

How to Network in Online Social Network

<u>Giovanni Neglia</u>, Xiuhui Ye (Politecnico di Torino), Maksym Gabielkov, Arnaud Legout (Inria)

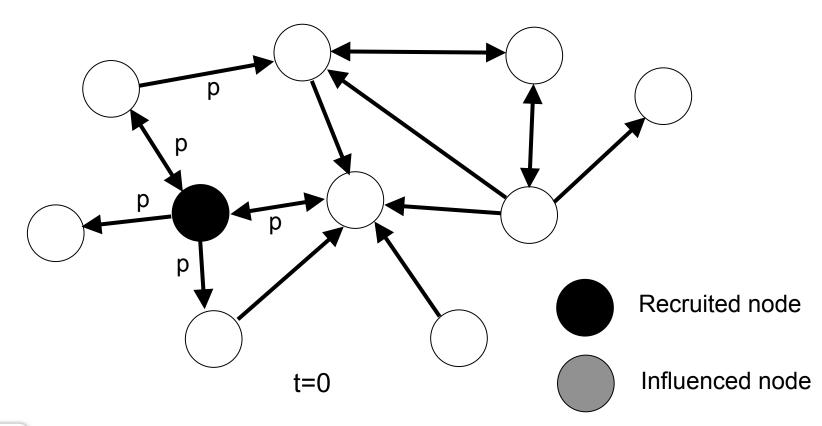
Outline

 Influence maximization problem (Kempe, Kleinberg and Tardös in 2003)

2. How the problem changes for a user in an online social network

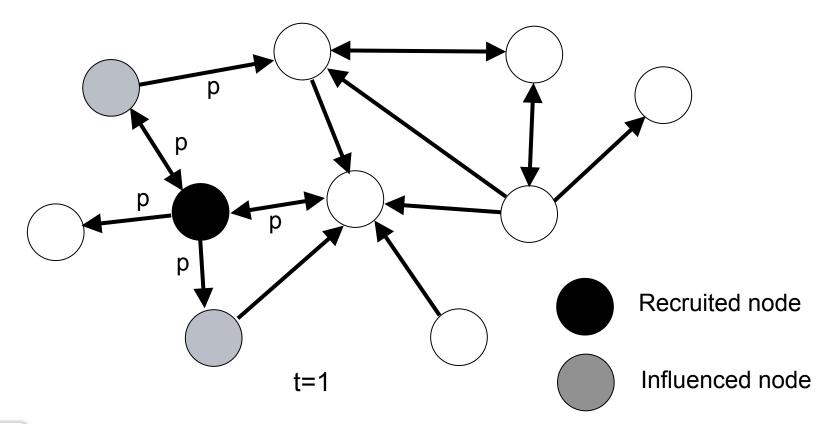
3. Simulation results on Twitter's complete graph (2012)

Influence propagation



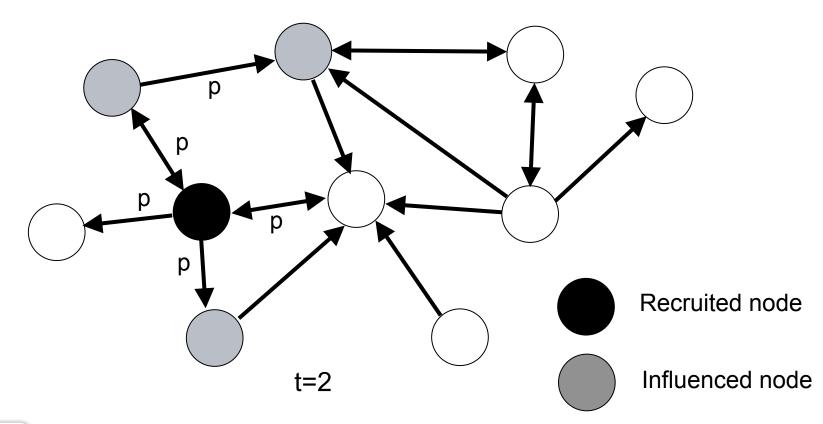
G. Neglia – How to Network in Online Social Networks

Influence propagation



G. Neglia – How to Network in Online Social Networks

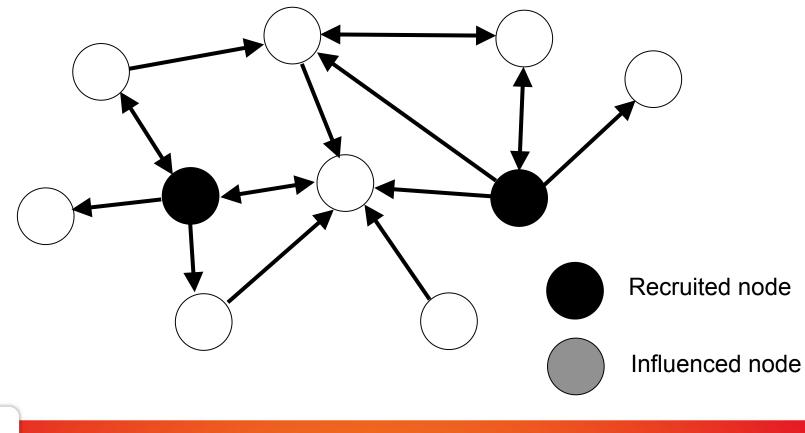
Influence propagation



G. Neglia - How to Network in Online Social Networks

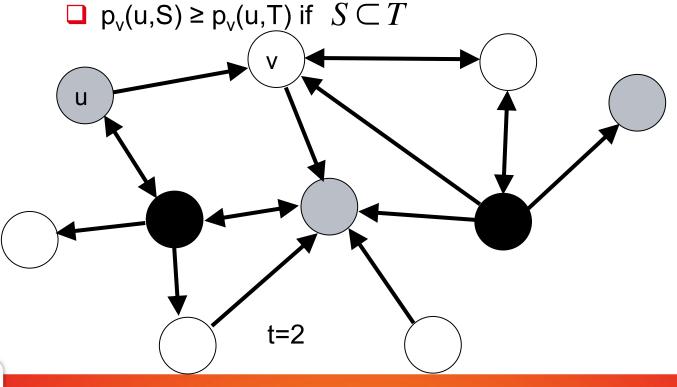
Influence maximization

Recruit a set A of K nodes to maximize the expected number of influenced nodes ($\sigma(A)=E[|\phi(A)|]$)



Ínnía

- 1. Decreasing cascade model:
 - p_v(u,S) = prob. that u can influence v, given that nodes in S have already tried to influence v

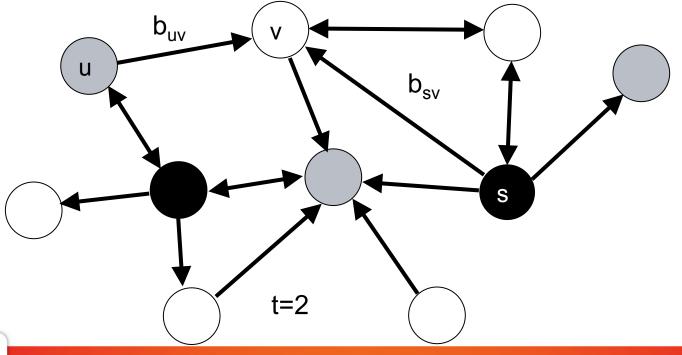


Ínnía

2. Linear Threshold Model

Node v has a threshold θ_v sampled from a uniform random variable in [0,1] and link (i,j) has a weight b_{ii}

D Node v is influenced if Σ b_{iv} **1**(i is influenced) > θ_v



Ínnía

- 2. General Threshold Model
 - Node v has a threshold θ_v sampled from a uniform random variable in [0,1]
 - Node v has a monotone activation function f_v:2^V->[0,1] and is influenced at t if f_v(S) > θ_v, where S is the set of influenced nodes at t

Their results:

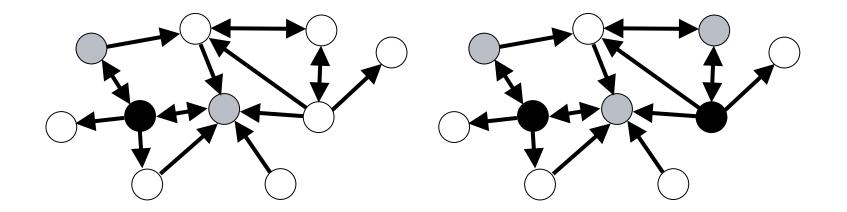
- I. Decreasing cascade model & General threshold model are equivalent
 - □ For each { $p_v(u,S)$ }, it is possible to find { $f_v(S)$ } such that the probability distribution of $\phi(A)$ is the same

Their results:

- I. Decreasing cascade model & General threshold model are equivalent
 - □ For each { $p_v(u,S)$ }, it is possible to find { $f_v(S)$ } such that the probability distribution of $\phi(A)$ is the same
- II. The greedy algorithm achieves a (1-1/e) approximation ratio
 - This follows from a general result proven by Nemhauser, Wolsey, Fisher in '78 for non-negative, monotone, submodular functions

Monotonicity of $\sigma(A)$

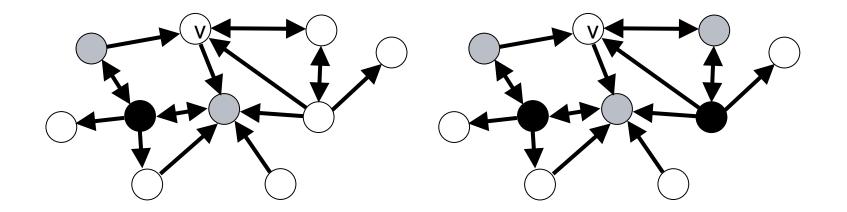
 $\Box \sigma(A_1) \leq \sigma(A_2) \quad \text{if} \qquad A_1 \subset A_2$



Ínría

Submodularity of $\sigma(A)$

 $\Box \sigma(A_1 \cup \{v\}) - \sigma(A_1) \ge \sigma(A_2 \cup \{v\}) - \sigma(A_2) \text{ if } A_1 \subset A_2$

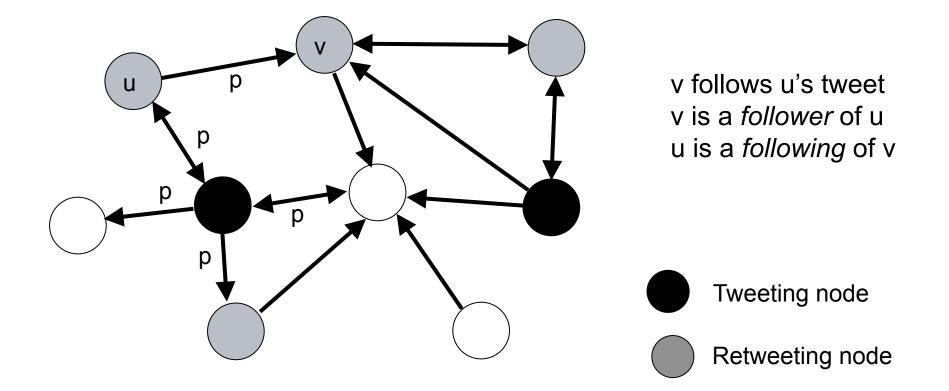


Ínría

The greedy algorithm

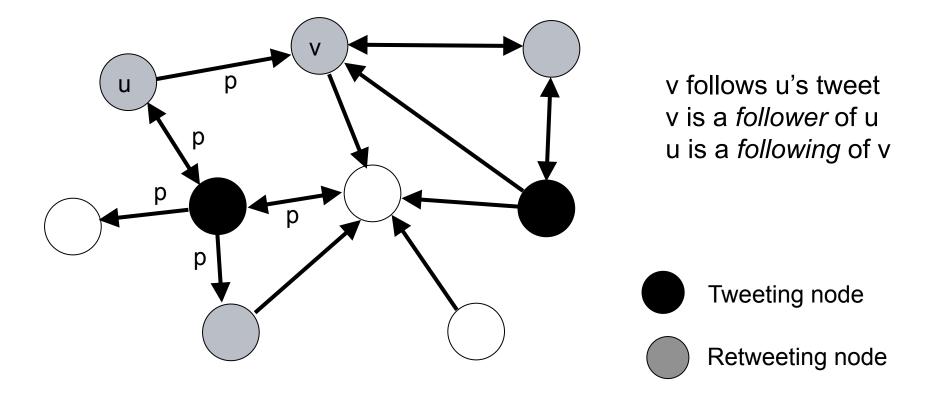
- 1: start with A={}
- 2: for i =1 to K
- 3: let v_i be the node maximizing the marginal gain $\sigma(A \cup \{v\}) \sigma(A)$
- 4: set A:=A U $\{v_i\}$

Question: how to calculate $\sigma(A \cup \{v\}) - \sigma(A)$?

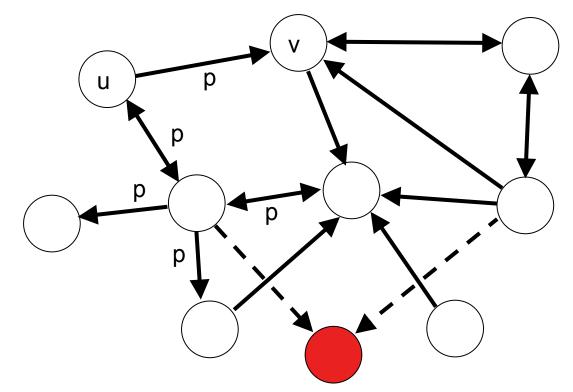


Innía

G. Neglia - How to Network in Online Social Networks

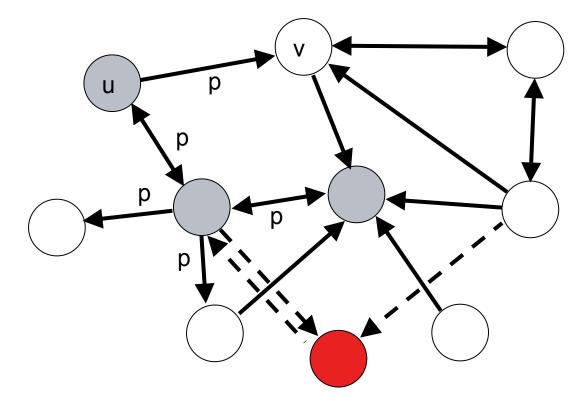


Assumption: a user can only influence people through Twitter itself



v follows u's tweet v is a *follower* of u u is a *following* of v

The user can only select its followings (up to K=2000)...



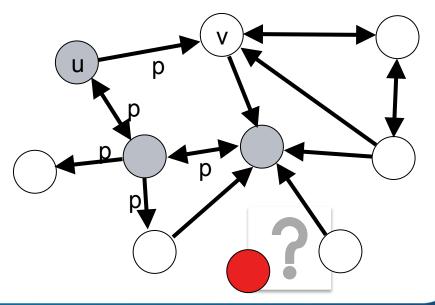
v follows u's tweet v is a *follower* of u u is a *following* of v

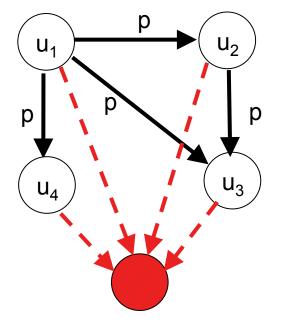
The user can only select its followings (up to K=2000)... And hope that they follow back

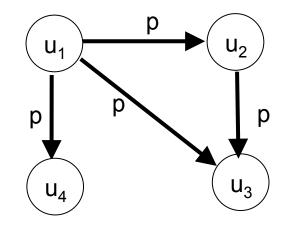
Our problem

Let the reciprocation probability r_v be known

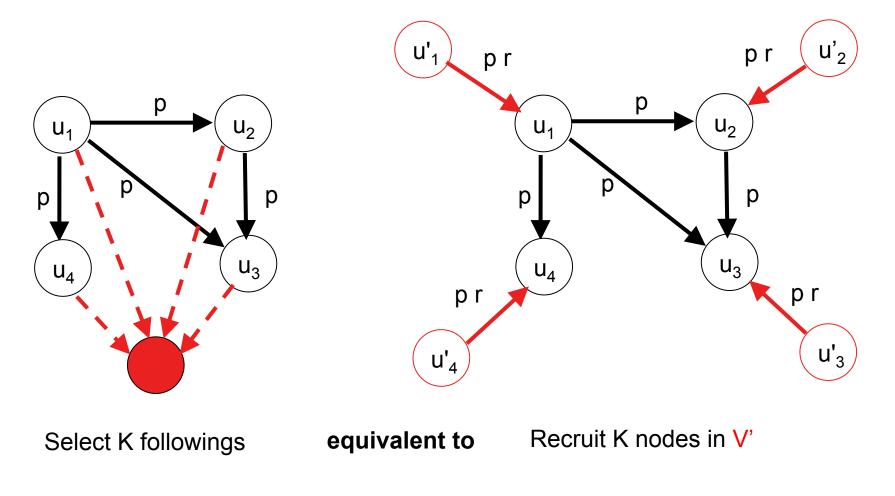
How should the user select the set of followings A in order to maximize $\sigma(A) = E[|\phi(A)|]$? (all the choices at t=0)



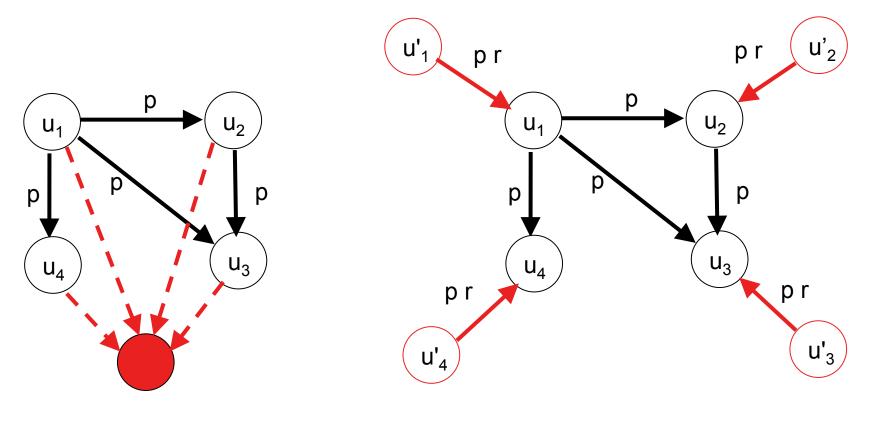




Select K followers



G. Neglia – How to Network in Online Social Networks



Select K followers

equivalent to Recruit

Recruit K nodes in V'

Greedy algorithm has the same approximation ratio

G. Neglia – How to Network in Online Social Networks

A 2nd twist: dynamic policies

Following users is not expensive
 Idea: replace non-reciprocating users
 How to operate:

 follow one user

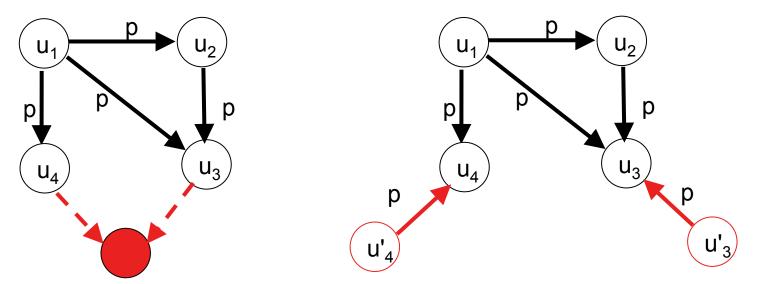
• if the user does not reciprocate by T

unfollow it and follow someone else

It is now possible to follow over time more than K users, but only K at a given time instant

An ideal policy

Imagine to know who is going to reciprocate by T



The greedy algorithm with such knowledge would achieve an (1-1/e) approximation ratio

A practical greedy policy

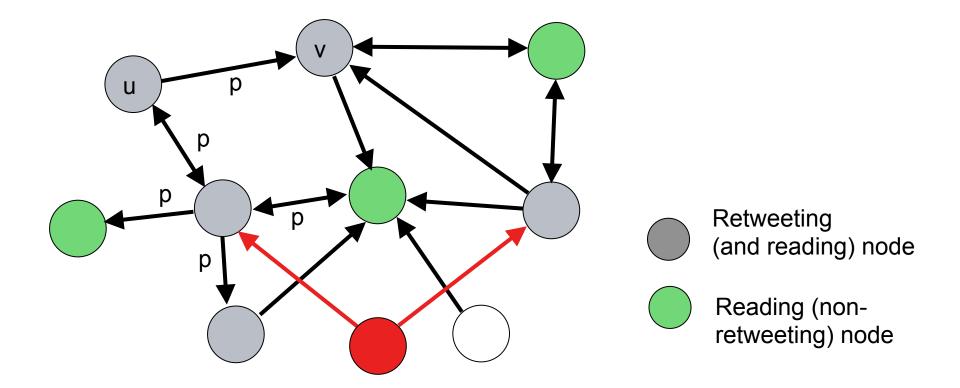
- 1: start with A={}, D={} i=0
- 2: while $i \leq K$
- 3: let v_i be the node in V-D maximizing the marginal gain $\sigma(A \cup \{v\}) \sigma(A)$, given that it reciprocates
- 5: follow v_i
- 6: if v_i reciprocates by T:
- 7: A:=A U {v_i}, i=i+1
- 5: else:
- 6: D:=D U {v_i}

A practical greedy policy

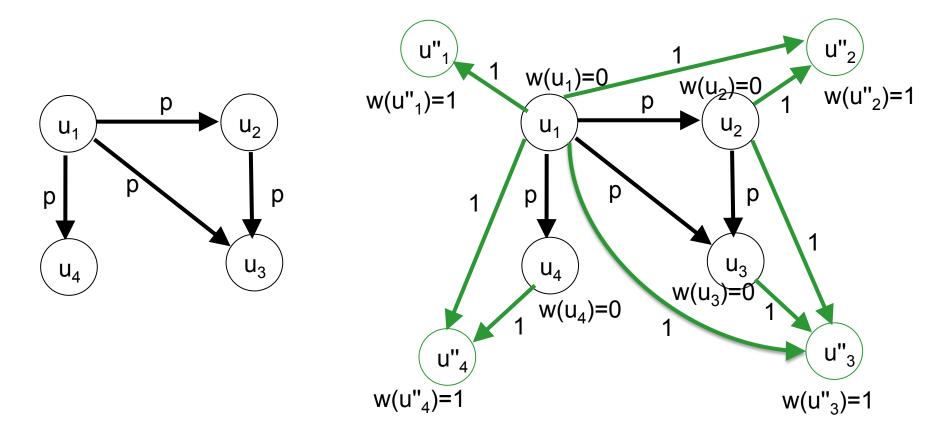
- 1: start with A={}, D={} i=0
- 2: while $i \leq K$
- 3: let v_i be the node in V-D maximizing the marginal gain $\sigma(A \cup \{v\}) \sigma(A)$, given that it reciprocates
- 5: follow v_i
- 6: if v_i reciprocates by T:
- 7: A:=A U {v_i}, i=i+1
- 5: else:
- 6: D:=D U {v_i}

practical greedy = ideal greedy

#Readers vs #Retwitters (3rd twist)



What if we consider as performance metric #readers?



Select K nodes to maximize $E[\Sigma w(u_i) \mathbf{1}(u_i \text{ is active})]$

An ideal policy

Is E[Σ w(u_i) **1**(u_i is active)] submodular?

- Yes it is (need to go carefully through the steps of Kempe et al)
- then greedy is a (1-1/e) approximation algorithm

Wrap up

- The point of view of a user in an OSN introduces new twists, but does not change fundamentally the problem
 - In particular the greedy algorithm guarantees a (1-1/e) approximation ratio

Wrap up

- The point of view of a user in an OSN introduces new twists, but does not change fundamentally the problem
 - In particular the greedy algorithm guarantees a (1-1/e) approximation ratio
- Limits:
 - need to know the whole topology, $p_v(u,S)$, r_v
 - How to calculate the marginal gain? Montecarlo simulations...

Outline

- **1.** Influence maximization problem (Kempe, Kleinberg and Tardös in 2003)
- **2.** How the problem changes for a user in an online social network
- 3. Simulation results on Twitter's complete graph (2012)

Know your enemy

Crawl of the whole Twitter in June 2012

- 500 million of nodes
- 23 billion of arcs
- 417GB as an edgelist

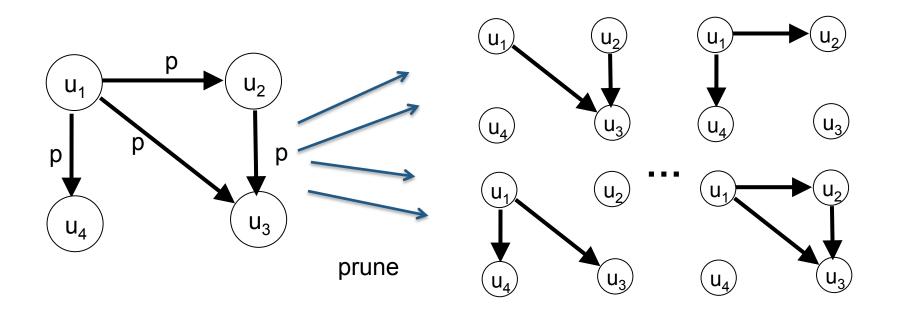
nnín

Montecarlo simulations

Naive implementation

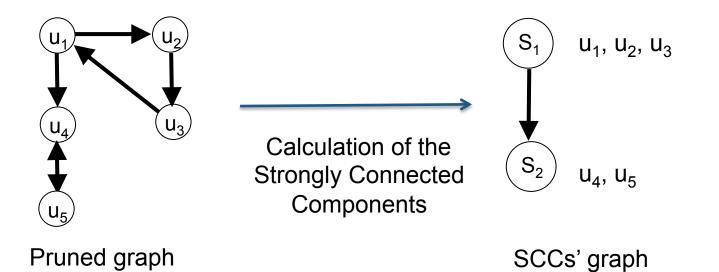
- O(NKS) simulations,
 - where S is #simulations to achieve the required confidence
- ≈100GB to store the graph in RAM

Trade RAM for Storage



- Influenced node of a cascade = reachable nodes in the pruned graph
- Need to store S * p * 417GB
- RAM still a problem for p≥1%

Useful preprocessing



- Reachability can also be calculated on the SCCs' graph
- For larger p we save memory, storage and computation

How many samples?

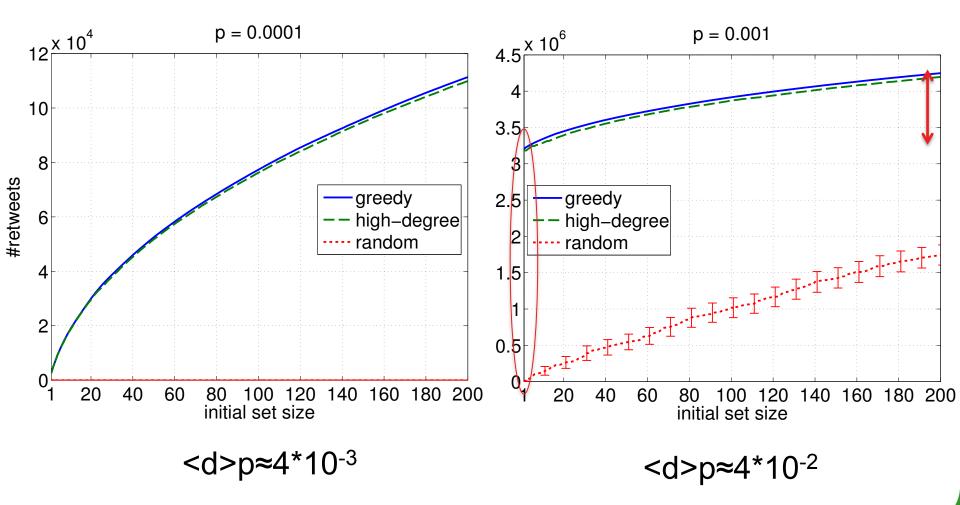
We tried to estimate it analytically

- Random configuration model
- Subcritical branching process for small p
- All-or-nothing supercritical branching process for large p
- S≤100 for all the values of p

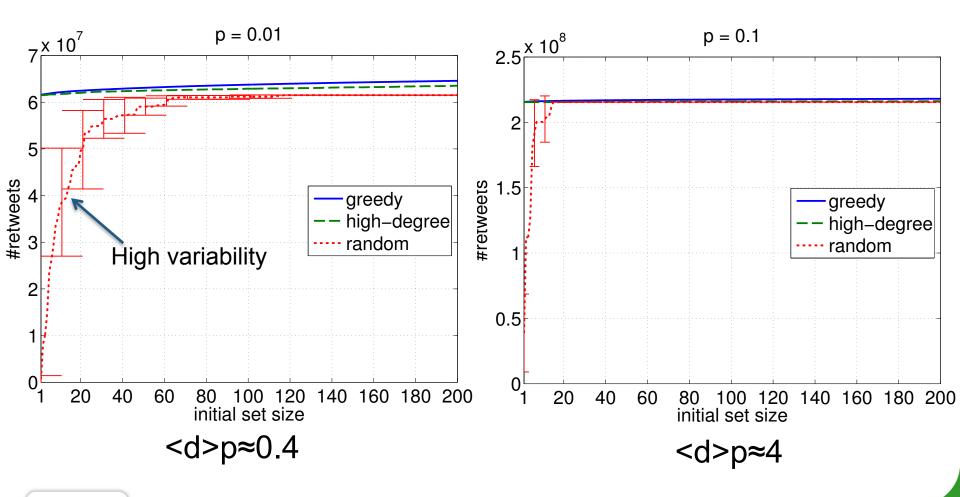
Different algorithms

- 1. Greedy
 - Know topology, probabilities
- 2. Highest degree
 - Know nodes' degrees
- 3. Random
 - Know nodes' ids

nnía



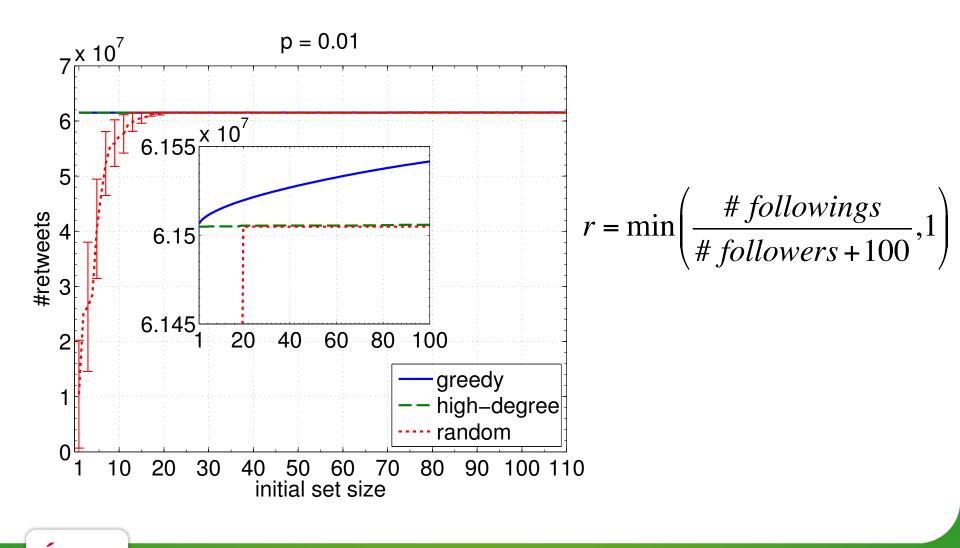
Ínría



G. Neglia – How to Network in Online Social Networks

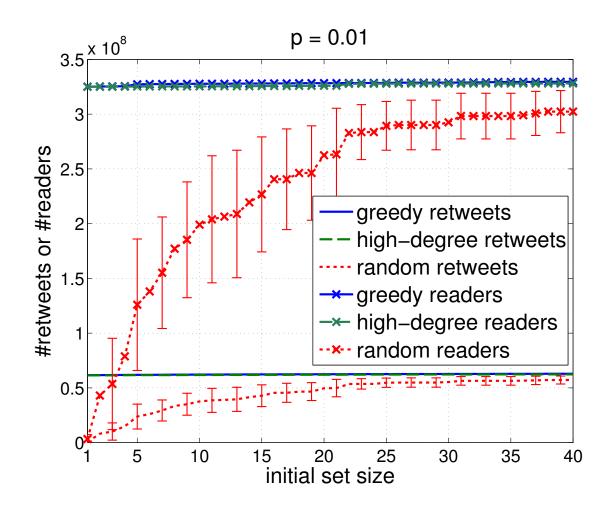
Ínría

The effect of reciprocity



G. Neglia – How to Network in Online Social Networks

#Readers vs #Retwitters



Take Home Lesson

- For sparse graphs, highest degree (1-hop ahead) works as well as greedy
- For dense graphs, any strategy, even random, works as well as greedy
- Only in the middle, greedy can outperform highest degree...
 - Remarks in Habiba and Berger-Wolf, 2011
- ... but we do not observe it

Thank you!

Questions?

