
Introduction to Network Simulator

Giovanni NEGLIA and Mouhamad IBRAHIM
gneglia@sophia.inria.fr, mibrahim@sophia.inria.fr

www-sop.inria.fr/maestro/personnel/Giovanni.Neglia/ns course/ns course.htm

Maestro team

INRIA Sophia-Antipolis - France

– p.1/24

Course objectifs

To learn the basic simulated objects of NS, to become

familiar with these objects, and to use NS to analyse some

of the simulated objects.

Configure, run and analyse simulations for wireless

networks.

Configure, run and analyse simulations for interacting TCP

flows.

A flavour of how to add new protocols to NS-2.

A flavour of general issues in simulations.

– p.2/24

Outline

What is NS, what is used for.

Install NS-2.

Basic OTcl programming.

Configure and run a basic simulation in NS.

– p.3/24

Overview

Network Simulator version 2 (NS-2) is a free and open source
discrete event network simulator developed at UC Berkeley

You can add your own protocol, contribute to the code and,
from time to time, you need to troubleshoot some of the bugs

NS is a discrete event simulator where the advance of time
depends on the timing of events which are maintained by a
scheduler.

NS-2 works under Linux, Mac, and Windows.

Current release is ns-2.31.

Release under work: ns-3 where Inria takes part of the
development process.

– p.4/24

Overview (cont’d)

NS-2 has a large and rich library of network and protocol objects.

It covers a large part of applications (Web, FTP, CBR,. . .),
protocols (transport and routing protocols), network types (Satellite
links, wired and wireless LAN), network elements (mobile nodes,
wireless channel models, link and queue models,. . .) and traffic
models (exponential, uniform, . . .).

NS also allows to add and test new protocols and applications
and/or to modify existing ones.

– p.5/24

Overview (cont’d)

NS-2 is based on an object oriented simulator written in C++ and a
OTcl interpreter (an object oriented extension of Tool Command
Language TCL)

These different objects are written in C++ code in order to achieve
efficiency in the simulation and faster execution times. (e.g.
Implementation of IEEE 802.11 is found in
. . . ns-**/ns-**/mac/802_11.cc,h)

The OTcl script, which is provided by the user at the simulation
time, is used to define and to configure the network topology and
network elements (node type, the protocols and applications to be
used), and to schedule the events.

– p.6/24

Overview (cont’d)

The OTcl scripts are used also to tell NS to create a visulation
trace as well as an ascii file trace corresponding to the events
generated in the network.

To analyse the trace files, other independent tools will be needed
to filter, compute and display the results (e.g. Awk, Matlab,
gnuplot, etc..).

Two other independent and optional tools are provided with NS
packages: Network animator (Nam) and xgraph.

OTcl scripts can be written in any text editor like kate or emacs.

– p.7/24

Installing NS

There are two ways to install NS: either independently by pieces or
all at once (the recommended one)

Install all pieces at once using ns-allinonexxx package. For details
see: http://www.isi.edu/nsnam/ns/ns-build.html

Once the installation passed correctly, we need to configure three
environment variables. Usually, we need to change the following
lines in .bash_profile file or in the corresponding file at your
system:

export PATH=$PATH:. . .
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:. . .
export TCL_LIBRARY=$TCL_LIBRARY:. . .

– p.8/24

NS-2 documentation

NS-2 homepage for the code as well for the documentations:
http://www.isi.edu/nsnam/ns/ or in Wikipedia format
http://nsnam.isi.edu/nsnam/index.php

NS-2 references and tutorials:

NS Manual also called NS notes:
http://www.isi.edu/nsnam/ns/ns-documentation.html

NS for beginners by E. Altman and T. Jimenez: http://www.sop-
inria.fr/mistral/personnel/Eitan.Altman/COURS-NS/n3.pdf

Marc Greis Tutorial: http://www.isi.edu/nsnam/ns/tutorial/

NS by Example Jae Chung Mark Claypool:
http://nile.wpi.edu/NS/

NS-2 examples: you can find it at the following directory:
ns-allinone-**/ns-**/tcl/ex/

– p.9/24

OTcl programming

OTcl is an object oriented extension of the Tool Command
Langage TCL.

Tcl is a free script language that has a simple syntax, easy to be
integrate with other languages and plateform independent.

Basic instructions:

Set a value to a variable: set a 1

note in Tcl, variables are not typed. The value assigned to a
variable determines the type of the variable.

To use the value assigned to a variable, we need to use the $
sign: set x $a

A mathematical operation is done using the expression
command expr as follows:
set b [expr $x +-*/% $a]

– p.10/24

OTcl programming (cont’d)

To comment a line, use the symbol #

To create a file, we need to give it a name that will identify it by
our system. Then we need to assign a pointer to it that will be
used within the Tcl program in order to relate it:
set tclFilePointer [open ourFile.txt w]

To print an output, use the command puts " ". For instance,
to print into ourFile.txt the previous variable b with its
tabulated value, use the following line:
puts $tclFilePointer "b \t $b"

To execute a Linux command from the Tcl script, use the
command exec. For example, to plot the curve of the data
contained in ourFile.txt e.g., use:
exec gnuplot ourFile.txt &

& is to allow the command gnuplot to execute in the
background.

– p.11/24

OTcl programming (cont’d)

An if command has the following structure:
if { expression } {

Tcl commands

} else {

Tcl commands }

We can nest several if and else commands in the if/else

part as in C language.

Condition equality is tested using == and inequality using !=

For loop is declared as follows:
for {set i 0} {$i < 6} {incr i 2} {

execute some commands }

We can define a table tab in Tcl as follows:
for {set i 1} {$i <= $tableSize} {incr i} {

set tab($i) $value }

– p.12/24

OTcl programming (cont’d)

We can also declare a procedure/function in Tcl. The syntax is
as follows:
proc procedureName {parameter1 parameter 2 ...}

{

global var1 var2 ...

Tcl commands

return $something }

The procedure is called by typing:
procedureName parameter1 parameter 2 ...

Reserved word global is generally used to change external
variables to the procedure.

– p.13/24

OTcl programming (cont’d)

To instantiate an object of a class:
set obj [new Class1/Class2]

To assign a value to an object attribute:
$obj set attribute1 $x

To read the value of an object attribute:
set a [$obj set attribute2]

To call the method without a return value of object obj:
$obj method par1 par2 ...

To call the method with a return value of object obj:
set a [$obj method par1 par2 ...]

Write a procedure/function that returns all the prime numbers of a
certain value x.

– p.14/24

Steps of a NS simulation

Define the scenario to simulate:

1. Create the simulator object

2. { Turn on tracing }

3. Setup the network nodes {and links }

4. Setup the routing mechanism

5. Create transport connections

6. Setup user applications

7. Schedule data transmission

8. Stop the simulation

Execute the OTcl script in a Linux shell: > ns example.tcl

Extract the results from the trace files: awk, xgraph, nam,
matlab, etc . . .

– p.15/24

Creating a Tcl scenario

NS simulation starts with the command:
set ns [new Simulator]

ns is now an instance of the class Simulator, so we can use its
methods and its attributes.

To define trace files with the data that needs to be collected from
the simulation, we have to create these files using the command
open:
open the trace file

set traceFile [open out.tr w]

$ns trace-all $traceFile

open the Nam trace file

set namFile [open out.nam w]

$ns namtrace-all $namFile

– p.16/24

Creating a Tcl scenario (cont’d)

To schedule an event:
$ns at time "event"

To terminate a Tcl scenario, we need to call the exit command:
$ns at 12.0 "exit 0"

Usually, we declare a finish procedure to dump the traces and to
close the files:
proc finish {} {

global ns traceFile namFile

$ns flush-trace

close $traceFile

close $namFile

exec nam out.nam &

exit 0 }

– p.17/24

Creating a Tcl scenario (cont’d)

Similarly, we need to declare explicitly to NS when to call the
finish function in order to stop the simulation:
$ns at 12.0 "finish"

The simulation can then begin with the last command in the Tcl
script: $ns run

Creation of nodes and links in NS:

To create a node: set n0 [$ns node]

To create a given number nodeNb of nodes:
for {set i 1} {$i <= $nodeNb} {incr i} {

set n($i) [$ns node] }

– p.18/24

Creating a Tcl scenario (cont’d)

To create a link between two nodes, we need to specify the
parameters of the link:
$ns simplex-link/duplex-link $n0 $n1

"bandwidth"Mb "delay"ms "queue_type"

A duplex link in NS is represented as two parallel simplex-links.

A simplex-link has the following representation in NS:

Queue

Agent/Null

Delay TTL

drop

n0 n1

|¨?g*+04,D: 4 g�-�¨x =/?C@RO4Bg:�¶hB"?"14(

– p.19/24

Creating a Tcl scenario (cont’d)

Output queue of a node is represented as input queue of the
corresponding link.

There are different queue types: Drop tail, Stochastic Fair
queueing (SFQ), . . .

Packet overflow is implemented by sending dropped packets to the
Null agent.

TTL object computes the Time To Live for each received packet.

To set the queue size of the ingress nodes of a link to some limit:
$ns queue-limit $n0 $n1 20

By default, the queue limit is set to 50. All the default values can
be found and modified at . . . /ns-**/tcl/lib/ns-default.tcl

– p.20/24

Creating a Tcl scenario (cont’d)

Next step is to create transport agents, to attach them to
corresponding nodes, and to associate them to each other. We
need also to configure their different parameters.

For a TCP agent:
set tcp [new Agent/TCP]

$ns attach-agent $n(0) $tcp

set sink [new Agent/TCPSink]

$ns attach-agent $n(1) $sink

$ns connect $tcp $sink
For a UDP agent:
set udp [new Agent/UDP]

$ns attach-agent $n(0) $udp

set null [new Agent/Null]

$ns attach-agent $n(1) $null

$ns connect $udp $null

– p.21/24

Creating a Tcl scenario (cont’d)

Next, we need to create the applications, to attach them to
corresponding transport agents, and to configure their parameters:

To setup a FTP application e.g., we need a TCP transport agent:
set ftp [new Application/FTP]

$ftp attach-agent $tcp

To setup a CBR application e.g., we need a UDP transport agent:
set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

Before calling the finish procedure, we need to schedule the
start time and the stop time for each data sources:
$ns at 10.0 "$cbr start"

$ns at 20.0 "$cbr stop"

– p.22/24

Simulation scenario sample1

Write the Tcl script for the following network shown below. There is
a CBR application running over a UDP protocol at node n0 and
sending packets of 512 bytes to node n3 at the rate of 0.005.
There is also another CBR application running over a UDP
protocol at node n1 and sending packets with the same size and
rate to node n3. Queue type is Drop tail.

n3

1Mb 10ms

1Mb 10ms

1Mb 10ms

n1

n2

n0

– p.23/24

Simulation scenario sample2

Write the Tcl script for the following network shown below. There is
an FTP application running at node n0 and sending traffic to node
n4. Packets have size of 512 bytes. There is a CBR application
running over a UDP protocol at node n1 and sending traffic to
node n5 at the rate of 0.01 Mb. Packets have size of 1000 bytes.

$n0

10ms

$n2

$n5

$n4

$n1

2Mbps

10ms
2Mbps

$n3
300kbps

300kbps 40ms

30ms

100ms

100ms 500kbps

500kbps

– p.24/24

	Course objectifs
	Outline
	Overview
	Overview (cont'd)
	Overview (cont'd)
	Overview (cont'd)
	Installing NS
	NS-2 documentation
	OTcl programming
	OTcl programming (cont'd)
	OTcl programming (cont'd)
	OTcl programming (cont'd)
	OTcl programming (cont'd)
	Steps of a NS simulation
	Creating a Tcl scenario
	Creating a Tcl scenario (cont'd)
	Creating a Tcl scenario (cont'd)
	Creating a Tcl scenario (cont'd)
	Creating a Tcl scenario (cont'd)
	Creating a Tcl scenario (cont'd)
	Creating a Tcl scenario (cont'd)
	Simulation scenario sample1
	Simulation scenario sample2

