MALTA 2021-2022: Assignment

Provide your solution before the start of next lecture on October 12th. If you are unable to attend next lecture, then send your solution by email to giovanni.neglia@inria.fr.

Motivate your answers.

Ex. 1 - Show that a finite class has finite VC-dimension.
Ex. 2 - Prove that in the definition of agnostic PAC learnability, when the loss is the 0-1 loss function and the learning algorithm is required to output a hypothesis in $H(A(S) \in H)$, it is possible to replace the probabilistic condition

$$
\begin{aligned}
& \forall \epsilon, \delta \in(0,1), \exists m_{H}(\epsilon, \delta) \in \mathbb{N}, \text { such that } \forall m \geq m_{H}(\epsilon, \delta) \\
& L_{D}(A(S))-\min _{h \in H} L_{D}(h) \leq \epsilon, \text { with prob. larger than } 1-\delta .
\end{aligned}
$$

with the following condition on the expected value

$$
\lim _{m \rightarrow \infty} \underset{S \in D^{m}}{\mathbb{E}}\left[L_{D}(A(S))-\min _{h \in H} L_{D}(h)\right]=0
$$

Hints: We have already mapped during the lecture a probabilistic condition to a condition on expected values. The Markov inequality may help you.

Ex. 3 - If you show that H cannot shatter any set of size n, do you need to check if it can shatter a set of size $n^{\prime}>n$? Why?

Ex. $4-$ Consider the class H_{k} of binary functions over \mathbb{R} which assume value 1 exactly on k points, i.e.,
$H_{k}=\left\{h: \mathbb{R} \rightarrow\{0,1\}\right.$, such that $\exists k$ distinct values $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}$,

$$
\text { such that } \left.h(x)=1 \text { if } x \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \text { and } h(x)=0 \text { otherwise }\right\}
$$

What is the VC-dimension of H ?
Ex. 5 - Consider the class of squares in the plane

$$
H=\left\{h_{a, b, r}: \mathbb{R}^{2} \rightarrow\{0,1\}, \text { for some } a, b \in \mathbb{R}, \text { and } r \in \mathbb{R}^{+}\right\}
$$

where

$$
h_{a, b, r}\left(x_{1}, x_{2}\right)= \begin{cases}1, & \text { if } x_{1} \in[a, a+r] \text { and } x_{2} \in[b, b+r] \\ 0, & \text { otherwise }\end{cases}
$$

1. What is the VC-dimension of H ?

Hint: The following geometric result may help: given any set A of 4 points in the plane, it is always possible to split A in two disjoint sets B and $C(B \cup C=A, B \cap C=\emptyset)$ such that $\mathcal{C H}(B) \cap \mathcal{C H}(C) \neq \emptyset$, where $\mathcal{C H}(S)$ denotes the convex hull of the set S.
2. What if r is fixed to 1 ?

Ex. 6 - Consider a binary classification problem over \mathbb{R} and the $0-1$ loss function. Let \mathcal{P} denote the class of all polynomials over \mathbb{R}. We consider the following hypothesis class:

$$
H=\{h(x)=g(p(x)), \text { for some } p \in \mathcal{P}\}
$$

where $g: \mathbb{R} \rightarrow\{0,1\}$ and $g(x)=1$ if and only if $x>0$.
Is the class H PAC learnable?

