

Introduction to Network Simulator

Mouhamad IBRAHIM and Giovanni NEGLIA

mibrahim@sophia.inria.fr, gneglia@sophia.inria.fr

www-sop.inria.fr/maestro/personnel/Giovanni.Neglia/ns_course/ns_course.htm

Maestro team

INRIA Sophia-Antipolis - France

Confidence Intervals

- Consider a random variable X, with fixed, but unknow parameter a (e.g. with unknown mean).
- We want to estimate the parameter a looking at samples of the random variable X.
- In particular given $\mathbf{x} = (x_1, x_2, \dots x_N)$ samples of *X*, we want to determine an interval $I = [a_l, a_u]$, such that we have a given level of confidence α about the fact that the parameter belongs to the interval ($a \in I$). The interval *I* is a α % confidence interval for *a*.

Confidence Intervals (cont'd)

How to proceed

- Given the a-priori density function of a vector of N samples of X ($f(\mathbf{X}|a)$),
- we consider also a as a random variable and we evaluate through Bayes' theorem the density function $f(a|\mathbf{x}) = f(\mathbf{x}|a)f(a)/f(\mathbf{x}),$
- intuitively the values for which $f(a|\mathbf{x})$ has higher values are those more *likely* for the parameter *a*,
- hence we collect in the interval I the values maximizing $f(a|\mathbf{x})$.
- $f(\mathbf{x})$ is a constant, and under ignorance prior (i.e. f(a) costant), $f(a|\mathbf{x}) \propto f(\mathbf{x}|a)$, hence we can just consider a function proportional to $f(\mathbf{x}|a)$ (called the *likelihood* function).

Confidence Intervals (cont'd)

 $\ \ \, {\rm An \ example:} \ \, x \sim {\rm N}(\mu,\sigma^2) {\rm ,} \ \, \mu \ {\rm is \ unknown}$

- $\overline{x} = \sum_{i=1}^{N} \frac{x_i}{N}$ is distributed as $N(\mu, \sigma^2/N)$, i.e. with density $f(\overline{x}|\mu) = \frac{1}{\sqrt{2\pi\sigma^2/N}} e^{-\frac{(\overline{x}-\mu)^2 N}{2\sigma^2}}$
- we can consider the likelihood function $L(\mu|\overline{x}) = e^{-\frac{(\overline{x}-\mu)^2 N}{2\sigma^2}}$
- and determine the interval $I = [\mu_1, \mu_2]$ including the values maximizing $L(\mu | \overline{x})$ up to collect $\alpha\%$ of the area underneath the curve,
- in this way we get the interval $[\overline{x} \frac{\sigma}{\sqrt{N}} z_{1-\alpha/2}, \overline{x} + \frac{\sigma}{\sqrt{N}} z_{1-\alpha/2}]$, where $z_{1-\alpha/2}$ is the $1 - \alpha/2$ percentile of the standard gaussian distribution, i.e. $\operatorname{Prob}(z < z_{1-\alpha/2} = 1 - \alpha/2)$

Confidence Intervals (cont'd)

- An example: $x \sim \mathbf{N}(\mu, \sigma^2)$, μ and σ^2 unknown
 - the interval is $[\overline{x} \frac{\hat{\sigma}}{\sqrt{N}}t_{1-\alpha/2}, \overline{x} + \frac{\hat{\sigma}}{\sqrt{N}}t_{1-\alpha/2}]$, where $\hat{\sigma}^2 = \sum_{i=1}^N (x_i \overline{x})^2/(N-1)$ is an estimator of the variance and $t_{1-\alpha/2}$ is the $1 \alpha/2$ percentile of the student t distribution with N-1 degrees of freedom.
- with other distributions
 - the central limit is often invoked to apply above expressions for the evaluation of confidence intervals for the mean.

First Assignment

- Starting from the network scenario with two CBR sources considered in the previous lessons (cbr.tcl), let the two sources start uniformly at random in the interval [0.5, 1.5]. Develop a script (a set of scripts), in order to perform different runs and evaluate the confidence intervals for the average throughput of the two sources. Remarks/Suggestions:
 - Use different generators for independent random variables and a different substream for a given generator at each run.
 - Use the agent LossMonitor as sink set sink0 [new Agent/LossMonitor] in order to be able to read the data received through the variable bytes_ of the agent.
 - Evaluate the average throughputs at the end of the ns simulations and append them to a file, then calculate confidence intervals through post processing.

Second Assignment

In the above network scenario change the rate of one CBR source to 0.5 Mbps and replace the other one with a FTP source, which uses TCP with MSS equal to 552 bytes. The advertised window from the receiver is equal to 8000 packets. Introduce a procedure that logs the congestion window value every 10 ms. Write a script to evaluate the average throughput of the TCP source every 10 ms from the global ns trace file (the one obtained by trace-all). Visualize the window and the throughput time evolution.

Some useful tcl commands

- Create a TCP NewReno source
 set tcpSource [new Agent/TCP/Newreno]
 Create a TCP sink with delayed acks
 set sink [new Agent/TCPSink/DelAck]
- Access the congestion window value (packets #) \$tcpSource set cwnd_
- Access the receiver window value (packets #) \$tcpSource set window_ In ns the receiver window is set to a constant value at the sender
- Setup a FTP source over a TCP connection set ftp [new Application/FTP] \$ftp attach-agent \$tcpSource

