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Many domains

Public Transport Design Network Design

user on the phone
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Rationale for Mobility Models

> Mobility Models are required for

% Performance evaluation
- Analytical
» A system dynamics must be fractable in order to derive characteristics of interest

- Simulations
» Often used as an alternative when models are too complex (no analytical derivation)
 But still complementary to the analytical approach

- Trace-replaying and experiments

+ Solution design

- Networking solutions should be designed according to their in situ
environment (i.e., mobility context and characteristics)

Thrasyvoulos Spyropoulos / spyropou@eurecom.fr Eurecom, Sophia-Antipolis



Evaluation of Cellular Networks

= Aim at providing integrated communications (i.e., voice, video, and data)
between nomadic subscribers in a seamless fashion
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The Mobile Internet
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Device-to-Device Communication (e.g. Bluetooth or WiFi Direct)
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Data/Malware Spreading Over Opp. Nets
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How long until X% of nodes “infected"?
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Understanding mobility is complex
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Classification of Mobility Models

» Scale
% Microscopic
- accurately describes the motion of mobile individuals
% Macroscopic
- considers the displacement of mobile entities (e.g., pedestrians, vehicles,

animals) at a coarse grain, for example in the context of large geographic
areas such as adjacent regions or cells

» Inputs
< Standard Parameters: speed, direction, ...
< Additional Inputs: map, topology, preferred/popular locations...
+ Behavioral: intention, social relations, time-of-day schedule,...
< Inherent Randomness: stochastic models (Markov, ODEs, Queuing)
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1. A node chooses a random destination anywhere in the network
field

2. The node moves towards that destination with a velocity chosen
randomly from [0, Vmax]

3. After reaching the destination, the node stops for a duration
defined by the "pause time" paramefter.

This procedure is repeated until the simulation ends
Parameters: Pause time T, max velocity Vmax

Comments:
- Speed decay problem, non-uniform node distribution
- Variants: random walk, random direction, smooth random, ...

» P

X/
0‘0
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Random Way Point: Basics
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Figure 1-5. The probability distribution of movement direction
-1- RWP leads to non-uniform distribution of nodes due to bias towards the center of the area, due to non-

uniform direction selection. To remedy this the “random direction” mobility model can be chosen.
-2- Average speed decays over time due to nodes getting ‘stuck’ at low speeds
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IT. Random (RWK) Walk Model

» Similar to RWP but

< Nodes change their speed/direction every time slot

< New direction 6 is chosen randomly between (0,2x]

< New speed chosen from uniform (or Gaussian) distribution
< When node reaches boundary it bounces back with (z-6)
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Random Walk
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A Macroscopic Mob. Model for Cell. Networks

» A simple handover model
« cell -> state
+ need to find transition probabilities
<« depend on road structure, user profile,

statistics
user on the phone 06
@
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Cellular Network Markov Chain
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Opportunistic networks: Macroscopic View

» Connect devices to each other

% Bluetooth, WiFi direct
WD 1/ /

@> It’s all about Contacts!

< Opportunities to exchange data

?> How do we route messages (unicast/multicast)?
‘)5 Whom do we trust?

!> Where do we place serviggs!?

Contacts are driket
in a socia
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The Contact Graph

Routing?

Protocol
performance?

Content Placement?
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Contact Graph Representation of Mobility

> Represent Mobility using a Social/Complex Graph
<+ Physics, Sociology discipline
<+ study of large graphs
+ scale-free, small-world, navigation, etc, | . social (friends)
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Time-based Aggregation

(used by SimBet, BubbleRap)
= Growing Time Window". Edges for all contacts in [0, T]

= Sliding Time Window". Edges for all contacts in [T-AT, T]

Example: ETH trace, 20 nodes on one floor
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Social Properties of Real Mobility Datasets

» Different origins: AP associations, Bluetooth scans
and self- reported

DART ETH GOW MIT
# People and context 1044 campus 285 campus 473 Texas 92 campus
Period 17 weeks 15 weeks 6 months 3 months
Type AP associations AP associations [Self-reported location Jj Bluetooth scanning
# Contacts total 42007000 99’000 19’000 81961
# Contacts per dev. 4’000 350 40 890

» Gowalla dataset

> ~440°000 users

» ~16.7 Mio check-ins to ~ 1.6 Mio spots

» 473 “power users” who check-in 5/7 days
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It's a “small world” after

Clustering Coefficient

Avg. Path Length

1% 2% 4% | 1% 2% 4%
DART | 0.71 0.63 }0.57 ©.os) 0.54 | 7.4 3.7 2.6
ETH - 0.66 ]0.57 0.03)f 0.53 - 6.1 4.0
GOW | 0.28 0.27 ]0.27 ©wonf 0.26 | 4.5 34 2.8
MIT - - 0.56 .03 0.57 - - 3.8

» Small numbers (in parentheses) are for random graph
» Clustering is high and paths are short!
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Community Structure

» Louvain community detection algorithm

_ 1 did;
Q=5— > (wij - %) 0(ci, ¢5)

Trace/Model # Comm. Q ij

DART 23

ETH 21 Q=0 No communities
GOW 29 Q > 0.3 for many networks
MIT 6

» All datasets are strongly modular! = clear community
structure exists

Thrasyvoulos Spyropoulos / spyropou@eurecom.fr Eurecom, Sophia-Antipolis



Community Sizes
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Contact Edge Weight Distribution
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= Heavy tall, but not pure power law
= Heterogeneity even within communities
= Similar distributions within and across communities
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Degree Distribution
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= Normalize degree by number of nodes (N global, |c;| comm.)
= Exponential(-ish), no “hubs”
= Similar distribution within community and globally
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Analysis of Epidemics: The Usual Approach

Assumption 1) Underlay Graph =» Fully meshed
Assumption 2) Contact Process =» Poisson();), Indep.
Assumption 3) Contact Rate =» A; = A (homogeneous)

(N-1)A 2(N-2)A a(N—a)A (N-1)A

RORER RO
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Modeling Epidemic Spreading: Markov Chains (MC)

(1) (3) © S 5@

2-hop infection
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How realistic is this?

A Poisson Graph

A Real Contact Graph
(ETH Wireless LAN trace)
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Arbitrary Contact Graphs

@@ oA @@

N states = states N ) states states N states
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Bounding the Transition Delay

1 1 1
BT, 1[C,) = —gv5 = max. -
ieC’,,j¢C, ieCtjeC, min E )Lij
N i Ca ieC’,,jZC,

» What are we really saying here??

> Let a= 3 > how can split the graph into
a subgraph of 3 and a subgraph of N-3
node, by removing a set of edges whose
weight sum is minimum?
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A 2nd Bound on Epidemic Delay

min E A
C ]
® = min LS

a a(N —a)

2

E[Depld] = E

1 InN
{a(N - a)CD Eaz(N a)d (I) N

» @ is a fundamental property of a graph
» Related to graph spectrum communlty structure
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Opportunistic Routing: Contact Prediction

» Human mobility not fully random: Patterns, Recurrence
< e.g. recent Barabasi's Nature papers

» Human mobility is heterogeneous
< Different neighbors, different numbers of neighbors

» Infer Contact Pattern => Predict Future Contacts =>
Forward to node with Highest Delivery Probability

» HOW???

» (maybe?) recent contact with X => high prob. of future
contact WiTh X [Lindgren et al. '03, Dubois-Ferriere et al., ‘03]

> (maybe?) frequent contact with X => high prob. of future
contact with X [Burgess et al '06]

» (maybe?) many total contacts (with anyone) => high prob of
future contact with any X [Spyropoulos et al. ‘07, Erramilli et al. '08]

Thrasyvoulos Spyropoulos / spyropou@eurecom.fr Eurecom, Sophia-Antipolis



SNA-based Forwarding (SimBet, BubbleRap)

Look at graph; Forward IFF
1. relay in same community as D
2. OR relay has higher centrality
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SNA-based Forwarding shows promising performance!
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Time-based Aggregation

(used by SimBet, BubbleRap)
= Growing Time Window". Edges for all contacts in [0, T]

= Sliding Time Window". Edges for all contacts in [T-AT, T]

Example: ETH trace, 20 nodes on one floor
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Density-based Aggregation

Aggregate to a certain density of the graph

» Density d = N('];E' 7 N: # nodes, E: edges included

» Easier to compare between scenarios (0 < d < 1)

» How to ..fill" the social graph to this density?

% ,Most recent”. Create an edge for the x most recent
contacts

< ,Most frequent” An edge for the x most frequent
contacts

» What is the right density???
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Sensitivity of SNA-based Routing Performance

How to evaluate the social graphs

» Sensitivity of routing o graph density
»Good graphs => good routing performance

» Simulation using SimBet and Bubble Rap

<+ Synthetic contact processes
- Small-world, cavemen

< Contact traces
- ETH (20 nodes, students and staff working on 1 floor)
- INFO (41 Infocom 2005 participants)
- MIT (97 students and staff)
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Contribution 1

- Sensitivity of Routing Performance
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Bad performance in ,extreme” cases!

There is an optimal density range!
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Contribution 2 - Online Algorithm

. . ) o neighbors of u and v
V»:» Regular, with nodes of same community -> high similarity

« Random, with nodes of different communities -> low similiarity
» We want all regular links but no random links => Predictivel

Hew &
:ij V

Regular: low similarity Regular: high similarity Regular: high similarity
Random: low similarity Random: low similarity Random: high similarity

Similarity(u,v) =
» Assumption: Two types of contacts Number of common
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Doing the Math

= Based on cavemen graph model

- - - Similarity (Regulan) .
------- Similarity (Random)
0.8/ — Similarity Difference

Normalized Similarity

'
N
o
.
ot
et
ot
o
ot
o
!

0 100 200 300 400 500
#of Contacts

» Maximize avg similarity of Regular links ‘
= Minimize avg similarity of Random links
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Maximizing Modularity (I)

cavemen
model

Histogram of similarity values between all pairs of nodes

» Clustering to distinguish Random and Regular links

» Synthetic models: 2-means clustering
<+ Density with maximal cluster distance is optimal

> Real world requires more robust solution

MIT, d = 0.05

MIT, d = 0.01
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Maximizing Modularity (II): Spectral Analysis

» Arrange observed similarity values

(s;) into a matrix W

» Spectral Graph Theory

< Calculate Laplacian L of W

<+ D: diagonal normalization matrix

» Eigenvalue decomposition of L:
X }\,1 :O < }\2 <..£ )\.n

2
T Isi-s)|
) 20.2
L _ D—1/2WD-1/2
L-e =Ae,

% A, = 0 if two clusters are perfectly seperable (2 connected

components)

% A, (Algebraic Connectivity): small for highly modular data
» Minimizing A, -> max. "distance” between Regular and

Random
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Maximizing Modularity (IIT)
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Performance of Online Algorithm (IT)

= Delivery ratio relative to Direct Transmission using
= optimal fixed density / online algorithm

Protocol SW CAVE MIT ETH INFO
SimBet MF  4.3/4.1 3.3/3.0 1.8/1.8 1.6/1.5 1.3/1.2
Bubble MF  4.2/2.9 4.5/3.6 2.5/2.1 1.5/1.5 1.4/1.3

Online Algorithm performance is close to optimal
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Opportunistic Routing Using SNA: Summary

» Contribution 1 - Sensitivity analysis Contacts
+ Choosing the right aggregation density matters! fx
+ More than specific routing algorithm!
» Contribution 2 - Optimal density ~ Mobility Structure

algorithm
< Maximize modularity of observed similarity values
<+ Spectral Graph Theory techniques Predict
<« Performance close to that of optimal density

General Applicability (not just routing)
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