
Feedforward Neural Networks for Caching:
Enough or Too Much?

Vladyslav Fedchenko
Université Côte d’Azur, Inria

Sophia Antipolis, France

vladyslav.fedchenko@inria.fr

Giovanni Neglia
Université Côte d’Azur, Inria

Sophia Antipolis, France

giovanni.neglia@inria.fr

Bruno Ribeiro
Purdue University

West Lafayette, IN, USA

ribeiro@cs.purdue.edu

ABSTRACT
We propose a caching policy that uses a feedforward neu-

ral network (FNN) to predict content popularity. Our scheme
outperforms popular eviction policies like LRU or ARC, but
also a new policy relying on the more complex recurrent neu-
ral networks. At the same time, replacing the FNN predictor
with a naive linear estimator does not degrade caching per-
formance significantly, questioning then the role of neural
networks for these applications.

Keywords
Caching, neural networks, estimators

1. INTRODUCTION
Caching is doubly beneficial: it reduces data retrieval time

by storing a copy at a closer/faster-accessible location and,
at the same time, decreases the load on the remote system
where the original version is located. For this reason, caches
are ubiquitous in IT systems, ranging from L2 caches built
into the CPU to in-memory page caches managed by the
operating systems, from local web proxy caches to Internet-
wide Content Delivery Networks (CDNs) and cloud-based
in-memory key-value stores like Amazon’s ElastiCache.

It is difficult to decide which contents should be stored
in the cache and which ones should be evicted. Even when
the sequence of future requests is known in advance, max-
imizing the hit ratio is in general a strongly NP-complete
problem [1]. Moreover, in most cases of practical interest,
future requests are unknown and a caching policy may only
try to guess what will happen. To this purpose, the pol-
icy usually looks at the past sequence of requests to exploit
possible elements of predictability, like the fact that future
requests are often more likely to be for recently referenced
contents (temporal locality) or for “close-by” ones (spatial
locality). But additional information could be beneficial.
For example in a CDN the time of the day, the user’s pro-
file, information about what is happening at close-by caches
are likely to be correlated with future requests.

The first paper to propose the idea to use machine learn-
ing to learn caching rules from the rich data available was
probably [2]. Nevertheless, the only practical example con-
sidered there was collaborative filtering to estimate content
popularities at some locations from measurements at other
locations. Surprisingly, the idea to use neural networks (NN)

Workshop on AI in Networks (WAIN) 2018 Toulouse, France
Copyright is held by author/owner(s).

for caching purposes was only explored during the last year
in [3, 4, 5, 6, 7]. All these papers (described in Sect. 2)
adopt recurrent neural networks with long short-term mem-
ory units (LSTM in what follows), motivated by the fact
that LSTM have proved to be very effective to address se-
quence prediction problems such as those found in natural
language processing.

LSTM neural networks (LSTM-NN), as all recurrent net-
works, have feedback loops which give them some kind of
memory. They are then more complex (and then more dif-
ficult to train) than the classic feed-forward NNs (FNNs)
where signals can only travel one way from the input layer
to the output one. The question at the origin of our work
was then if the simpler FNNs could also perform well for
caching purposes. Answering this simple question has lead
us to unexpected conclusions.

The paper is organized as follows. After an overview of
the related work in Sect. 2, we describe our caching policy
and its FNN predictor for content popularity in Sect. 3. In
Sect. 4 we present our performance evaluation results on real
traces from Akamai CDN. Sect. 5 concludes the paper.

2. RELATED WORK
Papers [3, 4] propose two different LSTM-NNs for prefetch-

ing inside a processor. Instead, in our paper, we focus on
reactive caching, i.e. contents can be retrieved only once
they are requested, and on internet applications like web
proxies, or content delivery networks (CDNs). Moreover, [3,
4] evaluate the quality of their solutions only in terms of
prediction accuracy and not of the final data retrieval time
or other system metrics prefetching should improve. In this
paper we conclude that the relation between prediction ac-
curacy and final performance of the caching system may be
weaker than one would expect.

The authors of [5] study caching at the base stations of
a cellular network. In their case the LSTM-NN is used to
perform a sentiment analysis of mobile users’ traffic to detect
their interests and prefetch other contents they may like.

[6] proposes to use an LSTM-NN as an additional module
to be integrated with an existing baseline caching policy like
LRU. The LSTM-NN generates fake requests that are added
to the real requests stream. These additional requests push
the baseline caching policy to prefetch or maintain in the
cache contents that are likely to be used in the future.

Finally, [8] is the closest paper to ours, because it uses an
LSTM-NN as a popularity predictor and then manages the
cache as a priority queue where, upon a miss, the contents
with the smallest predicted popularity is evicted. We have



Symbol Meaning Typical Value
T epoch duration 200 s
K # of epochs 4
c constant in the logarithmic

mapping
10−5

α leaky ReLU coefficient 10−6

η learning rate 10−4

γ learning rate discount 0.5
H # of old epochs used for training 9

Table 1: Notation and typical values.

implemented the caching policy in [8] and compared it with
ours in Sect. 4.

Another set of papers like [9, 10] use reinforcement learn-
ing to adapt dynamically the caching policy. A reinforce-
ment learning algorithm tries to learn directly the best ac-
tion to pursue, often by a trial-and-error approach. For this
reason, training a reinforcement learning algorithm is often
more complex than learning the parameters of a neural net-
work and results may be unstable [11].

3. CACHING POLICY
The core idea of our policy is simple and was naturally

adopted by previous works like [12] and [8]: we keep in the
cache the contents with the largest estimated popularities.
The popularity of a content is defined as the fraction of
requests for that content over a meaningful time horizon.
When contents have the same size (as we assume) this strat-
egy should lead to maximize the cache hit ratio.

3.1 Components
In detail, our caching system is composed by a feature

database, a popularity predictor, and a content storage ele-
ment.

The content storage is managed through a min-heap data
structure with the estimated popularities as keys. In this
way, it is possible to retrieve fast a pointer to the content
with the minimum estimated popularity.

The feature database contains the current feature vector
for each of the contents in the catalogue.1 The feature vec-
tor has K elements: it contains the fractions of requests
(popularities) for content i during the previous K−1 epochs
(p−(K−1),i, . . . p−1,i) and during the current one (p0,i). Each
epoch has the same duration T . We remark that, during a
given epoch, past popularities do not change, but the cur-
rent popularity does. Table 1 lists the main parameters of
our caching policy together with their typical values used
for the results in Sect. 4.

The popularity predictor receives as input 1) the feature
vector of a content and 2) how much time t has passed since
the beginning of the current epoch (0 ≤ t ≤ T ). It outputs
the popularity estimation for the current epoch.2 The pre-
diction algorithm is based on an FNN. It is the focus of this
paper and is described in detail in Sect. 3.3.

1 This solution has clearly a large memory footprint, but
in this paper we want first to evaluate the potentialities of
NN-based caching.
2 It could be more useful to estimate the popularity during
a time interval of duration T in the future, but this choice
simplifies the learning phase.

3.2 Operation
The caching policy works as follows. When a request for

content i arrives, the feature vector of content i is updated
and provided as input to the popularity predictor together
with the time t. The predictor estimates then the current
popularity of content i (p̂0,i).

If content i is present in the cache (a hit occurs), it is
served and its popularity key is updated in the heap. If it
is not stored locally (a miss occurs), it is retrieved from the
authoritative server or from a higher-level cache and served.
Moreover, the policy decides if storing it locally. To this
purpose, the policy compares the popularity estimate p̂0,i
with the minimum popularity of the contents currently in
the cache. If p̂0,i is larger, then content i replaces the least
popular content, otherwise, it is discarded.

Moreover, upon a request, a few contents in the cache
are randomly selected and their popularity is re-evaluated
through the predictor. This prevents old contents, which are
no more requested, but whose popularity was overestimated
in the past, from staying forever in the cache.

At the end of each epoch, the predictor is updated through
a new training phase, described below.

3.3 Popularity predictor
The core of the predictor is a Feedforward Neural Network

(FNN). The FNN has K + 1 input values and one output
value. The input values are the time t since the beginning of
the current epoch and a mapping of the feature vector of K
popularities (x−l,i = F (p−l,i)), where F (p) = − log(p + c)
and c > 0 is a small constant. This transformation makes
the input vector more homogeneous (popularities differ by
many order of magnitudes). The output yi of the FNN is
interpreted as the mapping of the current popularity. The
final predicted popularity is then obtained through the in-
verse transformation p̂0,i = F−1(yi).

Internally, the FNN has 2 fully connected hidden layers,
each with 128 neurons. Each neuron uses a rectified linear
unit (ReLU) as activation function (a(x)), and in particular
Leaky ReLU to overcome the “dying ReLU” problem [13].
Then a(x) = x, if x ≥ 0, and a(x) = αx otherwise, where
α is a small constant. In our experiments, Leaky ReLU
provides better results than the usual sigmoid.

The FNN is trained at the end of each epoch using the
contents requested during the epoch. The prediction quality
is evaluated through the squared difference (yi − F (p0,i))

2

(note that at the end of one epoch p0,i is the correct popular-
ity of content i). The loss function is then the classic mean
squared error (MSE). FNN weights are updated through the
usual backpropagation mechanism with learning rate η.

Moreover, the training datasets for the previous H epochs
are reused, but with a discounted learning rate γiη for the
i-th epoch farthest in the past. This is a standard technique
to prevent the problem of catastrophic forgetting [14, 15]
that may incur when the training uses only the most recent
data. In this case, the neural network can indeed forget the
information about some underlying relations between input
and output learned in the past, even though they still may
be relevant for predictions.

4. PERFORMANCE EVALUATION
We have evaluated the performance of our caching policy

both on synthetic and on real traces.



FNN LR AVG
synthetic traces 0.088 0.103 0.513
Akamai 5-day trace 0.136 0.359 0.435

Table 2: Prediction MSE for the three predictors.

In the synthetic trace, requests for contents arrive ac-
cording to a Poisson process. Each request is for content i
with probability πi independently from previous requests.
The catalogue includes 10 thousand contents, divided in
two equally-sized classes. Contents in the first class have
constant probabilities πi following a Zipf’s law with expo-
nent 0.8. The same holds for the contents in the second
class during one epoch, but at each epoch the probabilities
are permuted uniformly at random.

Two request traces have been collected from two different
vantage points of the Akamai CDN. The first one spans over
5 days with 4 × 108 requests for 13 × 106 unique contents.
The second one spans over 30 days with 2×109 requests for
113×106 unique contents. Detailed information about these
traces is available in [16]. Both for synthetic and real traces,
we considered the contents of equal size (even if information
about the real size is available).

All the caching policies tested have been implemented in
an ad-hoc Python simulator using the PyTorch library for
feedforward and LSTM networks. The values of all param-
eters are those in Table 1.

4.1 Popularity estimation
We first evaluate the ability of the FNN to predict con-

tent popularities. Figure 1 shows the training and validation
error versus the number of iterations, where one iteration
corresponds to processing 8 requests. The FNN learns quite
fast and after about 400 iterations (i.e. 3200 requests), both
the training and the evaluation errors reach a plateau (left
plot). At this stage, the FNN predicts reasonably well con-
tent popularities (right plot). In the synthetic trace there
are about 2 × 105 requests in one epoch, so that at the end
of the first epoch the FNN has already learned. With real
traces the traffic characteristics keeps changing and the sys-
tem keeps learning, but results are qualitatively similar.

We compare the prediction quality for three different pre-
dictors: 1) the FNN, 2) the empirical average over the past
K popularities (AVG), and 3) the linear regression estima-
tor over the K past popularities (LR).3 Table 2 shows the
MSE for the transformed popularities for the three predic-
tors: Both for the synthetic and Akamai 5-day trace FNN
significantly outperforms the other two.

4.2 Comparison with other caching policies
We compare our FNN-based caching policy with two pop-

ular eviction policies: LRU and ARC.
LRU maintains a priority queue ordered according to the

content last access time. Upon a hit, the content is moved
to the front of the queue. Upon a miss, the new content
is inserted in the cache and the Least Recently Used one
is evicted from it. LRU has low-complexity and does not
require any configuration. It has shown good performance
across a variety of request patterns. For this reason it is one

3 The linear regression model has been obtained at runtime
training a NN without non-linearities (we removed the acti-
vation functions).

(a) (b)

Figure 1: Popularity estimation: (a) training and validation
errors over the epochs, (b) predicted vs real popularities.
Synthetic trace.

(a) (b)

Figure 2: (a) Hit rate for different cache sizes, Akamai 5-
day trace. (b) Cumulative hit rate vs number of requests,
Akamai filtered 5-day trace (only 1000 contents).

of the most used caching policies.
Adaptive Replacement Cache (ARC) [17] is a caching pol-

icy introduced by IBM in 2004. It uses two priority queues
to combine information about how recently a content has
been required (like LRU does) and how frequently (like an-
other policy, LFU, does). The size of the two queues is
dynamically adapted to the specific request pattern. ARC
is slightly more complex than LRU, but, in our experience,
it is very difficult to beat.

We wanted also to compare FNN-caching with more com-
plex NN-based policies. We have considered the DLSTM
scheme presented in [8]. We were not able to get the code
or the traces from the authors. So, we have implemented it
in the same simulator and tried to select all the parameters
according to the suggestions in [8].

Figure 2 (a) shows the hit rate the different policies achieve
over Akamai 5-day trace. FNN-caching performs signifi-
cantly better than ARC and LRU. DLSTM does not appear
in the figure, because its hit rate was constantly below 1%.
We suspected the poor performance of DLSTM was due to
its large number of parameters. In fact, the one-hot en-
coding used by DLSTM requires a number of weights that
grows linearly with the number of contents in the catalogue.
As an example, for 105 contents the DLSTM needs to learn
more than 106 weights. Our solution instead has about 104

weights independently from the number of contents. To test
this hypothesis, we filtered the trace considering only the



requests for the first 1000 contents appearing in it. Fig-
ure 2 (b) supports our hypothesis: the performance of DL-
STM keeps improving over time, but, after more than one
day, it still lags behind the other policies. Over the 5 days
(results not shown here), DLSTM manages to outperform
LRU, but neither ARC nor our policy. And, on a larger
catalogue, DLSTM is definitely too slow to be competitive.

FNN-caching achieves a higher hit ratio than classic poli-
cies like LRU and ARC as well as a the new DLSTM. The
same conclusion holds also for the 30-day trace and the
synthetic one. But, as the attentive reader may have al-
ready remarked, this is not the end of the story. In fact,
we have also tested some caching policies where the FNN
popularity predictor is replaced by the LR predictor or by
the AVG predictor.4 The corresponding curves are also in
Fig. 2 (a) and are almost indistinguishable from the one of
FNN-caching! The hit rate is at most 1% less for AVG-
caching than for FNN-caching and LR-caching has inter-
mediate performance. Hence, while the FNN predictor is
significantly better than the other two (see Table 2), for
caching decision the less precise estimates of LR and AVG
are equally good. Moreover, LR has much less parameters
to learn (K+2) and both LR and AVG are computationally
less expensive than FNN.

5. DISCUSSION AND CONCLUSIONS
Our current results suggest that, for caching purposes,

neural network predictors do not have an edge on simpler
linear estimators. Moreover, experiments not shown here
indicate that considering additional information as input,
like the time of the day or the size of the content, does not
improve the performance of FNN-caching.

At the same time, in this paper we assume that past pop-
ularities of all the contents are available. In reality, this in-
formation may be available only for a subset of the contents
or may have been lossy compressed (as in [12]). It is possible
that an NN would work better than a linear predictor with
incomplete/noisy inputs.

Moreover, while the LSTM-NN we tested performed poorly,
[4] shows that it may be more advantageous to frame the
prediction problem as a classification rather than as a re-
gression (as done in all the other works [8, 3, 6]), because
the extreme variability of content popularities “means that
the effective vocabulary size can actually be manageable for
RNN [LSTM] models.”

We plan to explore these directions in our future work.

6. REFERENCES
[1] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu,

“Caching is hard—even in the fault model,”
Algorithmica, vol. 63, pp. 781–794, Aug 2012.

[2] E. Baştuğ, M. Bennis, E. Zeydan, M. A. Kader, I. A.
Karatepe, A. S. Er, and M. Debbah, “Big data meets
telcos: A proactive caching perspective,” Journal of
Communications and Networks, vol. 17, pp. 549–557,
Dec 2015.

[3] Y. Zeng and X. Guo, “Long short term memory based
hardware prefetcher: A case study,” in Proceedings of

4 The two resulting caching policies belong to the family
of Least Recently/Frequently Used (LRFU) policies where
the requests numbers during past epochs are weighted with
different coefficients [18].

the International Symposium on Memory Systems,
MEMSYS ’17, pp. 305–311, ACM, 2017.

[4] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers,
H. Litz, J. Chang, C. E. Kozyrakis, and
P. Ranganathan, “Learning memory access patterns,”
in ICML, 2018.

[5] K. C. Tsai, L. L. Wang, and Z. Han, “Caching for
mobile social networks with deep learning: Twitter
analysis for 2016 u.s. election,” IEEE Transactions on
Network Science and Engineering, pp. 1–1, 2018.

[6] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and
Z.-L. Zhang, “Deepcache: A deep learning based
framework for content caching,” in Proceedings of the
2018 Workshop on Network Meets AI & ML,
NetAI’18, pp. 48–53, ACM, 2018.

[7] N. Zhang, K. Zheng, and M. Tao, “Using grouped
linear prediction and accelerated reinforcement
learning for online content caching,” in IEEE ICC
Workshops, May 2018.

[8] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart
and cooperative edge caching for 5g networks: A deep
learning based approach,” IEEE/ACM International
Symposium on Quality of Service, Jul 2018.

[9] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep
reinforcement learning-based framework for content
caching,” 2018 52nd Annual Conference on
Information Sciences and Systems, Mar 2018.

[10] E. Rezaei, H. E. Manoochehri, and B. H. Khalaj,
“Multi-agent learning for cooperative large-scale
caching networks,” arXiv:1807.00207 [cs.NI], Jun
2018.

[11] P. Henderson, R. Islam, P. Bachman, J. Pineau,
D. Precup, and D. Meger, “Deep reinforcement
learning that matters,” CoRR, vol. abs/1709.06560,
2018.

[12] S. Li, J. Xu, M. van der Schaar, and W. Li,
“Popularity-driven content caching,” IEEE
INFOCOM 2016, Apr 2016.

[13] M. M. Lau and K. H. Lim, “Investigation of activation
functions in deep belief network,” 2017 2nd
International Conference on Control and Robotics
Engineering (ICCRE), Apr 2017.

[14] R. M. French, “Catastrophic forgetting in
connectionist networks,” Trends in Cognitive Sciences,
vol. 3, no. 4, pp. 128–135, Apr 1999.

[15] J. Kirkpatricka, R. Pascanua, et al., “Overcoming
catastrophic forgetting in neural networks,” National
Academy of Sciences, Mar 2017.

[16] G. Neglia, D. Carra, M. Feng, V. Janardhan,
P. Michiardi, and D. Tsigkari, “Access-time-aware
cache algorithms,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 2, pp. 21:1–21:29, Nov. 2017.

[17] N. Megiddo and D. S. Modha, “Outperforming lru
with an adaptive replacement cache algorithm,”
Computer, vol. 37, no. 4, pp. 58–65, April 2004.

[18] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim, “LRFU: A spectrum of
policies that subsumes the least recently used and
least frequently used policies,” IEEE Trans. Comput.,
vol. 50, pp. 1352–1361, Dec. 2001.


	Introduction
	Related work
	Caching policy
	Components
	Operation
	Popularity predictor

	Performance Evaluation
	Popularity estimation
	Comparison with other caching policies

	Discussion and Conclusions
	References

