PhD course on Network Science

Module 2: Albert-Barabasi's model For power law networks

Power Law

- □ Where does it come from?
 - Albert-Barabasi's growth model
 - Highly Optimized Model
 - And other models
 - See Michael Mitzenmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions

☐ Two elements

- Growth
 - m_0 initial nodes, every time unit we add a new node with m links to existing nodes
- Preferential attachment
 - The new node links to a node with degree k_i with probability

$$\Pi(k_i) = \frac{k_i}{\sum_{j=1,N} k_j}$$
 The rich becomes richer

- Node i arrives at time t_i, its degree keeps increasing
- □ With a continuum approximation:

$$\frac{\partial k_i}{\partial t} = \frac{mk_i}{\sum_{j=1,N}} = \frac{mk_i}{2tm} = \frac{k_i}{2t} \rightarrow k_i(t) = m\left(\frac{t}{t_i}\right)^{\beta}, \beta = \frac{1}{2}$$

□ Then degree distribution at time t is:

$$P(k_i(t) < k) = P(t_i > t \frac{m^{1/\beta}}{k^{1/\beta}})$$

☐ At time t there are m₀+t nodes, if we consider that the t nodes are added uniformly at random in [0,t], then

$$P(t_i > x) = \frac{t - x}{t + m_0}$$

$$P(k_i(t) < k) = \frac{t}{t + m_0} \left(1 - \frac{m^{1/\beta}}{k^{1/\beta}} \right)$$

□ The PDF is

$$P(k_i(t) = k) = \frac{\partial P(k_i(t) \le k)}{\partial k} = \frac{t}{t + m_0} \frac{1}{\beta} \frac{m^{1/\beta}}{k^{1/\beta + 1}}$$

☐ For t->∞

$$P(k_i(t) = k) \xrightarrow[t \to \infty]{} \frac{1}{\beta} \frac{m^{1/\beta}}{k^{1/\beta + 1}} \propto k^{-\gamma}, \ \gamma = 3$$

Other variants:

• With fitness
$$\Pi(k) = \frac{\eta_i k_i}{\sum_{j=1,N} \eta_j k_j}$$

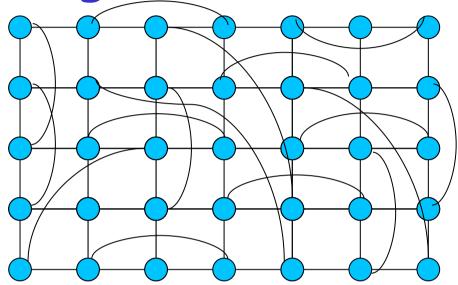
- With rewiring (a prob. p to rewire an existing connection)
- O Uniform attaching with "aging": A vertex is deactivated with a prob. proportional to $(k_i+a)^{-1}$

PhD course on Network Science

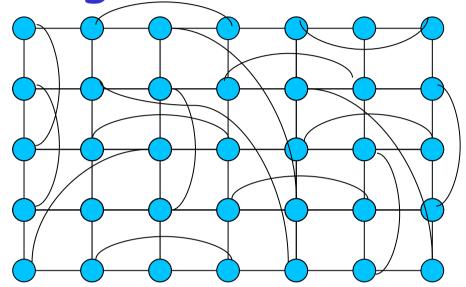
Module 3: Navigation

Navigation

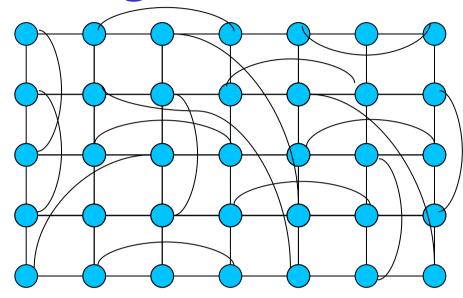
- □ In Small world nets there are short paths O((log(N))^a)
- □ But can we find them?
 - Milgram's experiment suggests nodes can find them using only local information
 - Standard routing algorithms require O(N) information



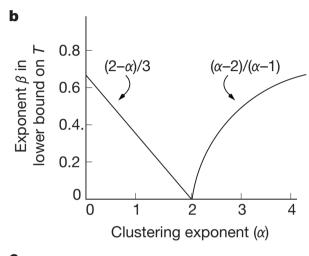
- Model: Each node has
 - Short-range connections
 - \bigcirc 1 long-range connection, up to distance r with probability prop. to $r^{-\alpha}$
 - \circ For α =0 it is similar to Watts-Strogatz model: there are short-paths

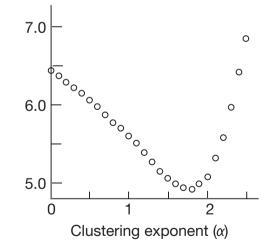


If α =2 the greedy algorithm (forward the packet to the neighbor with position closest to the destination) achieves avg path length $O((\log(N))^2)$

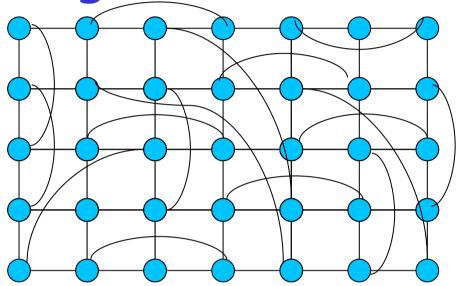


- If α<>2 no local information algorithm can take advantage of small world properties
 - o avg path length $\Omega(N^{\beta/2})$
 - where $\beta=(2-\alpha)/3$ for $0<=\alpha<=2$, $\beta=(\alpha-2)/(\alpha-1)$, for $\alpha>2$





T for greedy algorithm

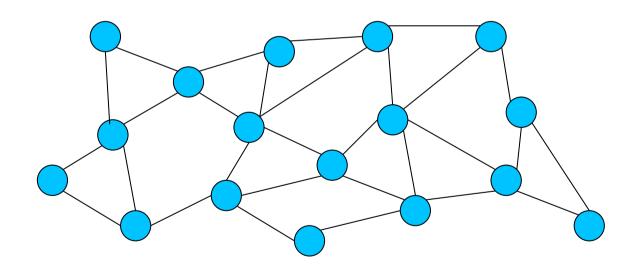


Conclusions

- The larger α the less distant long-range contacts move the message, but the more nodes can take advantage of their "geographic structure"
- \circ α =2 achieved the best trade-off

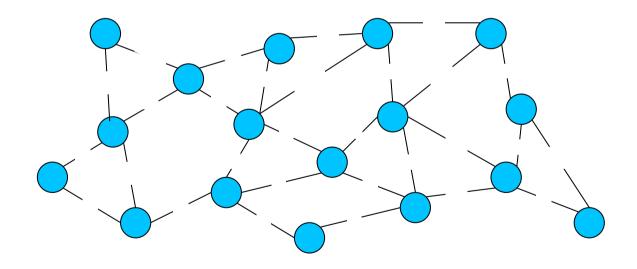
Configuration model

A family of random graphs with given degree distribution



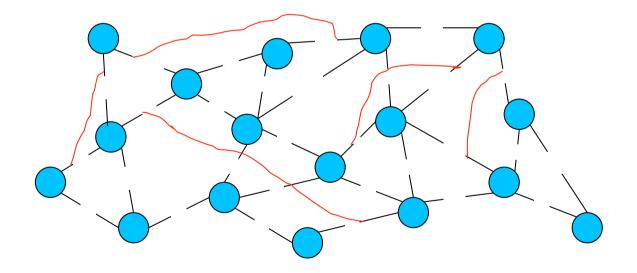
Configuration model

- A family of random graphs with given degree distribution
 - Uniform random matching of stubs



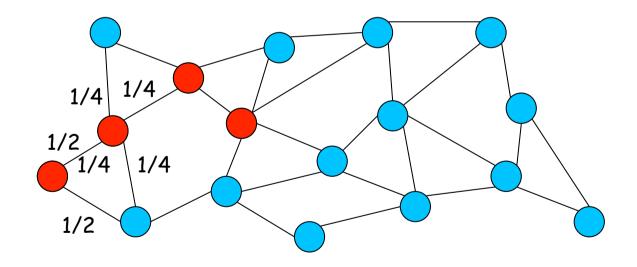
Configuration model

- A family of random graphs with given degree distribution
 - Uniform random matching of stubs



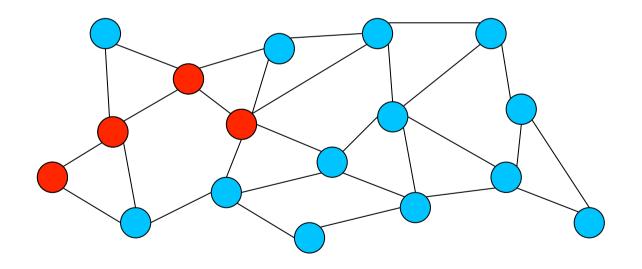
Back to Navigation: Random Walks

- What can we do in networks without a geographical structure?
 - Random walks



Back to Navigation: Random Walks

How much time is needed in order to reach a given node?



Random Walks: stationary distribution

$$\pi_i = \sum_{j \in N_i} \frac{1}{k_j} \pi_j$$

$$\pi_i = \frac{k_i}{\sum_{i=1}^{N} k_j} = \frac{k_i}{2M}$$

- avg time to come back to node i starting from node i: $\frac{1}{\pi_i} = \frac{2M}{k_i}$
- Avg time to reach node i o intuitively $\approx \Theta(M/k_i)$

Another justification

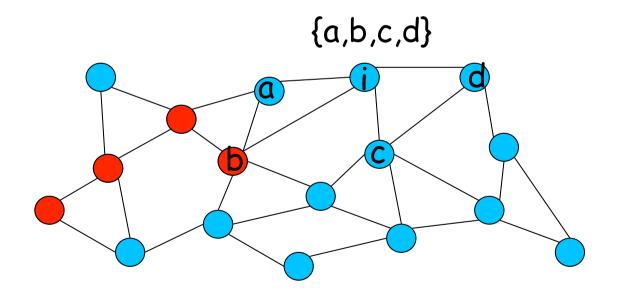
- Random walk as random edge sampling
 - O Prob. to pick an edge (and a direction) leading to a node of degree k is $\frac{kp_k}{< k>}$
 - Prob. to arrive to a given node of degree k:

$$\frac{kp_k}{p_k N < k >} = \frac{k}{2M}$$

- Avg. time to arrive to this node 2M/k
- ...equivalent to a RW where at each step we sample a configuration model

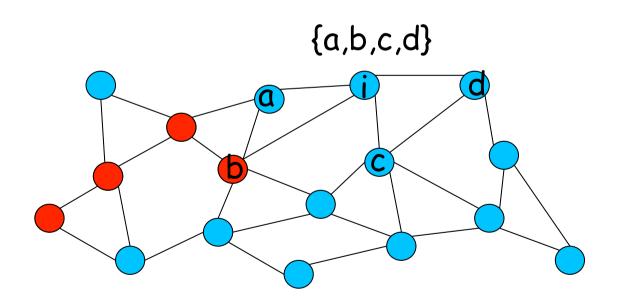
Distributed navigation (speed up random walks)

Every node knows its neighbors



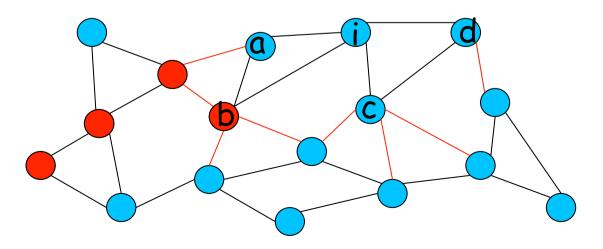
Distributed navigation (speed up random walks)

- Every node knows its neighbors
- ☐ If a random walk looking for *i* arrives in *a* the message is directly forwarded to *i*



Distributed navigation reasoning 1

- We discover i when we sample one of the links of i's neighbors
- □ Avg # of these links: $k_i \sum_{k} \left((k-1) \frac{kp_k}{\langle k \rangle} \right) = k_i \left(\frac{\langle k^2 \rangle}{\langle k \rangle} 1 \right)$
- □ Prob. to arrive at one of them: $\frac{k_i}{2M} \left(\frac{\langle k^2 \rangle}{\langle k \rangle} 1 \right)$



Distributed navigation reasoning 2

Prob that a node of degree k is neighbor of node i given that RW arrives to this node from a node different from i

$$1 - \left(1 - \frac{k_i}{2M}\right)^{k-1} \approx \frac{k_i(k-1)}{2M}$$

Prob that the next edge brings to a node that is neighbor of node i:

$$\sum_{k} \frac{k_i(k-1)}{2M} \frac{kp_k}{\langle k \rangle} = \frac{k_i}{2M} \left(\frac{\langle k^2 \rangle}{\langle k \rangle} - 1 \right)$$

Distributed navigation

Avg. Hop#
$$\frac{2M}{k_i} \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$$

- O Regular graph with degree d: $\frac{2M}{d(d-1)}$
- ER with $\langle k \rangle$: $\frac{2M}{k_i(\langle k \rangle -1)}$
- Pareto distribution $\left(P(k) \approx \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}\right)$:

$$\approx \frac{2M}{k_i} \frac{(\alpha - 2)(\alpha - 1)}{x_m - (\alpha - 2)(\alpha - 1)} \quad \text{If } \alpha \rightarrow 2...$$

Distributed navigation

- Application example:
 - File search in unstructured P2P networks through RWs