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Abstract—The most popular framework for parallel
training of machine learning models is the (synchronous)
parameter server (PS). This paradigm consists of n work-
ers, which iteratively compute updates of the model param-
eters, and a stateful PS, which waits and aggregates all
updates to generate a new estimate of model parameters
and sends it back to the workers for a new iteration.
Transient computation slowdowns or transmission delays
can intolerably lengthen the time of each iteration. An
efficient way to mitigate this problem is to let the PS wait
only for the fastest n — b updates, before generating the
new parameters. The slowest b workers are called backup
workers. The optimal number b of backup workers depends
on the cluster configuration and workload, but also (as
we show in this paper) on the hyper-parameters of the
learning algorithm and the current stage of the training.
We propose DBW, an algorithm that dynamically decides
the number of backup workers during the training process
to maximize the convergence speed at each iteration. Our
experiments show that DBW 1) removes the necessity to
tune b by preliminary time-consuming experiments, and 2)
makes the training up to a factor 3 faster than the optimal
static configuration.

I. INTRODUCTION

In 2014, Google’s Sybil machine learning (ML)
platform was already processing hundreds of terabytes
through thousands of cores to train models with hundreds
of billions of parameters [1]. At this scale, no single
machine can solve these problems in a timely manner, and,
as time goes on, the need for efficient parallel solutions
becomes even more urgent. Currently, the operation of
ML parallel systems requires a number of ad-hoc choices
and time-consuming tuning through trial and error, e.g. to
decide how to distribute ML programs over a cluster
or how to bridge ML computation with inter-machine
communication. For this reason, significant research effort
(also from the networking community [2], [3], [4], [5]) is
devoted to design adaptive algorithms for a more effective
use of computing resources for ML training.

Currently, the most popular template for parallel ML
training is the parameter server (PS) framework [6]. This

paradigm consists of workers, that perform the bulk of
the computation, and a stateful parameter server that
maintains the current version of the model parameters.
Workers use locally available versions of the model to
compute gradients which are then aggregated by the PS
and combined with its current state to produce a new
estimate of the optimal parameter vector. If the PS waits
for all workers before updating the parameter vector
(synchronous operation), stragglers, i.e. slow tasks, can
significantly reduce computation speed in a multi-machine
setting [7], [8], [9]. Transient slowdowns are common in
computing systems (especially in shared ones) and have
many causes, such as resource contention, background
OS activities, garbage collection, and (for ML tasks)
stopping criteria calculations. Alternatively, the PS can
operate asynchronously, updating the parameter vector as
soon as it receives the result of a single worker. While
this approach increases system throughput (parameter
updates per time unit), some workers may operate on
stale versions of the parameter vector slowing and, in
some cases, even preventing convergence to the optimal
model [10]. A simple solution that does not jeopardize
convergence, while mitigating the effect of stragglers, is
to rely on backup workers [11]: instead of waiting for
the updates from all workers (say it n), the PS waits
for the fastest k£ out of n updates to proceed to the next
iteration. The remaining b £ n — k workers are called
backup workers. Experiments on Google cluster with
n = 100 workers show that a few backup workers (4-6)
can reduce the training time by 30% in comparison to
the synchronous PS and by 20% in comparison to the
asynchronous PS [11].

The number of backup workers b has a double effect
on the convergence speed. The larger b is, the faster
each iteration is, because the PS needs to wait less
inputs from the workers. At the same time, the PS
aggregates less information, so the model update is
noisier and more iterations are required to converge.



Currently, the number of backup workers is configured
manually through some preliminary experiments, before
the actual training process starts. However, the optimal
static setting is highly sensitive to the cluster configuration
(e.g. GPU performances and their connectivity), as well
as its instantaneous workload, that may be unknown to
the users (specially in a virtualized cloud setting) and
may change as new jobs arrive/depart from the cluster.
Moreover, in this paper we show that the optimal number
of backup workers 1) is also affected by the choice
of hyper-parameters like the batch size, and 2) changes
during the training itself(!) as the loss function approaches
a (local) minimum. Therefore, the static configuration of
backup workers does not only require time-consuming
experiments, but is particularly inefficient and fragile.

In this paper we propose the algorithm DBW (for
Dynamic Backup Workers) that dynamically adapts the
number of backup workers during the training process
without prior knowledge about the cluster or the opti-
mization problem. Our algorithm identifies the sweet
spot between the two contrasting effects of b (reducing
the duration of an iteration and increasing the number
of iterations for convergence), by maximizing at each
iteration the decrease of the loss function per time unit.

The paper is organized as follows. Sect. II provides
relevant background and introduces the notation. Sect. III
illustrates the different components of our algorithm
DBW with their respective preliminary assessments.
DBW is then evaluated on ML problems in Sect. V.
The results show that DBW is robust to different cluster
environments, and different hyper-parameters’ settings.
DBW does not only remove the necessity to configure
an additional parameter (b) through costly experiments,
but also reduce the training time by a factor as large
as 3 in comparison to the best static configuration.
Sect. V concludes the paper and discusses future research
directions. Our code is available online [12].

II. BACKGROUND AND NOTATION

Given a dataset X = {x;,l = 1,... S}, the training of
ML models usually requires to find a parameter vector
w € RY minimizing a loss function:

S
minimize F(w) = %Zf(:cl,w), (1)
=1

weRd

where f(x;,w) is the loss of the model w on the
datapoint ;. For example, in supervised learning, each
point of the dataset is a pair z; = (x;,¥;), consisting of
an input object x; and a desired output value y;. In the
standard linear regression method x; € R4, y1 € R, the

input-output function is a linear one (g; = xJw) and the
loss function is the mean squared error (] w—y;)?. More
complex models like neural networks look for an input-
output mapping in a much larger and more flexible family
of functions, but they are trained solving an optimization
problem like (1).

The standard way to solve Problem (1) is to use an
iterative gradient method. Let n be the number of workers
(e.g. GPUs) available. In a synchronous setting without
backup workers, at each iteration ¢ the PS sends the
current estimate of the parameter vector w; to all the
workers. Each worker computes then a stochastic gradient
on a random mini-batch of size B (< S) drawn from
its local dataset. We assume each worker has access to
the complete dataset X as it is reasonable in the cluster
setting that we consider. Each worker sends the stochastic
gradient back to the PS. We denote by g; ; the i-th worker
gradient received by the PS at iteration ¢, i.e.

1
9it =g Z Vf(z,we),

zeB;
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and B; C X is the random minibatch of size B on which
the gradient has been computed. Once n gradients are
received, the PS computes the average gradient

1 n
gt = n Z git,
i=1
and updates the parameter vector as follows:

3)

Wi1 = W — NG¢,

where 7 > 0 is called the learning rate.

When b backup workers are used [11], the PS only
waits for the first £ = n — b gradients and then evaluates
the average gradient as

1 k
gt = E;gi’t'

In our dynamic algorithm (Sect. III), the value of k is
no longer static but changes in an adaptive manner from
one iteration to the other, ensuring faster convergence
speed. We denote by k; the number of gradients of wy
the PS needs to wait for at iteration ¢, and by T; ; the
time interval between the update of the parameter vector
wy at the PS and the reception of the i-th gradient g; ;.

The general backup-workers scheme can be imple-
mented in different ways. The updated parameter vector
could be either pulled by idle workers (as in Google’s Ten-
sorFlow framework) or pushed by PS. When PS pushes
the parameter vector, PS could either force workers to
interrupt their ongoing gradient computation (Psl) or wait
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for them to complete it (PsW). Our algorithm works with
all variants listed above, with minor adaptations. We have
implemented and tested it both with PsI and PsW in the
PyTorch framework [13]. Results are similar, therefore,
in what follows, we refer only to the PsW.

To the best of our knowledge, the only other work
proposing to dynamically adapt the number of backup
workers is [14]. The authors consider a Psl approach. The
PS uses a deep neural network to predict the time T} ¢
needed to collect £k = 1,2,...n new gradients. It then
greedily chooses k; as the value that maximizes k/T}, ;.
The neural network for time series forecasting needs
itself to be trained in advance for each cluster and each
ML model to be learned. No result is provided in [14]
about the duration of this additional training phase or its
sensitivity to changes in the cluster and ML models. Our
algorithm DBW also selects k; to maximize a similar
ratio, but 1) replaces the numerator by the expected
decrease of the loss function, 2) uses a simple estimator
for T} ;, that does not require any preliminary training.
Moreover, results in [14] do not show a clear advantage
of the proposed mechanism in comparison to the static
setting suggested in [11] (see e.g. [14, Fig. 4]). Our
experiments in Sect. IV confirm that indeed considering
a gain proportional to k as in [14] is too simplistic (and
leads to worse results than DBW).

Our approach to estimate the loss decrease as a function
of k is inspired by the work [15] which evaluates the
loss decrease as a function of the batch size. In fact,
aggregating k gradients, each computed on a mini-batch
of B samples, is almost equivalent to compute a single
gradient on a mini-batch of kB samples.

While our algorithm adapts the number of backup
workers b given an available pool of n workers, the
authors of [16] propose a reinforcement learning algo-
rithm to adapt n in order to minimize the training time
under a budget constraint. This algorithm and DBW are
then complementary: once selected n with the approach
in [16], DBW can be applied to tune the number of
backup workers.

III. DYNAMIC BACKUP WORKERS

The rationale behind our algorithm DBW is to adap-
tively select k; in order to maximize %,
i.e., to greedily maximize the decrease of the empirical
loss per time unit. We decide k; just after the update
of w;. In the following subsections, we detail how both
numerator and denominator can be estimated, and how
they depend on k. The notation is listed in Table 1.

n,t number of workers, iteration ¢
F,w; (global) loss function to minimize, parameter vector
L,B,n | Lipschitz smoothness constant, batch size, learning rate
gi,t ith stochastic gradient PS receives at iter. ¢
V(gi,:) | variance of g; ;
ki number of stochastic gradients PS waits for at iter. ¢
gt average gradient at iter. ¢
Okt gain (expected loss decrease) if PS receives k gradients
Tyt time between w; update and gy ; reception at PS
th,it time between w; update and gy, ; reception at PS
when PS has waited for h gradients at iter. t — 1
Th k random variable from which ty, ; ; values are
assumed to be sampled
Th k¢ set of tj, j ¢+ samples available up to iter. ¢

TABLE I: Notation

A. Empirical Loss Decrease

We assume that the empirical loss function F'(w) is
L-smooth, i.e., it exists a constant L such that

|[VF(w') — VF(w")|| < L||w" — w"||,Vw',w". (5)

Smoothness is a standard assumption in convergence re-
sults of gradient methods (see for example [17], [18]). In
our experiments we show DBW reduces the convergence
time also when the loss is not a smooth function. From
(5) and (3) it follows (see [18, Sect. 4.1] for a proof):

AFt £ F(wt) — F(wt+1)

L 2
> gVE(w) g~ “5-lgil* ©

In order to select k;, DBW uses this lower bound as
a proxy for the loss decrease. We note, however, that
g: depends on the value of k; (see (4)) and the random
mini-batches drawn at the workers. So at the moment
to decide for k;, g; is a random variable. We consider
then the expected value (over the possible choices for
the mini-batches) of the right-hand side of (6). We call
it the gain and denote by Gy, ;, i.e.:
2
Grt 2 E |nVF(w)Tg: — LTnngth2 . )
Each stochastic gradient is an unbiased estimator of the
full gradient, then E[g;] = VF(w,). Moreover, for any
random variable X, it holds E[X?] = E[X]? + Var(X).
Applying this relation to each component of the vector
g, and then summing up, we obtain:

Elllg:|*] = VE(we)[|* + V(gis) /k, ®)

where V(g;.) denotes the sum of the variances of
the different components of g;: , i.e., V(gi.) £
27:1 Var([g; ¢]:). Notice that V(g; ) does not depend
on i, because each worker has access to the complete



dataset (assumption made in Sect. II, the same as in [11]).

Then, combining (7) and (8), G+ can be rewritten as

. L772 2 L772 V(gi)
N e

.9

When full batch gradient descent is used, the optimal
choice of the learning rate is » = 1/L, because it
maximizes the expected gain. With this choice of the
learning rate, Eq. (9) becomes:

(10)

G = § (19 F (|2 - 9:2)).

k

When the loss is not L-smooth, or the constant L is
unknown, the learning rate is selected through some
preliminary experiments (details in Sect. IV). We assume
that (10) still holds.

Equation (10) shows that the gain increases as k
increases. This corresponds to the fact that the more
gradients are aggregated at the PS, the closer —g; is
to its expected value —VF(wy), i.e., to the steepest
descent direction for the loss function. We also remark
that the gain sensitivity to k& depends on the relative ratio
of V(g;+) and ||VF(w;)||?, that keeps changing during
the training (see for example Fig. 1). Correspondingly,
we can expect that the optimal value of k will vary
during the training process, even when computation
and communication times do not change in the cluster.
Experiments in Sect. IV confirm this is the case.

Computing the exact value of G ; would require the
workers to process the whole dataset, leading to much
longer iterations. We want rather to evaluate Gy, with
limited overhead for the workers. In what follows, we
discuss how to estimate |VF(wy)||* and V(g;+) to
approximate Gy, in (10). We first provide estimators
that use information available at the end of iteration ¢,
i.e., after k; has been selected and the k; fastest gradients
have been received. Then, we build from these estimators
new ones, that can be computed at the beginning of the
iteration ¢ and then can be used to select k;. Given a
quantity 6; to be estimated at iteration ¢, we denote the
first estimator as 9At+ and the second one as 9:

We start by estimating V(g;.) through the usual
unbiased estimator for the variance:

d k¢

D DA
l 1

Next, we study the estimator of |V F(w,)||?. First,
we can trivially use [g:||*> to estimate E[||g:|?],

ie. Eflg:?] = lgl*. Since [[VF(wy)|* =

V(git) (11

E[||g:|I?] — V(gi:)/k: (from (8)), we can estimate
|VE(w;)|]? as follows

+
_ V(gi,)
ki

o — — +

+
[VE(w)[* = max | E[[|g:|]*] 0,
(12)
to guarantee non-negativity of the estimate.

Estimates in (11) and (12), cannot be computed at the
beginning of iteration ¢, but it is possible to compute
them for earlier iterations, and use these past estimates
to predict the future value. DBW simply averages the
past D estimates (or the first ¢ — 1 if t < D), i.e.,

— 1 D 4
V(gi,t):ﬁgv (Git—v) (13)
— 1 D — +
HVF<wt>||2:Bgnvmwt_vw? SN

Combining (10), (13) and (14), the gain estimate is

G
Gor=1 (nvzf(wt)nQ - ?ﬁ) )

In Fig. 1, we show our estimates during one training
process on the MNIST dataset (details in Sect. IV), where
our algorithm (described below in Sect. III-C) is applied
to dynamically choose k. The solid lines are the estimates
given by (13), (14), and (15). The dashed lines present the
exact values (we have instrumented our code to compute
them). We can see from/Fig\ures 1(a) aﬂlb) that the
proposed estimates ||V F (w;)||? and V(g;,) are very
accurate. Figure 1(c) compares the loss decrease AF}
(observed a posteriori) and Gy, ;. As expected Gy, ; is a
lower bound for AF}, but the two quantities are almost
proportional. This is promising, because if the lower
bound Gy, /Ty, and the function AF; /Ty, , were exactly
proportional, their maximizers would coincide. Then,
working on the lower bound, as we do, would not be an
approximation.

B. Iteration Duration

In this subsection, we discuss how to estimate the
time 7%+ the PS needs to receive k gradients of w; after
the update w; at iteration ¢. As in [19], we call round
trip time the total (random) time an idle worker needs
to 1) retrieve the new parameter vector, 2) compute the
corresponding gradient, and 3) send it back to the PS.

When the PS starts a new iteration ¢ (¢ > 0), there
are k;_, workers ready to compute the new gradient
while the other n — k;—; workers are still computing
stale gradients, i.e., relative to past parameter vectors
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Fig. 1: Estimation of the loss decrease. MNIST, n = 16 workers, batch size B = 500, learning rate n = 0.01, estimates

computed over the last D = 5 iterations.

w¢_, with 7 > 0. T}, , depends not only on the value
of k but also on the value of k;_; and the n — k;_1
residual round trip times (i.e. the remaining times for
the n — k;_1 busy workers to complete their tasks). We
assume that most of such dependence is captured by the
number k;_;. This would be correct if round trip times
were exponential random variables. Let tj, ; ; denote the
time the PS spends for receiving the ¢-th gradient of
wy, provided that it has waited k;,_; = h gradients at
iteration ¢ — 1. Under our assumptions, for given values
of h and i, the values {t;; .} can be seen as samples of
the same random variable that we denote by 7y ;. For

—

estimating Ty, we consider T}, ; = E[Ty, k).

Consider k;_1 h and k; k. The PS can
collect the samples tp ;+ for ¢ < k (it needs to wait
k gradients before moving to the next iteration), but
also for ¢ > k because late workers still complete the
ongoing calculations. In fact, late workers may terminate
the computation and send their (by now stale) gradients
to the PS, before they receive the new parameter vector.
Even if a new parameter vector is available at the local
queue (and then they know their gradient is not needed),
in DBW workers still notify the completion to the PS,
providing useful information to estimate 7}, ; with limited
communication overhead.

A first naive approach to estimate E[7y, ;] is to average
the samples obtained over the past history. But, actually,
there is much more information that can be exploited to
improve estimates, if we jointly estimate the complete
set of values E[T k], for h,k = 1,...,n. In fact, the
following pathwise relation holds for each h and «:
thit < tnit1,t, because ¢ denotes the order of gradi-
ents’ arrivals. As a consequence, E[7y ;] < E[T i41]
Moreover, coupling arguments lead to conclude that
E[Th+1,i] < E[Th;] and E[T;;] < E[Ti11,i+1]. These
two inequalities express the following intuitive facts: 1) if

an iteration starts with more workers available to compute,
the PS will collect ¢ gradients faster (on average),
2) constantly waiting a smaller number of gradients leads
to faster iterations. These inequalities allow us to couple
the estimations of E[7y ], for h,k = 1,...,n. Samples
for a given pair (h, k) can thus contribute not only to
the estimation of E[7}, ] but also of other pairs. This
is useful because the number of samples for different
(h, k) is proportional to the number of times k; has been
selected equal to h. There can be many samples for a
given pair and much less (even none) for another one.

Let T, .+ be the set of samples available up to iteration
t for (h, k), i.e., Tt = {thrr, V&' < t}. We propose
to estimate {E[7}],h,k = 1,...,n} by solving the
following optimization problem:

n
minimize —zn)? 16
Th,k h’k-zzl yegkyf(y h7k) ( )
subject to  xp < xppy1, fork=1,...,n-1
Thilk < Thk, forh=1,...,n—1
Tk < Thitht1, fork=1,...,n—-1
Let 7, ;. be the solution of problem (16). Then, m} =
T s Vh,k = 1,...,n and we have fk\t = T},

We observe that, without the constraints, the optimal
value z7, , at iteration t is the empirical average of the
corresponding set T}, 5, ;. Hence, Problem (16) is a natural
way to extend the empirical average estimators, while
accounting for the constraints. For our application, the
convex quadratic optimization problem (16) can be solved
in polynomial time through solvers like CVX [20].

In Fig. 2, we compare our estimator with the naive
empirical average. We observe that the naive method
1) cannot provide estimates for a given value h before
it selects k; = h, 2) leads often to estimates that are
in the wrong relative order. By enforcing the inequality



constraints, our estimator (16) is able to obtain more
precise estimates, in particular for the values k¥ = 3 and
k = 4 that are tested less frequently in this experiment.

C. Dynamic Choice of k;

DBW rationale is to select the parameter k; that
maximizes the expected decrease of the loss function
per time unit, i.e.:

—

k; = arg max %\t a7
1<k<n T4
In most of the existing implementations of distributed
gradient methods for ML (including PyTorch’s one),
each worker ¢ can send to the PS the local average loss
computed on its mini-batch. The PS can thus estimate
the current loss as

A Llxnl
t—EEE Zf(x,wt).

z€eB;

The PS usually exploits this information to evaluate
a stopping condition. DBW takes advantage of this
available information to avoid decreasing k; from one
iteration to the other, when the loss appears to be
increasing (and then we need more accurate gradient
estimates, rather than noisier ones). We modify (17) to

—

b — Gkt
, = max | arg max —-,

ki1 +1)-1g - |,
1<k<n Ty (es +1) Ft1>ﬁFt2>

Nki_1<n

18)
where § > 1 (we select 5 = 1.01 in our experiments)
and 1,4 denotes the indicator function (equal to 1 iff A
is true). If the loss has become [ times larger since the
previous iteration, then (18) forces k; > k;—1 + 1.

IV. EXPERIMENTS

We have implemented DBW in PyTorch [13] using the
MPI backend. The code is available [12]. The experiments
have been run on a CPU/GPU cluster, with different GPUs
available (e.g., Nvidia Tesla V100, GeForce GTX 1080 Ti
and Titan X). In order to have a fine control over the round
trip times, our code allows to generate computation and
communication times according to different distributions
(uniform, exponential, Pareto, etc.) or read from a trace
provided as input file. The system operates at the
maximum speed guaranteed by the underlying cluster,
but it maintains a virtual clock to keep track of when
events would have happened.

In what follows, we show that the optimal setting for
the number of backup workers varies, not only with the
round trip time distributions, but also with the hyper-
parameters of the optimization algorithm like the batch

size B. Moreover, the optimal setting depends as well
on the stage of the training process, and then changes
over time, even when the cluster is stationary (round trip
times do not change during the training period).

In all experiments DBW achieves nearly optimal
performance in terms of convergence time, and sometimes
it even outperforms the optimal static setting, that is
found through an exhaustive offline search over all values
k € {1,..,n}. We also compare DBW with a variant
where the gain Gy, is not estimated as in (15), but it
equals the number of aggregated gradients k, as proposed
in [14]. We call this variant blind DBW (B-DBW),
because it is oblivious to the current state of the training.
We find that this approach is too simplistic: ignoring the
current stage of the optimization problem leads to worse
performance than DBW.

We evaluated DBW, B-DBW, and the static settings
on different ML problems, including linear regression
on synthetic and CT [21] datasets, and classification on
MNIST [22], a dataset with 60000 images portraying
handwritten digits. Results are qualitatively similar. Due
to the page limit, we show only those for MNIST, for
which we trained a neural network with two convolutional
layers with 5x5 filters and two fully connected layers.
The loss function was the cross-entropy one.

The learning rate is probably the most critical hyper-
parameter in ML optimization problems. Ideally, it
should be set to that largest value that still guarantees
convergence. It is important to note that different static
settings for the number of backup workers require
different values for the learning rate. In fact, the smaller
is k, the noisier is the aggregate gradient g;, so that the
smaller should be the learning rate. The rule of thumb
proposed in the seminal paper [11] is to set the learning
rate proportional to k, i.e. (k) o k. This corresponds
to the standard recommendation to have the learning
rate proportional to the (aggregate) batch size [23], [24].
In static settings, aggregating k gradients is equivalent
to use a batch size equal to kB, so that the learning
rate should scale accordingly. An alternative approach
is to tune the learning rate independently for each static
value of k according to the empirical rule in [25], that
requires to run a number of experiments and determine
the inflection points of a specific curve. This rule leads
as well to learning rates increasing with k. We call the
two settings respectively the proportional and the knee
rule. The maximum learning rate for the proportional rule
is set equal to the value determined for k; = n by the
knee rule. The same value is also used as learning rate
for DBW and B-DBW, independently from the specific
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value they select for k;. In fact, DBW and B-DBW can
safely operate with a large learning rate because they
dynamically increase k; up to n, when they detect that
the loss is increasing.

Figure 3 shows, for a single run of the training process,
the evolution of the loss over time and the corresponding
choices of k; for the two dynamic algorithms. For static
settings, the learning rate follows the proportional rule
and the optimal static setting is £* = 10. We can see that
DBW achieves the fastest convergence across all other
tested configurations of k, by using a different value of
k in different stages of the training process. In fact, as
we have discussed after introducing (10), the effect of k
on the gain depends on the module of the gradient and
on the variability of the local gradients. In the bottom
subplot, the dotted line shows how their ratio varies
during the training process. Up to iteration 40, V(g; ;)
is negligible in comparison to |V F(w;)||?>. DBW then
selects small values for k; loosing a bit in terms of

the gain, but significantly speeding up the duration of
each iteration by only waiting for the fastest workers.
As the parameter vector approaches a local minimum,
||V F(w,)]||? approaches zero, and the gain becomes more
and more sensitive to k, so that DBW progressively
increases k; up to reach k; = n = 16 as shown by the
solid line. On the contrary B-DBW (the dashed line)
selects most of the time k; = 9 with some variability
due to the randomness of the estimates T}, ;.

A. Round trip time effect

In this subsection we consider round trip times (see
Sect. III-B) are i.i.d. according to a shifted exponential
random variable 1 — o + o x Exp(1), where 0 < a <
1. We consider later realistic time distributions. This
choice, common to [19], [26], allows us to easily tune
the variability of the round trip times by changing .
When o = 0, all gradients arrive at the same time at the
PS, so that the PS should always aggregate all of them.
As a changes from O to 1, the variance of the round trip
times increases, and waiting for k < n gradients becomes
advantageous.

Figure 4 compares the time needed to reach a training
loss smaller than 0.2 for the two dynamic algorithms and
the static settings k = 16, k = 12, and k£ = 8, that are
optimal respectively for o = 0, « = 0.2, o = 1. For each
of them, we carried out 20 independent runs with different
seeds. We find that our dynamic algorithm achieves the
fastest convergence in all the three scenarios, it is even
1.2x faster and 3x faster than the optimal static settings for
a = 0.2 and « = 1. There are two factors that determine
this observation. First, as discussed for Fig. 3, there is no
unique optimal value of k to be used across the whole
training process, and DBW manages to select the most
indicated value in different stages of the training process.
Second, DBW takes advantage of a larger learning rate.
Both factors play a role. For example if we focus on
Fig. 4(c), the learning rate for DBW is twice faster than
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static settings with values shown above for each k.

that for £ = 8, but DBW is on average 3x faster. Then,
adapting k achieves an additional 1.5x improvement. The
importance of capturing the dynamics of the optimization
process is again also evident by comparing DBW with
B-DBW. While B-DBW takes advantage of a higher
learning rate as well, it does not perform as well as our
solution DBW.

B. Batch size effect

The batch size B is another important hyper-parameter.
It is often limited by the memory available at each
worker, but can also be determined by generalization
performance of the final model [27]. In this subsection
we highlight how B also affects the optimal setting for
k. These findings confirm that configuring the number of
backup workers is indeed a difficult task, and knowing the
characteristics of the underlying cluster is not sufficient.

The experiments differ in two additional aspects from
those in Fig. 4. First, the distribution of the round trip
times is taken from a real ML experiment on a Spark
cluster (the distribution is similar to [19, Fig. 7]). Second,
learning rates are configured according to the knee rule.
We observe that the knee rule leads to a weaker variability
of the learning rate in comparison to the proportional
rule: for example, for B = 16, 1 increases by less than

a factor 5 when k changes from £ =1 to k = 16, and it
increases much less for larger B.

Figure 5 shows the results for B = 16,128,500,
comparing the dynamic methods with a few static settings,
including the optimal static one that decreases from
k* = 6 for B = 16 to k* = 1 for B = 500. Again,
Equation (10) helps to understand this change of the
optimal static setting with different batch size: as the
batch size increases, the variability of gradients decreases,
so that the numerator depends less on k. The advantage
of reducing T} ; by selecting a small k£ can compensate
the corresponding decrease of the gain Gy, ;.

Since learning rates chosen by the knee rule for the
static settings are now close to dynamic ones, DBW
does not outperform the optimal static setting, but its
performance are quite close, and significantly better than
B-DBW for B = 128,500. It is worthy to stress that,
when running a given ML problem on a specific cluster
environment, the user cannot predict the optimal static
setting k* without running preliminary short training
experiments for every k. DBW does not need them.

C. Robustness to slowdowns

Until now, we have considered a stationary setting
where the distribution of round trip times does not change
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during the training. Figure 6 shows an experiment in
which half of the workers experience a sudden slowdown
during the training process. Initially, round trip times are
all equal and deterministic, so that the optimal setting
is k; = n = 16. Suddenly, at time ¢ = 160s, half of the
workers in the clusters slow down by a factor 5 and the
optimal static configuration is now to select ky =n/2 =
8. We can see that DBW detects the slowdowns in the
system and then correctly selects k; = 8.

V. CONCLUSIONS

In this paper, we have shown that the number of
backup workers needs to be adapted at run-time and the
correct choice is inextricably bounded, not only to the
cluster’s configuration and workload, but also to the hyper-
parameters of the learning algorithm and the stage of the
training. We have proposed a simple algorithm DBW that,
without priori knowledge about the cluster or the problem,
achieves good performance across a variety of scenarios,
and even outperforms in some cases the optimal static
setting. As a future research direction, we want to extend
the scope of DBW to dynamic resource allocation, e.g. by
automatically releasing computing resources if k; < n
and the fastest k; gradients are always coming from the
same set of workers.

In general, we believe that distributed systems for
ML are in need of adaptive algorithms in the same
spirit of the utility-based congestion control schemes
developed in our community starting from the seminal
paper [28]. As our paper points out, it is important to
define new utility functions that take into account the
learning process. Adaptive algorithms are even more
needed in the federated learning scenario [29], where
ML training is no more relegated to the cloud, but it

occurs in the wild over the whole internet. Our paper
shows that even simple algorithms can provide significant
performance improvements.
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