Seller revenue

- N bidders
- Values are independent random values between 0 and 1
- Expected i^{th} largest utility is $(N+1-i)/(N+1)$
- Expected seller revenue is $(N-1)/(N+1)$
1st price auction

- Player with the highest bid gets the good and pays a price equal to her/his bid.
- Being truthful is not a dominant strategy anymore!
 - Consider for example if I knew other players' utilities.
- How to study it?
1^{st} price auction

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
 - to overcome the fact that utilities are unknown
- Player i's strategy is a function $s()$ mapping value v_i to a bid b_i
 - $s()$ strictly increasing, differentiable function
 - $0 \leq s(v) \leq v \implies s(0)=0$
- We investigate if there is a strategy $s()$ common to all the players that leads to a Nash equilibrium
1st price auction

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
- Player i’s strategy is a function s() mapping value v_i to a bid b_i
- Expected payoff of player i if all the players plays s():
 \[U_i(s(v_1),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i - s(v_i)) \]
 prob. i wins, i’s payoff if he/she wins
1st price auction

- Expected payoff of player i if all the players play s():
 \[U_i(s(v_1), \ldots s(v_i), \ldots s(v_N)) = v_i^{N-1} (v_i - s(v_i)) \]

- What if i plays a different strategy \(t() \)?
 - If all players playing s() is a NE, then:
 \[U_i(s(v_1), \ldots s(v_i), \ldots s(v_N)) = v_i^{N-1} (v_i - s(v_i)) \]
 \[\geq s^{-1}(t(v_i))^{N-1} (v_i - t(v_i)) = U_i(s(v_1), \ldots t(v_i), \ldots s(v_N)) \]

- Difficult to check for all the possible functions \(t() \) different from s()

- Help from the revelation principle
The Revelation Principle

- All the strategies are equivalent to bidder i supplying to $s()$ a different value of v_i
1st price auction

- Expected payoff of player i if all the players plays \(s(): \)
 - \(U_i(s(v_1),\ldots s(v_i),\ldots s(v_N)) = v_i^{N-1} (v_i-s(v_i)) \)

- What if \(i \) plays a different strategy \(t() \)?

- By the revelation principle:
 - \(U_i(s(v_1),\ldots t(v_i),\ldots s(v_N)) =_{\text{eq}} U_i(s(v_1),\ldots s(v),\ldots s(v_N)) = v_i^{N-1} (v_i-s(v)) \)

- If \(v_i^{N-1} (v_i-s(v_i)) \geq v_i^{N-1} (v_i-s(v)) \) for each \(v \) (and for each \(v_i \))
 - Then all players playing \(s() \) is a NE
1st price auction

- If $v_i^{N-1} (v_i-s(v_i)) \geq v^{N-1} (v_i-s(v))$ for each v (and for each v_i)
 - Then all players playing $s()$ is a NE
- $f(v)=v_i^{N-1} (v_i-s(v_i)) - v^{N-1} (v_i-s(v))$ is minimized for $v=v_i$
- $f'(v)=0$ for $v=v_i$,
 - i.e. $(N-1) v_i^{N-2} (v_i-s(v_i)) - v_i^{N-1} s'(v_i) = 0$ for each v_i
 - $s'(v_i) = (N-1)(1 - s(v_i)/v_i)$, $s(0)=0$
 - Solution: $s(v_i)=(N-1)/N v_i$
1st price auction

- All players bidding according to
 \(s(v) = \frac{(N-1)}{N} v \) is a NE

Remarks
- They are not truthful
- The more they are, the higher they should bid

Expected seller revenue
- \(\left(\frac{(N-1)}{N} \right) E[v_{\text{max}}] = \left(\frac{(N-1)}{N} \right) \left(\frac{N}{N+1} \right) = \frac{(N-1)}{(N+1)} \)
- Identical to 2nd price auction!
- A general revenue equivalence principle
Outline

- Preliminaries
 - Auctions
 - Matching markets
- Possible approaches to ads pricing
- Google mechanism

References
- Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15
How to match a set of different goods to a set of buyers with different evaluations

v_{ij}: value that buyer j gives to good i
Matching Markets

How to match a set of different goods to a set of buyers with different evaluations

\mathbf{v}_{ij}: value that buyer j gives to good i

- **Goods**
 - 1
 - 2
 - 3

- **Buyers**
 - a: v_{1a}, v_{2a}, v_{3a}
 - b: v_{1b}, v_{2b}, v_{3b}
 - c: v_{1c}, v_{2c}, v_{3c}

Maximize

$$\sum_{i,j=1}^{N} x_{ij} v_{ij}$$

Subject to

$$\sum_{j=1}^{N} x_{ij} = 1, \quad \sum_{i=1}^{N} x_{ij} = 1,$$

Over

$$x_{ij} \in \{0,1\}$$
How to match a set of different goods to a set of buyers with different evaluations
Which goods buyers like most? Preferred seller graph

- Given the prices, look for a perfect matching on the preferred seller graph
- There is no such matching for this graph
Matching Markets

Which goods buyers like most? Preferred seller graph

- But with different prices, there is
Matching Markets

Which goods buyers like most? Preferred seller graph

- But with different prices, there is
- Such prices are market clearing prices
Market Clearing Prices

- They always exist
 - And can be easily calculated if valuations are known

- They are socially optimal in the sense that
 - they achieve the maximum total valuation of any assignment of sellers to buyers
 - Or, equivalently, they maximize the sum of all the payoffs in the network (both sellers and buyers)
Outline

- Preliminaries
 - Auctions
 - Matching markets
- Possible approaches to ads pricing
- Google mechanism

References
- Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15
Ads pricing

How to rank ads from different companies

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori)

v_i: value that company i gives to a click
Ads pricing as a matching market

Ads positions

<table>
<thead>
<tr>
<th>1</th>
<th>r_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>r_2</td>
</tr>
<tr>
<td>3</td>
<td>r_3</td>
</tr>
</tbody>
</table>

Companies

<table>
<thead>
<tr>
<th>a</th>
<th>v_ar_1, v_ar_2, v_ar_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>v_br_1, v_br_2, v_br_3</td>
</tr>
<tr>
<td>c</td>
<td>v_cr_1, v_cr_2, v_cr_3</td>
</tr>
</tbody>
</table>

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori)

v_i: value that company i gives to a click

- Problem: Valuations are not known!
- ... but we could look for something as 2nd price auctions
The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - Example: consider a 2nd price auction with $v_a>v_b>\ldots>v_N$
 - With a present the others buyers get 0
 - Without a, b would have got the good with a value v_b
 - then the social value loss for the others is v_b
The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_{BS} is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer β gets good i, he/she should be charged $V_{B-\beta}^S - V_{B-\beta}^{S-i}$
VCG example

Ads positions

1 \(r_1 = 10 \)

2 \(r_2 = 5 \)

3 \(r_3 = 2 \)

companies

a \(v_a = 3 \)

b \(v_b = 2 \)

c \(v_c = 1 \)

\(r_i \): click rate for an ad in position \(i \) (assumed to be independent from the ad and known a priori)

\(v_i \): value that company \(i \) gives to a click
VCG example

<table>
<thead>
<tr>
<th>Ads positions</th>
<th>companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
</tr>
</tbody>
</table>

- **a**: 30, 15, 6
- **b**: 20, 10, 4
- **c**: 10, 5, 2
This is the maximum weight matching

- a gets 30, b gets 10, and c gets 2
VCG example

If a weren't there, b and c would get 25 instead of 12,

Then a should pay 13
If b weren’t there, a and c would get 35 instead of 32,

Then b should pay 3
If c weren’t there, nothing would change for a and b,

Then c should pay 0
The VCG mechanism

- Every buyer should pay a price equal to the social value loss for the others buyers
 - If V^S_B is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer j gets good i, he/she should be charged $V^S_{B-\beta} - V^S_{B-\beta-\{i\}}$
- Under this price mechanism, truth-telling is a dominant strategy
Outline

- Preliminaries
 - Auctions
 - Matching markets

- Possible approaches to ads pricing
 - Google mechanism

- References
 - Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15
Google’s GSP auction

- Generalized Second Price
- Once all the bids are collected $b_1 > b_2 > ... > b_N$
- Company i pays b_{i+1}
- In the case of a single good (position), GSP is equivalent to a 2nd price auction, and also to VCG
- But why Google wanted to implement something different???
GSP properties

- Truth-telling may not be an equilibrium
GSP example

<table>
<thead>
<tr>
<th>Ads positions</th>
<th>companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>r₁ = 10</td>
<td>vₐ = 7</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>r₂ = 4</td>
<td>v₉ = 6</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
</tr>
<tr>
<td>r₃ = 0</td>
<td>v₉ = 1</td>
</tr>
</tbody>
</table>

rᵢ: click rate for an ad in position i (assumed to be independent from the ad and known a priori)

vᵢ: value that company i gives to a click

- If each player bids its true evaluation, a gets a payoff equal to 10
- If a bids 5, a gets a payoff equal to 24
GSP properties

- Truth-telling may not be an equilibrium
- There is always at least 1 socially optimal NE
GSP example

Ads positions	companies
1 | a | $v_a = 7$
2 | b | $v_b = 6$
3 | c | $v_c = 1$

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori)

v_i: value that company i gives to a click

- **Multiple NE**
 - a bids 5, b bids 4 and c bids 2
 - a bids 3, b bids 5 and c bids 1
GSP properties

- Truth-telling may not be an equilibrium
- There is always at least 1 socially optimal NE
- Revenues can be higher or lower than VCG
 - Attention: the revenue equivalence principle does not hold for auctions with multiple goods!
 - Google was targeting higher revenues...
 - ...not clear if they did the right choice.
GSP example

<table>
<thead>
<tr>
<th>Ads positions</th>
<th>companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>r₁=10</td>
<td>vₐ=7</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>r₂=4</td>
<td>vₐ=6</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
</tr>
<tr>
<td>r₃=0</td>
<td>vₐ=1</td>
</tr>
</tbody>
</table>

- **Multiple NE**
 - a bids 5, b bids 4, c bids 2 → google’s revenue=48
 - a bids 3, b bids 5, c bids 1 → google’s revenue=34
- **With VCG**, google’s revenue=44
Other issues

- Click rates are unknown and depend on the ad!
 - Concrete risk: low-quality advertiser bidding high may reduce the search engine’s revenue
 - Google’s solution: introduce and ad-quality factor taking into account actual click rate, relevance of the page and its ranking
 - Google is very secretive about how to calculate it => the market is more opaque

- Complex queries, nobody paid for
 - Usually engines extrapolate from simpler bids