Winter School on Complex Networks

SophiaTech campus
12-16 January 2015




General information

7 Website

www-sop.inria.fr/members/Giovanni.Neglia/
complexnetworks15/

7 Organization of the school

7 Spirit

7 Presence

7 Exam

7 For any question: giovanni.neglia@inria.fr
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Network Science

1. Common properties fo many existing

hetworks

 Social nets, transportation nets, electrical power grids,
Internet AS net, P2P nets, gene requlatory net,

« These are the "complex networks" that exhibit "non-
trivial topological features—features that do not occur
in simple networks such as lattices or random graphs but
often occur in real graphs" [confusing wikipedia's
definition]

2. Important dynamic processes on these
networks show the same properties



Contagion
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Contagion
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Contagion
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Take Home Lesson

If we understand how topological properties
influence contagion

We can speed-up or slow-down contagion

* We can use these lessons to engineer new protocols (overlay
topologies, replication mechanisms,...)



Outline

7 Properties of Complex Networks
Small diameter
High Clustering
Hubs and heavy tails

3 Physical causes

7 What is Network Science?

Is it really a new science? Different from
graph theory?



Milgram’'s experiment (1967)

New Hampshire

Oklahoma




6 degrees of separation

Six degrees of separation is the
idea that everyone is on average S I X
approximately six steps away, by DEGREES
way of introduction, from any R
other person in the world, so that . ~' '
a chain of "a friend of a friend" |
statements can be made, on THE SCIENCE OF
average, to connect any two people i TR
in six steps or fewer. DANCANR AR

2003

J. Vaucher, Small World Networks, April 2005



Small Diameter, more formally

7 A linear network has diameter N-1 and
average distance O(N)

How to calculate it?

7 A square grid has diameter and average
distance O(sqrt(N))

7 Small Diameter: diameter O((log(N))?), a>0

7 Lessons from model: a few long distance
random connections are enough



Erdos-Rényi graph

I A ER graph G(N,q) is a stochastic process
O N nodes and edges are selected with prob. g

3 Purpose: abstract from the details of a
given graph and reach conclusions depending
on its average features



Erdos-Rényi graph

3 A ER graph 6(N,q) is a stochastic process
O N nodes and edges are selected with prob. g
O Degree distribution: P(d)=Cq,, q4(1-q)N-1-d
» Average degree: <d>=q (N-1)
- For N->e and Nq constant: P(d)=e®«d>d/d!
- <d®=<d>(1+<d>)

O Average distance: <I>&logN/log<d>
 Small diameter



Clustering

3 "The friends of my friends are my friends"

7 Local clustering coefficient of node i

O (# of closed triplets with i at the center) / (# of triplets
with node i at the center) = (links among i's neighbors of
node i)/(potential links among i's neighbors)

C=2/(4*3/2)=1/3

7 Global clustering coefficient

O (total # of closed triplets)/(total # of triplets)
# of closed triplets = 3 # of triangles

o Or1/NZ; C,



Clustering

7 InER
O C =& q =®<d>/N



Clustering

3 In real networks

Network Size (k) £ & ond C C,und Reference Nr.
WWW, site level, undir. 153127 3521 3l 3.35 0.1078  0.00023 Adamic, 1999 1
Internet, domain level  3015-6209 3.52-4.11 3.7-376 636-6.18 0.18-03  0.001 Yook ef al., 2001a, 2
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.9 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52909 9.7 59 4.79 043  1.8x107* Newman, 2001a, 2001b, 2001c 4
MEDLINE co-authorfy0 e 11- ng f \gg 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 677ma Ch' gr a d()'i%:rar‘;!%'zoom 2001b, 2001c 6
NCSTRL ¢ f m X ?ﬂlb, 2001 7
Math. co m q}m l ng C I 951.6 9 cqe Baraba51 et al., 2001 8
Neurosci. co-authorship 209293 11.5 5.01 0.76  5.5X 10'< Barabasi et al., 2001 9
E. coli, substrate graph 282 735 2.9 3.4 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 283 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11
Ythan estuary food web 134 87 243 2.26 022 0.06 Montoya and Sole, 2000 12
Silwood Park food web 154 475 340 3.23 0.15 0.03 Montoya and Sole, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 00001  Ferrer i Cancho and Sole, 2001 14
Words, synonyms 22311 13.48 45 384 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 267 18.7 124 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 028 0.05 Watts and Strogatz, 1998 17




How to model real networks?

Regular Graphs have a high clustering coefficient
but also a high diameter
Random Graphs have a low diameter
but a low clustering coefficient
--> Combine both to model real networks: the Watts and Strogatz

model
Regular
Regular Graph (k=4) Random Graph (k=4)
Long paths Short path length
L = n/(2K) L=log, N
Highly clustered Almost no clustering
C=3/4 C=k/n

Regular ring lattice

R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1,
January 2002



Watts and Strogatz model

Random rewiring of regular graph

With pr'obabili’r?/ p rewire each
link in a regular graph to a
randomly selected node

Resulting fgr'aph has properties

Regular Smali-world Random

both of regular and random
graphs
--> High clustering and short L SRS > p=1
path length
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R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1,
January 2002



Small World

7 Usually to denote
O small diameter + high clustering



Intermezzo: navigation

3 In Small world nets there
are short paths O((log(N))?)

7 But can we find them?

O Milgram's experiment S .
suggests nodes can find them = 0
using only local information - W

O Standard routing algorithms ey
require O(N) information! -l 8

O The answer will arrive in
Nicolas Nisse's lecture on
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"Navigation in Small Worlds"
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7 netws with underlying geographical structure
3 Model: Each node has

O Short-range connections

O 1 long-range connection, up to distance r with
probability prop. to r=

O For a=0 it is similar fo Watts-Strogatz model:
there are short-paths




Hubs

7 80/20 rule

O few nodes with degree much higher than the
average

O a lot of nodes with degree smaller than the
average

O (imagine Bill Clinton enters this room, how
representative is the avg income)

73 ER with N=1000, <d>=5, P(d)ze¥<d>d/d!
O #nodes with d=10: N*P(10)~18 P(d)

O #nodes with d=20: N*P(20)~2.6 10-4 # T
T Tj} 19 .

d




0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Hubs

| eor

Power law:
P(d) ~ d«

15

20

ER

Power law

25

0.1

0.01

0.001
0.3

CCDF

30



Frequency

Power law degree distributions

Wikipedia In-Degree Distribution
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Power Law

7 Where does it come from?
O Albert-Barabasi's growth model
O Highly Optimized Model

O And other models

See Michael Mitzenmacher, A Brief History of
Generative Models for Power Law and Lognormal
Distributions



Albert-Barabasi's model

7 Two elements

O Growth

m, initial nodes, every time unit we add a new node
with m links to existing nodes

O Preferential attachment

The new node links to a node with degree k; with
probability

H(kz) =




Albert-Barabasi's model

7 Node i arrives at time t,, its degree keeps
Increasing

3 With a continuum approximation:

g
ok, _mk, Kk,
l = 2L = k(1) = m( ) B=
ot k. 2tm 2t t,
]ZN
I Then degree distribution at time t is:

vy
Pk (t)<k)=P(t >t AT )




Albert-Barabasi's model

J At time t there are my+t nodes, if we
consider that the t nodes are added
uniformly at random in [O,t], then

I —X

P(t, > x) =
t+m,

P(k.(t) < k) = — (1—’””1//5)

t+m, kP



Albert-Barabasi's model

3 The PDF is
oP(k.(t)<k 1 m"”
ok t+m, Bk
A For t->
/B8
P(k.(2) = k) Lm e 23




Albert-Barabasi's model

I If (k) xa+k, Pyxk”, y=3+=

m

7 Other variants:
O With fitness T11(k) = K,

Ej=1,N njkj

O With rewiring (a prob. p to rewire an existing
connection)

o Uniform attaching with "aging": A vertex is
deactivated with a prob. proportional to (k+a)



Configuration model

3 A family of random graphs with given
degree distribution



Configuration model

3 A family of random graphs with given
degree distribution

O Uniform random matching of stubs

®. 4’7*7*
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Configuration model

3 A family of random graphs with given
degree distribution

O Uniform random matching of stubs
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Back to Navigation:
Random Walks

7 What can we do in networks without a
geographical structure?

o Random walks




Back to Navigation:
Random Walks

7 How much time is needed in order to reach
a given hode?



Random Walks:
stationary distribution

1
D .ﬂfl:Ek—ﬂ:]
jen, X
ko k
D j'[i= N =

7 avg time to come back to node i starting
fromnodei: 1 2Mm

TT. k.

l l

7 Avg time to reach node |
O intuitively =O(M/k;)




Another justification

7 Random walk as random edge sampling

O Prob. to pick an edge (and a direction) leading
to a node of degree kis p,

<k>
O Prob. to arrive to a given node of degree k:
kp,  k
p.N<k> 2M

O Avg. time to arrive to this node 2M/k

7 ...equivalent to a RW where at each step
we sample a configuration model



Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

{a,b,c,d}



Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

3 If a random walk looking for jarrives in a
the message is directly forwarded to /

{a,b,c,d}



Distributed navigation

reasoning 1
7 We discover i when we sample one of the
links of /’s neighbors . .
3 Avg # of these links: kz((k 1)Lk )= ,(< >—1)
<k> <k>

2
7 Prob. to arrive at one of them: % [<Kk">
M\ <k>




Distributed navigation
reasoning 2

3 Prob that a node of degree k is neighbor
of node /j given that RW arrives to this

node from a node different from i
1_( k )k_lzki(k—l)

1
2M 2M

7 Prob that the next edge brings to a node
that is neighbor of node i:

Ek,(k—l) kp, Kk (<k2>_1)

- <k>

2M <k> 2M

k



Distributed navigation

7 Avg. Hop# 2,24 B k2<>k_>< k>
O Regular graph with degree d: d(zdj\:ll)
O ER with <k>: ki(<2kj\i -1
O Pareto distribution | P(k) = iﬁ) :
_2M  (a=2)(a-1) If a->2..

k. x —(a-2)(a-1)



Distributed navigation

3 Application example:

O File search in unstructured P2P networks
through RWs



What is Network Science?

3 A natural science

O The focus is on existing networks (not graphs in
general)

O Understand observed phenomena

3 An interdisciplinary approach, it draws on
many different theories and methods

O graph theory from mathematics, statistical
mechanics from physics, data mining and
information visualization from computer science,
inferential modeling from statistics, social
structure from sociology...



