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On approximation quality 
p=10-4, I(0)=N/10, 10 runs 
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Model vs Simulations 

Why this 
Difference? 



Why the difference? 

❒ N should be large (the larger the better) 
❒  p should be small 

•  p(N)=p0/N2 
❒ For N=104 p=10-4 is not small enough! 
❒ What if we do the correct scaling? 
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Lesson 
 
❒ You need to check (usually by simulation) in 

which parameter region the fluid model is a 
good approximation. 
•  e.g. N>N* p<p*/N2 

 

N

p 
p*/N2 

10-4 

10 102 104 N* 



SIS model 
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At each slot there is a probability p  
that two given nodes meet, 
a probability  r that a node recover. 
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Study of the SIS model 
 
❒ dµ2(t)/dt=p0 µ2(t)(1-µ2(t)) – r0 µ2(t) 
❒ If p0>r0 µ2(∞)=1-r0/p0 
❒ Prob(X1

(N)(k)=1) ≈ µ2(kε(N)) 
-  Prob(X1

(N)(∞)=1) ≈ µ2(∞) = 1-r0/p0 
❒ What is the steady state distribution of 

the MC? 
–  (0,0,0,…0) is the unique absorbing state 

and it is reachable from any other state 
– Who is lying here? 
 
 

 



Back to the Convergence Result 
❒ Define M(N)(t) with t real, such that 

• M(N)(kε(N))=M(N)(k) for k integer 
• M(N)(t) is affine on [kε(N),(k+1)ε(N)] 

❒ Consider the Differential Equation 
– dµ(t)/dt=f(µ), with µ(0)=m0  

❒ Theorem 
– For all T>0, if M(N)(0) → m0 in probability 

(/mean square) as N → ∞, then         
sup0≤t≤T||M(N)(t)-µ(t)|| →0 in probability (/
mean square) 



Some examples 



Nothing to do with t=∞? 
❒ Theorem 3: The limits when N diverges of 

the stationary distributions of M(N) are 
included in the Birkhoff center of the ODE 
– Birkhoff center: the closure of all the 

recurrent points of the ODE 
(independently from the initial conditions) 

– What is the Birkhoff center of  
 di(t)/dt=p0 i(t)(1-i(t)) – r0 i(t)?  

 



Nothing to do with t=∞? 
❒ Theorem 3: The limits when N diverges of 

the stationary distributions of M(N) are 
included in the Birkhoff center of the ODE 

❒ Corollary: If the ODE has a unique stationary 
point m*, the sequence of stationary 
distributions M(N) converges to m* 



Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  Extensions 

-  Epidemics on graphs 
-  Reference: ch. 9 of Barrat, Barthélemy, 

Vespignani “Dynamical Processes on 
Complex Networks”, Cambridge press 

•  Applications to networks 



SI on a graph 

Susceptible 

Infected 
At each time slot,  each link outgoing 
from an infected node spreads the 
disease with probability pg 



Can we apply Mean Field theory? 
❒ Formally not, because in a graph the 

different nodes are not equivalent… 
❒ …but we are stubborn 



Derive a Mean Field model 
❒ Consider all the nodes equivalent 
❒ e.g. assume that at each slot the graph 

changes, while keeping the average degree <d> 
•  Starting from an empty network we add a link 

with probability <d>/(N-1) 

k=1 
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Derive a Mean Field model 
❒ If I(k)=I, the prob. that a given susceptible 

node is infected is qI=1-(1-<d>/(N-1) pg)I 

❒  and (I(k+1)-I(k)|I(k)=I) =d Bin(N-I, qI) 

k=2 



Derive a Mean Field model 
❒ If I(k)=I, the prob. that a given susceptible 

node is infected is qI=1-(1-<d>/(N-1) pg)I 

❒  and (I(k+1)-I(k)|I(k)=I) =d Bin(N-I, qI) 
•  Equivalent to first SI model where p=<d>/(N-1) pg 
•  We know that we need p(N)=p0/N2 

❒  i(N)(k) ≈ µ2 (kε(N))=1/((1/i0-1) exp(-k p0/N)+1)= 
 = 1/((1/i0-1) exp(-k <d> pg)+1) 

•  The percentage of infected nodes becomes 
significant after the outbreak time 1/(<d>pg) 

❒ How good is the approximation practically? 
•  It depends on the graph! 

 



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 

❒  Purpose: abstract from the details of a 
given graph and being able to reach 
conclusions depending on its average 
features    



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 
❍ Degree distribution: P(d)=Cd

N-1 qd(1-q)N-1-d  
•  For N->∞ and Nq constant: P(d)=e-<d><d>d/d! 
•  <d2>=<d>(1+<d>) 
•  Average degree: <d>=q (N-1) 

❍ Average distance: <l>≈logN/log<d> 
•  Small world   

❒ Remark: in the calculations above we had 
a different sample of an ER graph at 
each slot, in what follows we consider a 
single sample 



ER <d>=20, pg=0.1, 10 runs 
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ER <d>=20, 10 runs 
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Lesson 1 

❒ System dynamics is more deterministic  
the larger the network is 

–  Why? 
❒  For given <d>, the MF solution shows the 

same relative error   



Changing the degree 
ER N=1000, <d>pg=0.1, 10 runs 
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Lesson 2 

❒ The more the graph is connected, the 
better the MF approximation 
❍ Why?  

 



A different graph Ring(N,k) 



Ring vs ER, N=2000, <k>=10 
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Lesson 3 

❒ The smaller the clustering coefficient, the 
better the MF approximation 
❍ Why?  



Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions 
•  Applications 

-  Bianchi’s model 
-  Epidemic routing 



Decoupling assumption in 
Bianchi’s model 
❒ Assuming that retransmission processes at 

different nodes are independent 
•  Not true: if node i has a large backoff window, 

it is likely that also other nodes have large 
backoff windows 

❒ We will provide hints about why it is 
possible to derive a Mean Field model… 

❒  then the decoupling assumption is 
guaranteed asymptotically 
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Bianchi’s model 

❒ N nodes,  
❒  K possible stages for each node, in stage i 

(i=1,…V) the node transmit with probability 
q(N)

i (e.g. q(N)
i =1/W(N)

i) 
❒  If a node in stage i experiences a collision, 

it moves to stage i+1  
❒  If a node transmits successfully, it moves 

to stage 0  



Mean Field model 

❒ We need to scale the transmission 
probability: q(N)

i =qi/N 
❒  f(N)(m)=E[M(N)(k+1)-M(N)(k)|M(N)(k)=m] 
❒  f1

(N)
 (m)=E[M1

(N)(k+1)-M1
(N)(k)|M1

(N)(k)=m] 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N 

❒ The number of nodes in stage 1  
•  increases by one if there is one successful 

transmission by a node in stage i<>1 
•  Decreases if a node in stage 1 experiences a 

collision 
 



Mean field model 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N -> exp(-Σiqi mi) 

•  Define τ(m)= Σiqi mi 
❒ The number of nodes in stage 1  

•  increases by one if there is one successful 
transmission by a node in stage i<>1 
-  with prob. Σi>1 mi N qi

(N) Pidle/(1-qi
(N)) 

•  Decreases if a node in stage 1 experiences a 
collision 
-  with prob. m1 N q1

(N) (1-Pidle/(1-q1
(N)) 

❒  f1
(N)

 (m)=E[M1
(N)(k+1)-M1

(N)(k)|M1
(N)(k)=m]= 

 = Σi>1miqi
(N)Pidle/(1-qi

(N))  
 – m1q1

(N)(1-Pidle/(1-q1
(N))) 

 



Mean field model 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N -> exp(-Σiqi mi) 

•  Define τ(m)= Σiqi mi 
❒  f1

(N)
 (m)=Σi>1miqi

(N)Pidle/(1-qi
(N))  

 – m1q1
(N)(1-Pidle/(1-q1

(N))) 
❒  f1

(N)
 (m) ~ 1/N (Σi>1miqi e-τ(m)–m1q1(1-e-τ(m))) 

❒  f1
(N)

 (m) vanishes and ε(N)=1/N, continuously 
differentiable in m and in 1/N 

❒ This holds also for the other components 
❒ Number of transitions bounded 
=> We can apply the Theorem  

  


