Seller revenue

N bidders

- Values are independent random values between 0 and 1
- Expected ith largest utility is (N+1-i)/(N+1)
- Expected seller revenue is (N-1)/(N+1)

- Player with the highest bid gets the good and pays a price equal to her/his bid
- Being truthful is not a dominant strategy anymore!
 - Consider for example if I knew other players' utilities
- □ How to study it?

Assumption: for each player the other values are i.i.d. random variables between 0 and 1

• to overcome the fact that utilities are unknown

Player i's strategy is a function s() mapping value v_i to a bid b_i

• s() strictly increasing, differentiable function • $0 \le s(v) \le v \rightarrow s(0)=0$

We investigate if there is a strategy s() common to all the players that leads to a Nash equilibrium

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
- Player i's strategy is a function s() mapping value v_i to a bid b_i
- Expected payoff of player i if all the players plays s():
 U_i(s(v₁),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))

prob. i wins i's payoff if he/she wins

Expected payoff of player i if all the players play s(): $\bigcirc U_i(s(v_1),...,s(v_i),...,s(v_N)) = v_i^{N-1} (v_i-s(v_i))$ What if i plays a different strategy t()? \odot If all players playing s() is a NE, then : $\bigcirc U_i(s(v_1),...,s(v_i),...,s(v_N)) = v_i^{N-1}(v_i-s(v_i))$ $\geq S^{-1}(t(v_i))^{N-1}(v_i-t(v_i)) = U_i(s(v_1),...t(v_i),...s(v_N))$ Difficult to check for all the possible functions t() different from s() Help from the revelation principle

The Revelation Principle

All the strategies are equivalent to bidder i supplying to s() a different value of v_i

- Expected payoff of player i if all the players plays s():
 - $O U_i(s(v_1),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))$
- What if i plays a different strategy t()?
- By the revelation principle:
 - $\bigcirc U_i(s(v_1),...t(v_i),...s(v_N)) =_{eq} U_i(s(v_1),...s(v),...s(v_N)) = v^{N-1}(v_i-s(v))$
- □ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

 \odot Then all players playing s() is a NE

□ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

• Then all players playing s() is a NE

□ $f(v)=v_i^{N-1}(v_i-s(v_i)) - v^{N-1}(v_i-s(v))$ is minimized for $v=v_i$

$$\Box f'(v)=0 \text{ for } v=v_i,$$

- i.e. (N-1) $v_i^{N-2}(v_i-s(v_i)) v_i^{N-1}s'(v_i) = 0$ for each v_i
- $o s'(v_i) = (N-1)(1 s(v_i)/v_i), s(0)=0$
- \odot Solution: $s(v_i)=(N-1)/N v_i$

All players bidding according to s(v) = (N-1)/N v is a NE

Remarks

• They are not truthful

• The more they are, the higher they should bid

- Expected seller revenue
 - $O((N-1)/N) E[v_{max}] = ((N-1)/N) (N/(N+1)) = (N-1)/(N+1)$

○ Identical to 2nd price auction!

• A general revenue equivalence principle

Outline

Preliminaries

• Auctions

Matching markets

Possible approaches to ads pricing

□ Google mechanism

□ References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Matching Markets s_{ij} : value that buyer j gives to good igoods1112b v_{1a}, v_{2a}, v_{3a} 2 v_{1b}, v_{2b}, v_{3b} 3

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

 Given the prices, look for a perfect matching on the preferred seller graph
 There is no such matching for this graph

Which goods buyers like most? Preferred seller graph

But with different prices, there is

Which goods buyers like most? Preferred seller graph

But with different prices, there is
Such prices are market clearing prices

Market Clearing Prices

- They always exist
 - And can be easily calculated if valuations are known
- They are socially optimal in the sense that
 - they achieve the maximum total valuation of any assignment of sellers to buyers
 - Or, equivalently, they maximize the sum of all the payoffs in the network (both sellers and buyers)

Outline

Preliminaries

 Auctions
 Matching markets

 Possible approaches to ads pricing
 Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

How to rank ads from different companies

- r_i: click rate for an ad in position i v_i: value that company i (assumed to be independent gives to a click from the ad and known a priori)
- Problem: Valuations are not known!
 ... but we could look for something as 2nd price auctions

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - Example: consider a 2nd price auction with
 - v_a>v_b>...v_N
 - With *a* present the others buyers get 0
 - Without *a*, *b* would have got the good with a value v_b
 - then the social value loss for the others is $v_{\rm b}$

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer β gets good i, he/she should be charged $V_{B-\beta}{}^{S} V_{B-\beta}{}^{S-i}$

VCG example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

This is the maximum weight matching *a* gets 30, *b* gets 10 and *c* gets 2

- If a weren't there, b and c would get 25 instead of 12,
- Then a should pay 13

- If b weren't there, a and c would get 35 instead of 32,
- Then b should pay 3

- If c weren't there, nothing would change for a and b,
- Then c should pay 0

The VCG mechanism

- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - \odot If buyer j gets good i, he/she should be charged $V_{B-\beta}{}^{S}$ $V_{B-\beta}{}^{S-i}$
- Under this price mechanism, truth-telling is a dominant strategy

Outline

Preliminaries

 Auctions
 Matching markets

 Possible approaches to ads pricing
 Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Google's GSP auction

- Generalized Second Price
- \Box Once all the bids are collected $b_1 > b_2 > ... b_N$
- Company i pays b_{i+1}
- In the case of a single good (position), GSP is equivalent to a 2nd price auction, and also to VCG
- But why Google wanted to implement something different???

GSP properties

Truth-telling may not be an equilibrium

GSP example

- r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click
- If each player bids its true evaluation, a gets a payoff equal to 10
 If a bids 5, a gets a payoff equal to 24

GSP properties

Truth-telling may not be an equilibrium
 There is always at least 1 socially optimal NE

GSP example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

Multiple NE

 a bids 5, *b* bids 4 and *c* bids 2
 a bids 3, *b* bids 5 and *c* bids 1

GSP properties

- Truth-telling may not be an equilibrium
- There is always at least 1 socially optimal NE
- Revenues can be higher or lower than VCG
 - Attention: the revenue equivalence principle does not hold for auctions with multiple goods!
 - Google was targeting higher revenues...
 - ... not clear if they did the right choice.

GSP example

Multiple NE

 a bids 5, b bids 4, c bids 2 → google's revenue=48
 a bids 3, b bids 5, c bids 1 → google's revenue=34

 With VCG, google's revenue=44

Other issues

- Click rates are unknown and depend on the ad!
 - Concrete risk: low-quality advertiser bidding high may reduce the search engine's revenue
 - Google's solution: introduce and ad-quality factor taking into account actual click rate, relevance of the page and its ranking
 - Google is very secretive about how to calculate it => the market is more opaque
- Complex queries, nobody paid for

Usually engines extrapolate from simpler bids