t) E[T, ]
N
I(t) = = ~
Epidemic © 1+ (N =-1)e™ \) ~ N -1M)
routing Piy=1-—Y _N-3+ N2 2N +5
N -1+
I(ty=N-(N-1)e”
2-hop (t) (N=De c_N-1
forwarding P(t) = 1 = AV T2
I(t)= N
Prob. | 1O= 1 v e | mN InN (N =1)
: <E[T,]= C="tb 2
forwarding N AN -1) Jp(N =1) 1+ p

P(t)=1- e
© (N—1+e”’Wt)

Matching results from Markov chain model,

obtained easier



An application:
Tradeoffs evaluation

Delay vs Power Delay vs Buffer

250 ——— 250 . — .
prob forwarding —+— prob forwarding ——
| src/des imited time  ——— limited time
o200 [ r .epidemic  * | 200 epidemic =

transmission 2hop =

Average Delay

3hop = > .
150 | " epidemic{ & 150 f
x_routing o 1
S |
100 o 100 r
> |
< |
50 |  2-ho \ 50 |
p\AD 3-h0p
O 1 1 1 1 1 1 1 1 1 O 1 1 1 1
0 10 20 30 40 50 60 70 80 90100 0 50 100 150 200 250

Average Copies Sent Average Buffer Occupancy



Other issues

Not considered in this presentation

Effect of different buffer management techniques
when the buffer is limited

ODEs by moment closure technique
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