Software tools for Complex Networks Analysis

Fabrice Huet, University of Nice Sophia-Antipolis
SCALE Team
MOTIVATION
Why do we need tools?

• Visualization
• Properties extraction
• Complex queries
Graphs are everywhere

- **RDF**

```
("test1", writtenBy, “Sophie”)
("test1", publishedIn, “Journal”)
("test2", publishedIn, “Journal”)
```

- **SPARQL**

```sparql
SELECT ?s WHERE {
  ?s writtenBy ?a.
  ?a hasName “Sophie”.
  ?s publishedIn “Journal”.
}
```

- Basically a sub-graph matching
Why are graphs different?

- Graphs can be large
 - Facebook: 720M users, 69B friends in 2011
 - Twitter: 537M accounts, 23.95B links in 2012
- Low memory cost per vertex
 - 1 ID, 1 pointer/edge
- Low computation per vertex
- Graphs are not memory friendly
 - Random jumps to memory
- They are not hardware friendly!
Lots of frameworks

• Really lots of them
 – Matlab, NetworkX, GraphChi, Hadoop, Twister, Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,…

• Why so many ?
 – Not one size fits all
 – Different computational models
 – Different architecture
Possible taxonomy

• Generic vs Specialized
 – Hadoop vs GraphChi (or Giraph, GraphX…)
• Shared vs Distributed Memory
 – GraphChi vs Pregel
• Synchronous vs Asynchronous
 – Giraph vs Maiter
• Single vs Multi threaded
 – NetworkX vs GraphiChi
NETWORKX
Overview

• A Python package for complex network analysis
• Simple API
• Very flexible
 - Can attach any data to vertices and edges
 - Supports visualization
• Graphs generators
• http://networkx.github.io/
Dependencies

• Supports Python 2.7 (preferred) or 3.0
• If drawing support required
 – Numpy (http://www.numpy.org/)
 – Mathplotlib (http://matplotlib.org/)
 – Graphivz (http://graphviz.org/)
Examples

• Creating an empty graph

```python
>>> import networkx as nx
>>> G=nx.Graph()
```

• Adding nodes

```python
>>> G.add_node(1)
>>> G.add_nodes_from([2,3])
```

• Adding edges

```python
>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])
```
Examples (2)

- **Graph generators**

  ```python
  >>> K_5 = nx.complete_graph(5)
  >>> K_3_5 = nx.complete_bipartite_graph(3, 5)
  ```

- **Stochastic graph generators**

  ```python
  >>> er = nx.erdos_renyi_graph(100, 0.15)
  >>> ws = nx.watts_strogatz_graph(30, 3, 0.1)
  >>> ba = nx.barabasi_albert_graph(100, 5)
  >>> red = nx.random_lobster(100, 0.9, 0.9)
  ```

- **Reading from files**

  ```python
  >>> mygraph = nx.read_gml("path.to.file")
  ```
Examples (3)

- **Graph analysis**

  ```python
  >>> nx.connected_components(G)
  >>> nx.degree(G)
  >>> pr=nx.pagerank(G,alpha=0.9)
  ```

- **Graph drawing**

  ```python
  >>> import matplotlib.pyplot as plt
  >>> nx.draw(G)
  >>> plt.show()
  ```
NetworkX - Conclusion

• Easy to use
 - Very good for prototyping/testing
• Centralized
 - Limited scalability
• Efficiency
 - Memory overhead
Overview

• Single machine
 – Distributed systems are complicated!
• Disk-based system
 – Memory is cheap but limited
• Supports both static and dynamic graph
• Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos, *GraphChi: Large-scale Graph Computation on Just a PC*, Proceedings of OSDI’12
Computational Model

- **Vertex centric**
 - Vertices and Edges have associated values
 - Update a vertex values using edges values
- **Typical update**
 - Read values from edges
 - Compute new value
 - Update edges
- **Asynchronous model**
 - Always get the most recent value for edges
 - Schedule multiple updates
Storing graphs on disk

- Compressed Sparse Row (CSR)
 - Equivalent to adjacency sets
 - Store out-edges of vertex consecutively on Disk
 - Maintain index to adjacency sets for each vertex
- Very efficient for out-edges, not so for in-edges
 - Use Compressed Sparse Column (CSC)
- Changing edges values
 - On modification of out-edge: write to CSC
 - On reading of in-edge: read from CSR
 - Random read or random write 😞
Parallel Sliding Windows

- Minimize non sequential disk access
- 3 stages algorithm
- Storing graph on disk
 - Vertices V are split into P disjoint intervals
 - Store all edges that have destination in an interval in a Shard
 - Edges are stored by source order

From Kyrola and al.
Parallel Sliding Windows (2)

• Loading subgraph of vertices in interval p
 - Load Shard(p) in memory
 ● Get in-edges immediately
 - Out-edges are stored in the P-1 other shards
 ● But ordered by sources, so easy to find

• Loading subgraph $p+1$
 - Slide a window over all shards

• Each interval requires P sequential reads
Parallel updates

- Once interval loaded, update in parallel
- Data races
 - Only a problem if considering edge with both endpoints in interval
 - Enforce sequential update
- Write back result to disk
 - Current shard totally rewritten
 - Sliding window of other shards rewritten
Example

<table>
<thead>
<tr>
<th>Shard 1</th>
<th>Shard 2</th>
<th>Shard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>src</td>
<td>dst</td>
<td>value</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>src</td>
<td>dst</td>
<td>value</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Graph:

```
1 -> 2
1 -> 3
2 -> 3
2 -> 4
3 -> 5
4 -> 5
5 -> 6
6 -> 3
6 -> 4
```
Example
Performance

- Mac Mini 2.5GHz, 8GB and 256GB SSD
- Shard creation

<table>
<thead>
<tr>
<th>Graph name</th>
<th>Vertices</th>
<th>Edges</th>
<th>P</th>
<th>Preproc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal [3]</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix [6]</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>domain [44]</td>
<td>26M</td>
<td>0.37B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>twitter-2010 [26]</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>10 min</td>
</tr>
<tr>
<td>uk-union [11]</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web [44]</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
Performance (2)

<table>
<thead>
<tr>
<th>Application & Graph</th>
<th>Iter.</th>
<th>Comparative result</th>
<th>GraphChi (Mac Mini)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagerank & domain</td>
<td>3</td>
<td>GraphLab [30] on AMD server (8 CPUs) 87 s</td>
<td>132 s</td>
<td>-</td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>5</td>
<td>Spark [45] with 50 nodes (100 CPUs): 486.6 s</td>
<td>790 s</td>
<td>[38]</td>
</tr>
<tr>
<td>Pagerank & V=105M, E=3.7B</td>
<td>100</td>
<td>Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min</td>
<td>approx. 581 min</td>
<td>[37]</td>
</tr>
<tr>
<td>Pagerank & V=1.0B, E=18.5B</td>
<td>1</td>
<td>Piccolo, 100 EC2 instances (200 cores) 70 s</td>
<td>approx. 26 min</td>
<td>[36]</td>
</tr>
<tr>
<td>Webgraph-BP & yahoo-web</td>
<td>1</td>
<td>Pegasus (Hadoop) on 100 machines: 22 min</td>
<td>27 min</td>
<td>[22]</td>
</tr>
<tr>
<td>ALS & netflix-mm, D=20</td>
<td>10</td>
<td>GraphLab on AMD server: 4.7 min</td>
<td>9.8 min (in-mem)</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 min (edge-repl.)</td>
<td></td>
</tr>
<tr>
<td>Triangle-count & twitter-2010</td>
<td>-</td>
<td>Hadoop, 1636 nodes: 423 min</td>
<td>60 min</td>
<td>[39]</td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>1</td>
<td>PowerGraph, 64 x 8 cores: 3.6 s</td>
<td>158 s</td>
<td>[20]</td>
</tr>
<tr>
<td>Triangle-count & twitter-2010</td>
<td>-</td>
<td>PowerGraph, 64 x 8 cores: 1.5 min</td>
<td>60 min</td>
<td>[20]</td>
</tr>
</tbody>
</table>
GOOGLE PREGEL
Overview

- Directed graphs
- Distributed Framework Based on the *Bulk Synchronous Parallel* model
- *Vertex Centric* computation model
- Private framework with C++ API
- Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. **Pregel: a system for large-scale graph processing.** In *Proceedings of the 2010 ACM SIGMOD International Conference on Management of data* (SIGMOD '10)
Model of Computation (1)

- BSP: model for parallel programming
 - Takes into account communication/synchronization
 - Series of super-steps (iterations)
 - Performs local computations
 - Communicate with others
 - Barrier

From: http://www.multicorebsp.com/
Model of Computation (2)

- Vertex Centric
 - Each vertex execute a function in parallel
- Can read messages sent at previous super-step
- Can send messages to be read at next super-step
 - Not necessarily following edges
- Can modify state of outgoing edges
- Run until all vertices agree to stop and no message in transit

From Malewicz and al.
Maximum Value Example

From Malewicz and al.
Implementation and Execution (1)

• User provides a graph, some input (vertex and edges values) and a program
• The program is executed on all nodes of a cluster
 - One node become the master, other are workers
• The graph is divided into partitions by the master
 - Vertex Id used to compute partition index (e.g. $hash(Id) \mod N$)
• Partitions are assigned to workers
• User input file is partitioned (no fancy hash) and sent to workers
 - If some input is not for the worker, it will pass it along
Implementation and Execution (2)

• The master request worker to perform superstep
 – At the end, each worker reports the number of active vertices for next superstep
• Aggregators can be used at end of super-step to reduce communications
 – Perform reduction on values before sending
• If no more active vertices, Master can halt computation
• What about failures?
 – Easy to checkpoint workers at end of superstep
 – If failure, rollback to previous checkpoint
 – If master fails… too bad 😞
PageRank in Pregel

\[PR(p_i) = \frac{1 - d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)} \]

```cpp
class PageRankVertex
    : public Vertex<double, void, double> {
public:
    public:
    virtual void Compute(MessageIterator* msgs) {
        if (superstep() >= 1) {
            double sum = 0;
            for (; !msgs->Done(); msgs->Next())
                sum += msgs->Value();
            *MutableValue() =
                0.15 / NumVertices() + 0.85 * sum;
        }

        if (superstep() < 30) {
            const int64 n = GetOutEdgeIterator().size();
            SendMessageToAllNeighbors(GetValue() / n);
        } else {
            VoteToHalt();
        }
    }
};
```

From Malewicz and al.
Performance

Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

From Malewicz and al.
Performance

Figure 9: SSSP—log-normal random graphs, mean out-degree 127.1 (thus over 127 billion edges in the largest case): varying graph sizes on 800 worker tasks scheduled on 300 multicore machines.

From Malewicz and al.
Map Reduce operations

- Input data are (key, value) pairs
- 2 operations available: map and reduce
 - Map
 - Takes a (key, value) and generates other (key, value)
 - Reduce
 - Takes a key and all associated values
 - Generates (key, value) pairs
- A map-reduce algorithm requires a mapper and a reducer
- Re-popularized by Google
 - MapReduce: Simplified Data Processing on Large Clusters
 Jeffrey Dean and Sanjay Ghemawat, OSDI’04
Map Reduce example

- Compute the average grade of students
 - For each course, the professor provides us with a text file
 - Text file format: lines of “student grade”
- Algorithm (non map-reduce)
 - For each student, collect all grades and perform the average
- Algorithm (map-reduce)
 - Mapper
 - Assume the input file is parsed as (student, grade) pairs
 - So ... do nothing!
 - Reducer
 - Perform the average of all values for a given key
Map Reduce example

Course 1
- Bob 20
- Brian 10
- Paul 15

Course 2
- Bob 15
- Brian 20
- Paul 10

Course 3
- Bob 10
- Brian 15
- Paul 20

Map

Reduce

- (Bob, [20, 15, 10])
- (Brian, [10, 15, 20])
- (Paul, [15, 20, 10])

- (Bob, 20)
- (Brian, 10)
- (Paul, 15)
- (Bob, 15)
- (Brian, 20)
- (Paul, 10)
- (Bob, 10)
- (Brian, 15)
- (Paul, 20)

- (Bob, 15)
- (Brian 15)
- (Paul, 15)
Ok, this was easy because
- We didn’t care about technical details like reading inputs
- All keys are “equals”, no weighted average

Now can we do something more complicated?

Let’s computed a weighted average
- Course 1 has weight 5
- Course 2 has weight 2
- Course 3 has weight 3

What is the problem now?
Map Reduce example

Course 1
Bob 20
Brian 10
Paul 15

Course 2
Bob 15
Brian 20
Paul 10

Course 3
Bob 10
Brian 15
Paul 20

Map

Reduce

(Bob, [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

Should be able to discriminate between values
Map Reduce example - advanced

• How discriminate between values for a given key
 • We can’t … unless the values look different
• New reducer
 • Input : (Name, [course1_Grade1, course2_Grade2, course3_Grade3])
 • Strip values from course indication and perform weighted average
• So, we need to change the input of the reducer which comes from… the mapper
• New mapper
 • Input : (Name, Grade)
 • Output : (Name, courseName_Grade)
 • The mapper needs to be aware of the input file
Map Reduce example - 2

Course 1
Bob 20
Brian 10
Paul 15

Course 2
Bob 15
Brian 20
Paul 10

Course 3
Bob 10
Brian 15
Paul 20

Map

Reduce

(Bob, [C1_20, C2_15, C3_10])
(Brian, [C1_10, C2_15, C3_20])
(Paul, [C1_15, C2_20, C3_10])

(Bob, C1_20)
(Brian, C1_10)
(Paul, C1_15)
(Bob, C2_15)
(Brian, C2_20)
(Paul, C2_10)
(Bob, C3_10)
(Brian, C3_15)
(Paul, C3_20)

(Bob, 16)
(Brian, 14)
(Paul, 14.5)
What is Hadoop?

- A set of software developed by Apache for distributed computing
- Many different projects
 - MapReduce
 - HDFS: Hadoop Distributed File System
 - Hbase: Distributed Database
 - ...
- Written in Java
 - Bindings for your favorite languages available
- Can be deployed on any cluster easily
Hadoop Job

• An Hadoop job is composed of a map operation and (possibly) a reduce operation
• Map and reduce operations are implemented in a Mapper subclass and a Reducer subclass
• Hadoop will start many instances of Mapper and Reducer
 • Decided at runtime but can be specified
• Each instance will work on a subset of the keys called a Splits
Hadoop workflow

Source: Hadoop the definitive guide
Graphs and MapReduce

• How to write a graph algorithm in MapReduce?
• Graph representation?
 - Use adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• Line based representation
 - V_1: 0, 0, 1
 - V_2: 1, 0, 1
 - V_3: 1, 1, 0
• Size |V|^2 with tons of 0 …
Sparse matrix representation

• Only encode useful values, i.e. non 0
 - $V_1: (V_3, 1)$
 - $V_2: (V_1, 1), (V_3, 1)$
 - $V_3: (V_1, 1), (V_2, 1)$

• And if equal weights
 - $V_1: V_3$
 - $V_2: V_1, V_3$
 - $V_3: V_1, V_2$
Single Source Shortest Path

• Find the shortest path from one source node S to others
• Assume edges have weight 1
• General idea is BFS
 - $\text{Distance}(S) = 0$
 - For all nodes N reachable from S
 ● $\text{Distance}(N) = 1$
 - For all nodes N reachable from other set of nodes M
 ● $\text{Distance}(N) = 1 + \min(\text{Distance}(M))$
 - And start next iteration
MapReduce SSSP

- **Data**
 - Key : node N
 - Value : (d, adjacency list of N)
 - d distance from S so far

- **Map** :
 - \(\forall m \in \text{adjacency list} : \text{emit} \ (m, d + 1) \)

- **Reduce** :
 - Keep minimum distance for each node

- This basically advances the frontier by one hop
 - Need more iterations
MapReduce SSSP (2)

- How to maintain graph structure between iterations
 - Output adjacency list in mapper
 - Have special treatment in reducer

- Termination?
 - Eventually 😊
 - Stops when no new distance is found… (any idea how?)
Seriously?

- MapReduce + Graphs is easy

- But everyone is MapReducing the world!
 - Because they are forced to
 - And because of Hadoop

- Hadoop gives
 - A scalable infrastructure (computation and storage)
 - Fault tolerance

- So let’s use Hadoop as an underlying infrastructure
Giraph

- Built on top of Hadoop
- Vertex centric and BSP model 😊
 - Giraph jobs run as MapReduce

Source: https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
Separate Systems to Support Each View

Table View

Graph View

Table
Row
Row
Row
Row

Result

Dependency Graph

hadoop
Spark
Pregel
GraphLab
APACHE GIRAPH
Solution: The GraphX Unified Approach

New API
Blurs the distinction between Tables and Graphs

New System
Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
Abstractions

- Graphs are represented by 2 collections
 - Vertex collection (IDs, Properties)
 - Edges collection (sIDs, dIDs, Properties)
- Most graphs operations can be expressed as analyzing or joining collections
 - Join stage (build a triple view)
 - Group-by-stage (reduce-like)
 - Map operations
class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])

 // Table Views -------------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table [((Id, V), (Id, V), E)]

 // Transformations -----------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,
 pE: Edge[V,E] => Boolean): Graph[V,E]
 def mapV(m: (Id, V) => T): Graph[T,E]
 def mapE(m: Edge[V,E] => T): Graph[V,T]

 // Joins --
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]

 // Computation ----------------------------------
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]
}
Triplets Join Vertices and Edges

- The *triplets* operator joins vertices and edges:

```
SELECT t.dstId, reduceUDF( mapUDF(t) ) AS sum
FROM triplets AS t GROUPBY t.dstId
```
Map Reduce Triplets

• Map-Reduce for each vertex

\[
\text{mapF}(A \rightarrow B) \Rightarrow A_1 \\
\text{mapF}(A \rightarrow C) \Rightarrow A_2 \\
\text{reduceF}(A_1, A_2) \Rightarrow A
\]
Example: oldest follower

\[
\text{mapF}(A) = 1
\]

<table>
<thead>
<tr>
<th>Vertex Id</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

```
val graph: Graph[User, Double]
def mapUDF(t: Triplet[User, Double]) =
  if (t.src.age > t.dst.age) 1 else 0
def reduceUDF(a: Int, b: Int): Int = a + b
val seniors: Collection[(Id, Int)] =
  graph.mrTriplets(mapUDF, reduceUDF)
```
Distributed Graphs as Tables (RDDs)

Property Graph

2D Vertex Cut Heuristic

Part. 1

Part. 2

Vertex Table (RDD)

Routing Table (RDD)

Edge Table (RDD)

Routing Table (RDD)
A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab
Conclusion

• So many frameworks to choose from…
• Criteria
 – What is the size of your graph?
 – What algorithms do you want to run?
 – How fast do you want your results?
• Distributed frameworks are no silver bullet
 – Steeper learning curve
 – Add new problems (data distribution, faults…)
Resources

• Slides
 - http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
 - http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgorithms.pptx
 - https://AMPLab.cs.berkeley.edu/wp-content/uploads/2014/02/graphx@strata2014_final.pptx