Each answer has to be justified. The points marked for each exercise give an indication of the relative importance.

Ex. 1 — (1 point) Consider a graph, where each link $l \in E$ is affected by a delay $D_l(y_l)$ depending on the amount of traffic on that link, y_l . The delay function is assumed to be convex, increasing and differentiable. Consider the following routing optimization problem:

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{|R|}, \mathbf{y} \in \mathbb{R}^{|E|}}{\text{minimize}} & \sum_{l \in E} y_l D_l(y_l) \\ \text{subject to} & f_s = \sum_{r \mid s(r) = s} x_r \ \forall s \in S \\ & y_l = \sum_{r \mid l \in r} x_r \ \forall l \in E \\ & x_r \ge 0 \ \forall r \in R \end{array}$$

- 1. What is the system minimizing?
- 2. Write the Lagrangian function relative to the first two sets of constraints (i.e. ignoring $x_r \ge 0$).
- 3. Consider the particular case of a network made by two nodes u and v connected by |E| = 3 parallel edges. f_{uv} traffic has to be routed between u and v. The delays on the links are respectively:
 - $D_1(y_1) = 1 + y_1$
 - $D_2(y_2) = 2 + \frac{1}{2}y_2$
 - $D_3(y_3) = 4 + \frac{1}{100}y_3$

Determine the optimal routing if $f_{uv} = 1$ and if $f_{uv} = 3$.

Ex. 2 — [2 points] Consider two flows sharing a common link l. The link communicates the current amount of traffic on it (y_l) to both sources. Each source adapts its rate according to the following equation:

$$\begin{aligned} \frac{\mathrm{d}x_1}{\mathrm{d}t} &= \frac{1}{\sqrt{x_1}} - y_l^2, \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} &= 10 \left(\frac{1}{\sqrt{x_2}} - y_l^2\right). \end{aligned}$$

- 1. What optimization problem is implicitly maximized by the two sources?
- 2. What are the optimal solutions of this optimization problem?
- 3. Will the flow rates converge to an optimal solution? Why?

Ex. 3 — [3 points] Consider a single source transmitting through L parallel links. The rate on link l is x_l and causes a congestion cost equal to $M_l(x_l)$, where $M_l()$ is a convex increasing differentiable function. The utility for the source to transmit at a total rate $X = \sum_{l=1}^{L} x_l$ is U(X), where U() is a concave increasing differentiable function. The goal is to maximize the total social welfare defined as utility of the source minus congestion costs of the links.

- 1. Formulate mathematically the corresponding optimization problem.
- 2. Can you identify properties of the optimal rate allocation? Which links are used at the optimum? What is the corresponding rate?