Distributed Optimization and Games

Introduction to Game Theory

Giovanni Neglia INRIA – EPI Maestro 18 January 2017

What is Game Theory About?

 Mathematical/Logical analysis of situations of conflict and cooperation

Goal: to prescribe how rational players should act

What is a Game?

- □ A Game consists of
 - o at least two players
 - o a set of strategies for each player
 - o a preference relation over possible outcomes
- Player is general entity
 - o individual, company, nation, protocol, animal, etc
- Strategies
 - o actions which a player chooses to follow
- Outcome
 - determined by mutual choice of strategies
- Preference relation
 - o modeled as utility (payoff) over set of outcomes

Short history of GT

- Forerunners:
 - Waldegrave's first minimax mixed strategy solution to a 2-person game (1713), Cournot's duopoly (1838), Zermelo's theorem on chess (1913), Borel's minimax solution for 2-person games with 3 or 5 strategies (20s)
- □ 1928: von Neumann's theorem on two-person zero-sum games
- 1944: von Neumann and Morgenstern, Theory of Games and Economic Behaviour
- □ 1950-53: Nash's contributions (Nash equilibrium, bargaining theory)
- □ 1952-53: Shapley and Gillies' core (basic concept in cooperative GT)
- 60s: Aumann's extends cooperative GT to non-transferable utility games
- □ 1967-68: Harsanyi's theory of games of incomplete information
- □ 1972: Maynard Smith's concept of an Evolutionarily Stable Strategy
- Nobel prizes in economics
 - 1994 to Nash, Harsanyi and Selten for "their pioneering analysis of equilibria in the theory of non-cooperative games"
 - 2005 to Aumann and Schelling "for having enhanced our understanding of conflict and cooperation through game-theory analysis"
 - 2012 to Roth and Shapley "for the theory of stable allocations and the practice of market design"
- Movies:
 - 2001 "A beautiful mind" on John Nash's life
- See also:
 - www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm

Applications of Game Theory

- Economy
- Politics (vote, coalitions)
- Biology (Darwin's principle, evolutionary GT)
- Anthropology
- War
- Management-labor arbitration
- Philosophy (morality and free will)
- National Football league draft
- "Recently" applied to computer networks
 - Nagle, RFC 970, 1985: "datagram networks as a multi-player game"
 - wider interest starting around 2000

Matrix Game (Normal form)

- Simultaneous play
 - players analyze the game and then write their strategy on a piece of paper

Students' game

	Colin		
		5	Н
Rose	5	15, 15	13, 16
	Н	16, 13	14, 14

More Formal Game Definition

- □ Normal form (strategic) game
 - \circ a finite set N of players
 - \circ a set strategies S_i for each player $i \in N$
 - o payoff function $u_i(s)$ for each player $i \in N$
 - · where $S = \mathbf{x}_{j \in N}^{\iota} S_j$ is an outcome
 - · sometimes also $u_i(A,B,...)$ $A \subseteq S_1, B \subseteq S_2,...$
 - $u_i: S \to \Re$

Two-person Zero-sum Games

- One of the first games studied
 - o most well understood type of game
- Players interest are strictly opposed
 - what one player gains the other loses
 - o game matrix has single entry (gain to player 1)
- A "strong" solution concept

Dominance

- □ Strategy S (weakly) dominates a strategy T if every possible outcome when S is chosen is at least as good as corresponding outcome in T, and one is strictly better
 - S strictly dominates T if every possible outcome when S is chosen is strictly better than corresponding outcome in T
- Dominance Principle
 - o rational players never choose dominated strategies
- Higher Order Dominance Principle
 - o iteratively remove dominated strategies

Higher order dominance may be enough

	Colin		
		5	Н
Rose _	5	15, 15	13, 16
	Н	16, 13	14, 14

Rose's S strategy dominated By H

GT prescribes: Rose H - Colin H

Higher order dominance may be enough

... but not in general

 Colin

 A
 B
 C
 D

 A
 12
 -1
 1
 0

 Rose
 B
 5
 1
 7
 -20

 C
 3
 2
 4
 3

 D
 -16
 0
 0
 16

dominated strategy (dominated by B)

Analyzing the Reduced Game: Movement Diagram

- mutual best responses

Students' game

Games without pure strategy NE

☐ An example?

	R	Р	S
R	0	-1	1
Р	1	0	-1
S	-1	1	0

Games without pure strategy NE

□ An example? An even simpler one

Some practice: find all the pure strategy NE

	A	В	C	D
Α	3	2	4	2
В	2	1	3	0
С	2	2	2	2

	A	В	C
A	-2	0	4
В	2	1	3
С	3	-1	-2

	A	В	C
A	4	ო	8
В	9	5	1
С	2	7	6

Games with no pure strategy NE

- □ What should players do?
 - o resort to randomness to select strategies

Games with no pure strategy NE

...but we can find mixed strategies equilibria

- □ Same idea of equilibrium
 - each player plays a mixed strategy (equalizing strategy), that equalizes the opponent payoffs
 - o how to calculate it?

	Colin		
_		Α	В
Rose	A	5,0	-1, 4
	В	3, 2	2,1

- □ Same idea of equilibrium
 - each player plays a mixed strategy, that equalizes the opponent payoffs
 - o how to calculate it?

		Colin		Rose consider
		Α	В	Colin's game
Rose	A	-0	-4	4 7 1/5
	В	-2	-1	$\longrightarrow 1 \qquad 4/5$

- Same idea of equilibrium
 - each player plays a mixed strategy, that equalizes the opponent payoffs
 - o how to calculate it?

	Colin		
_		Α	В
Rose	A	5	-1
_	В	3	2

Colin considers Rose's game

- Same idea of equilibrium
 - each player plays a mixed strategy, that equalizes the opponent payoffs
 - o how to calculate it?

	Colin		
_		A	В
Rose	Α	5,0	-1, 4
_	В	3,2	2,1

Rose playing (1/5,4/5)Colin playing (3/5,2/5)is an equilibrium

Rose gains 13/5 Colin gains 8/5

Good news: Nash's theorem [1950]

- Every two-person games has at least one equilibrium either in pure strategies or in mixed strategies
 - Proved using fixed point theorem
 - ogeneralized to N person game
- This equilibrium concept called Nash equilibrium in his honor
 - A vector of strategies (a profile) is a Nash Equilibrium (NE) if no player can unilaterally change its strategy and increase its payoff

A useful property

- □ Given a finite game, a profile is a mixed NE of the game if and only if for every player i, every pure strategy used by i with non-null probability is a best response to other players mixed strategies in the profile
 - see Osborne and Rubinstein, A course in game theory, Lemma 33.2

Game of Chicken

- □ Game of Chicken (aka. Hawk-Dove Game)
 - driver who swerves loosesDriver 2

7		swerve	stay
iver	swerve	0,0	-1, 5
Δ	stay	5,-1	<u>-1</u> 0, -10

Drivers want to do opposite of one another

Two equilibria:
not equivalent
not interchangeable!
• playing an equilibrium strategy
does not lead to equilibrium

Students' game

Students' game

- Def: outcome o* is Pareto Optimal if no other outcome would give to all the players a payoff not smaller and a payoff higher to at least one of them
- Conflict between group rationality (Pareto principle) and individual rationality (dominance principle)

Students' game = Prisoner's Dilemma

- One of the most studied and used games
 - oproposed in 1950
- Two suspects arrested for joint crime
 - each suspect when interrogated separately, has option to confess

Distributed Optimization and Games

Auctions

Giovanni Neglia INRIA – EPI Maestro 18 January 2017

Our starting problem

■ We want to give an object to the person who values it the most, i.e.

maximize
$$\sum_{i=1}^{N} x_i v_i$$
 subject to
$$\sum_{i=1}^{N} x_i = 1$$
 over
$$x_i \in \{0,1\}$$

- □ Difficulty: we do not know values v_i ...
- and we cannot ask to people (they would lie)
- Solution: auctions, but we need to introduce money

Types of auctions

- □ 1st price & descending bids (Dutch auctions)
- □ 2nd price & ascending bids (English auctions)

Google

Google

digital photo camera

a

Giovanni Neglia

0

+ Shar

Search

About 426,000,000 results (0.25 seconds)

Web

Images

Maps

Videos

News

Shopping

More

Valbonne

Change location

Show search tools

Digital Photography Review

www.dpreview.com/

Digital Photography Review: All the latest digital **camera** reviews and digital imaging news. Lively discussion forums. Vast samples galleries and the largest

Reviews - Side-by-side camera comparison - Nikon D4 - D1 / D800 - Cameras

<u>Digital cameras</u>: compare <u>digital camera</u> reviews - CNET Re...

reviews.cnet.com/digital-cameras/

Digital camera reviews and ratings, video reviews, user opinions, most popular **digital** ... Get **photo**-artistry & on-the-fly flexibility with the Samsung NX100. Makes ...

Best 5 digital cameras - 100 - \$200 Digital cameras ... - Digital camera - Than 12X

Digital camera - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Digital_camera

Jump to <u>Displaying photos</u>: Many **digital cameras** include a video output port. Usually sVideo, it sends a standard-definition video signal to a television, ...

Amazon.com: Digital Cameras: Camera & Photo: Point & Sho...

Ads (i)

Appareil Photo Numérique

www.pixmania.com/Photo
Spécialiste des Appareils Photo.
Meilleurs prix & livraison express.
255 people +1'd or follow Pixmania

Digital Photo Cameras

prixmoinscher.com/Digital+Photo+Cameras Grand choix de Digital Photo Cameras à des prix à couper le souffle!

caméras OEM CMOS USB2.0

www.framos-imaging.com résolutions VGA à 10Mp, SDK mini caméras carte, trigger, LED

Digital photo cameras

www.shopzilla.fr/
Très grande sélection de
digital photo cameras à petits prix

How it works

- Companies bid for keywords
- On the basis of the bids Google puts their link on a given position (first ads get more clicks)
- Companies are charged a given cost for each click (the cost depends on all the bids)
- Why Google adopted this solution:
 - It has no idea about the value of a click...
 - O It lets the company reveal it

Some numbers (2014)

- ≈ 90% of Google revenues (66 billions\$)
 from ads
 - o investor.google.com/financial/tables.html
- Costs
 - o "calligraphy pens" \$1.70
 - "Loan consolidation" \$50
 - "mesothelioma" \$50 per click
- Click fraud problem

Outline

- Preliminaries
 - Auctions
 - Matching markets
- Possible approaches to ads pricing
- □ Google mechanism
- References
 - Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Game Theoretic Model

- N players (the bidders)
- Strategies/actions: b_i is player i's bid
- □ For player i the good has value v_i
- \Box p_i is player i's payment if he gets the good
- Utility:
 - o v_i-p_i if player i gets the good
 - O otherwise
- Assumption here: values v_i are independent and private
 - i.e. very particular goods for which there is not a reference price

Game Theoretic Model

- N players (the bidders)
- □ Strategies: b_i is player i's bid
- Utility:
 - o v_i-b_i if player i gets the good
 - O otherwise
- Difficulties:
 - Utilities of other players are unknown!
 - Better to model the strategy space as continuous (differently from the games we looked at)

2nd price auction

- □ Player with the highest bid gets the good and pays a price equal to the 2nd highest bid
- □ There is a dominant strategies
 - I.e. a strategy that is more convenient independently from what the other players do
 - O Be truthful, i.e. bid how much you evaluate the good $(b_i=v_i)$
 - Social optimality: the bidder who value the good the most gets it!

b_i=v_i is the highest bid

Bidding more than v_i is not convenient

b_i=v_i is the highest bid

Bidding less than vi is not convenient (may be unconvenient)

b_i=v_i is not the highest bid

Bidding more than v_i is not convenient (may be unconvenient)

b_i=v_i is not the highest bid

Bidding less than v_i is not convenient