Software tools for Complex Networks Analysis

Fabrice Huet, University of Nice Sophia-Antipolis
SCALE Team
MOTIVATION
Why do we need tools?

- Visualization
- Properties extraction
- Complex queries
Graphs are everywhere

- RDF

 ("test1", writtenBy, "Sophie")
 ("test1", publishedIn, "Journal")
 ("test2", publishedIn, "Journal")

- SPARQL

 SELECT ?s WHERE {
 ?s writtenBy ?a.
 ?a hasName "Sophie".
 ?s publishedIn "Journal".
 }

- Basically a sub-graph matching
Why are graphs different?

- Graphs can be large
 - Facebook: 720M users, 69B friends in 2011
 - Twitter: 537M accounts, 23.95B links in 2012
- Low memory cost per vertex
 - 1 ID, 1 pointer/edge
- Low computation per vertex
- Graphs are not memory friendly
 - Random jumps to memory
- They are not hardware friendly!
Lots of frameworks

• Really lots of them
 – Matlab, NetworkX, GraphChi, Hadoop, Twister, Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,…

• Why so many?
 – Not one size fits all
 – Different computational models
 – Different architecture
Possible taxonomy

- Generic vs Specialized
 - Hadoop vs GraphChi (or Giraph, GraphX…)
- Shared vs Distributed Memory
 - GraphChi vs Pregel
- Synchronous vs Asynchronous
 - Giraph vs Maiter
- Single vs Multi threaded
 - NetworkX vs GraphChi
Overview

• A Python package for complex network analysis
• Simple API
• Very flexible
 – Can attach any data to vertices and edges
 – Supports visualization
• Graphs generators
• http://networkx.github.io/
Dependencies

- Supports Python 2.7 (preferred) or 3.0
- If drawing support required
 - Numpy (http://www.numpy.org/)
 - Mathplotlib (http://matplotlib.org/)
 - Graphivz (http://graphviz.org/)
Examples

• Creating an empty graph

```python
>>> import networkx as nx
>>> G=nx.Graph()
```

• Adding nodes

```python
>>> G.add_node(1)
>>> G.add_nodes_from([2,3])
```

• Adding edges

```python
>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])
```
Examples (2)

- **Graph generators**

  ```python
  >>> K_5 = nx.complete_graph(5)
  >>> K_3_5 = nx.complete_bipartite_graph(3, 5)
  ```

- **Stochastic graph generators**

  ```python
  >>> er = nx.erdos_renyi_graph(100, 0.15)
  >>> ws = nx.watts_strogatz_graph(30, 3, 0.1)
  >>> ba = nx.barabasi_albert_graph(100, 5)
  >>> red = nx.random_lobster(100, 0.9, 0.9)
  ```

- **Reading from files**

  ```python
  >>> mygraph = nx.read_gml("path.to.file")
  ```
Examples (3)

• Graph analysis

```python
>>> nx.connected_components(G)
```

```python
>>> nx.degree(G)
```

```python
>>> pr=nx.pagerank(G,alpha=0.9)
```

• Graph drawing

```python
>>> import matplotlib.pyplot as plt
>>> nx.draw(G)
>>> plt.show()
```
NetworkX - Conclusion

- Easy to use
 - Very good for prototyping/testing
- Centralized
 - Limited scalability
- Efficiency
 - Memory overhead
GRAPHCHI
Overview

• Single machine
 – Distributed systems are complicated!
• Disk-based system
 – Memory is cheap but limited
• Supports both static and dynamic graph
• Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos, GraphChi: Large-scale Graph Computation on Just a PC, Proceedings of OSDI’12
Computational Model

- **Vertex centric**
 - Vertices and Edges have associated values
 - Update a vertex values using edges values

- **Typical update**
 - Read values from edges
 - Compute new value
 - Update edges

- **Asynchronous model**
 - Always get the most recent value for edges
 - Schedule multiple updates
Storing graphs on disk

- **Compressed Sparse Row (CSR)**
 - Equivalent to adjacency sets
 - Store out-edges of vertex consecutively on Disk
 - Maintain index to adjacency sets for each vertex
- **Very efficient for out-edges, not so for in-edges**
 - Use *Compressed Sparse Column (CSC)*
- **Changing edges values**
 - On modification of out-edge: write to CSC
 - On reading of in-edge: read from CSR
 - Random read or random write 😞
Parallel Sliding Windows

- Minimize non sequential disk access
- 3 stages algorithm
- Storing graph on disk
 - Vertices V are split into P disjoints intervals
 - Store all edges that have destination in an interval in a Shard
 - Edges are stored by source order

From Kyrola and al.
Parallel Sliding Windows (2)

- Loading subgraph of vertices in interval p
 - Load Shard(p) in memory
 - Get in-edges immediately
 - Out-edges are stored in the P-1 other shards
 - But ordered by sources, so easy to find
- Loading subgraph $p+1$
 - Slide a window over all shards
- Each interval requires P sequential reads
Parallel updates

• Once interval loaded, update in parallel

• Data races
 – Only a problem if considering edge with both endpoints in interval
 – Enforce sequential update

• Write back result to disk
 – Current shard totally rewritten
 – Sliding window of other shards rewritten
Example

Shard 1

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Shard 2

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Shard 3

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Diagram:

![Diagram](image-url)
Example

<table>
<thead>
<tr>
<th>Shard 1</th>
<th>Shard 2</th>
<th>Shard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>src</td>
<td>dst</td>
<td>value</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.364</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.273</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Performance

- Mac Mini 2.5GHz, 8GB and 256GB SSD
- Shard creation

<table>
<thead>
<tr>
<th>Graph name</th>
<th>Vertices</th>
<th>Edges</th>
<th>P</th>
<th>Preproc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal [3]</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix [6]</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>domain [44]</td>
<td>26M</td>
<td>0.37B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>twitter-2010 [26]</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>10 min</td>
</tr>
<tr>
<td>uk-union [11]</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web [44]</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
<tr>
<td>Application & Graph</td>
<td>Iter.</td>
<td>Comparative result</td>
<td>GraphChi (Mac Mini)</td>
<td>Ref</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>---</td>
<td>---------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Pagerank & domain</td>
<td>3</td>
<td>GraphLab[30] on AMD server (8 CPUs) 87 s</td>
<td>132 s</td>
<td></td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>5</td>
<td>Spark [45] with 50 nodes (100 CPUs): 486.6 s</td>
<td>790 s</td>
<td>[38]</td>
</tr>
<tr>
<td>Pagerank & V=105M, E=3.7B</td>
<td>100</td>
<td>Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min</td>
<td>approx. 581 min</td>
<td>[37]</td>
</tr>
<tr>
<td>Pagerank & V=1.0B, E=18.5B</td>
<td>1</td>
<td>Piccolo, 100 EC2 instances (200 cores) 70 s</td>
<td>approx. 26 min</td>
<td>[36]</td>
</tr>
<tr>
<td>Webgraph-BP & yahoo-web</td>
<td>1</td>
<td>Pegasus (Hadoop) on 100 machines: 22 min</td>
<td>27 min</td>
<td>[22]</td>
</tr>
<tr>
<td>ALS & netflix-mm, D=20</td>
<td>10</td>
<td>GraphLab on AMD server: 4.7 min</td>
<td>9.8 min (in-mem)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 min (edge-repl.)</td>
<td></td>
</tr>
<tr>
<td>Triangle-count & twitter-2010</td>
<td>-</td>
<td>Hadoop, 1636 nodes: 423 min</td>
<td>60 min</td>
<td>[39]</td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>1</td>
<td>PowerGraph, 64 x 8 cores: 3.6 s</td>
<td>158 s</td>
<td>[20]</td>
</tr>
<tr>
<td>Triangle-count & twitter-2010</td>
<td>-</td>
<td>PowerGraph, 64 x 8 cores: 1.5 min</td>
<td>60 min</td>
<td>[20]</td>
</tr>
</tbody>
</table>

Overview

• Directed graphs
• Distributed Framework Based on the Bulk Synchronous Parallel model
• Vertex Centric computation model
• Private framework with C++ API
Model of Computation (1)

- **BSP**: model for parallel programming
 - Takes into account communication/synchronization
 - Series of super-steps (iterations)
 - Performs local computations
 - Communicate with others
 - Barrier

From: http://www.multicorebsp.com/
Model of Computation (2)

- Vertex Centric
 - Each vertex execute a function in parallel
- Can read messages sent at previous super-step
- Can send messages to be read at next super-step
 - Not necessarily following edges
- Can modify state of outgoing edges
- Run until all vertices agree to stop and no message in transit

From Malewicz and al.
Maximum Value Example

From Malewicz and al.
Implementation and Execution (1)

- User provides a graph, some input (vertex and edges values) and a program
- The program is executed on all nodes of a cluster
 - One node become the master, other are workers
- The graph is divided into partitions by the master
 - Vertex Id used to compute partition index (e.g. \(\text{hash}(Id) \mod N \))
- Partitions are assigned to workers
- User input file is partitioned (no fancy hash) and sent to workers
 - If some input is not for the worker, it will pass it along
Implementation and Execution (2)

- The master request worker to perform superstep
 - At the end, each worker reports the number of active vertices for next superstep
- Aggregators can be used at end of super-step to reduce communications
 - Perform reduction on values before sending
- If no more active vertices, Master can halt computation
- What about failures?
 - Easy to checkpoint workers at end of superstep
 - If failure, rollback to previous checkpoint
 - If master fails… too bad 😞
PageRank in Pregel

\[PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)} \]

```java
class PageRankVertex
  : public Vertex<double, void, double> {
public:
  virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() =
        0.15 / NumVertices() + 0.85 * sum;
    }
    if (superstep() < 30) {
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
    } else {
      VoteToHalt();
    }
  }
};
```

From Malewicz and al.
Performance

Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

From Malewicz and al.
Performance

Figure 9: SSSP—log-normal random graphs, mean out-degree 127.1 (thus over 127 billion edges in the largest case): varying graph sizes on 800 worker tasks scheduled on 300 multicore machines

From Malewicz and al.
Map Reduce operations

• Input data are (key, value) pairs
• 2 operations available: map and reduce
• Map
 • Takes a (key, value) and generates other (key, value)
• Reduce
 • Takes a key and all associated values
 • Generates (key, value) pairs
• A map-reduce algorithm requires a mapper and a reducer
• Re-popularized by Google
 – MapReduce: Simplified Data Processing on Large Clusters
 Jeffrey Dean and Sanjay Ghemawat, OSDI’04
Map Reduce example

- Compute the average grade of students
 - For each course, the professor provides us with a text file
 - Text file format: lines of “student grade”
- Algorithm (non map-reduce)
 - For each student, collect all grades and perform the average
- Algorithm (map-reduce)
 - Mapper
 - Assume the input file is parsed as (student, grade) pairs
 - So … do nothing!
 - Reducer
 - Perform the average of all values for a given key
Map Reduce example

Course 1
Bob 20
Brian 10
Paul 15

Course 2
Bob 15
Brian 20
Paul 10

Course 3
Bob 10
Brian 15
Paul 20

Map

(Bob, 20)
(Brian, 10)
(Paul, 15)
(Bob, 15)
(Brian, 20)
(Paul, 10)
(Bob, 10)
(Brian, 15)
(Paul, 20)

Reduce

(Bob, [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob, 15)
(Brian 15)
(Paul, 15)
Map Reduce example… too easy 😊

• Ok, this was easy because
 • We didn’t care about technical details like reading inputs
 • All keys are “equals”, no weighted average
• Now can we do something more complicated?
• Let’s computed a weighted average
 • Course 1 has weight 5
 • Course 2 has weight 2
 • Course 3 has weight 3
• What is the problem now?
Map Reduce example

Map

Reduce

Should be able to discriminate between values

Course 1
Bob 20
Brian 10
Paul 15

Course 2
Bob 15
Brian 20
Paul 10

Course 3
Bob 10
Brian 15
Paul 20

(Bob, 20)
(Brian, 10)
(Paul, 15)

(Bob, 15)
(Brian, 20)
(Paul, 10)

(Bob, 10)
(Brian, 15)
(Paul, 20)

(Bob, [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob, 15)
(Brian 15)
(Paul, 15)
Map Reduce example - advanced

• How discriminate between values for a given key
 • We can’t … unless the values look different

• New reducer
 • Input : (Name, [course1_Grade1, course2_Grade2, course3_Grade3])
 • Strip values from course indication and perform weighted average

• So, we need to change the input of the reducer which comes from… the mapper

• New mapper
 • Input : (Name, Grade)
 • Output : (Name, courseName_Grade)
 • The mapper needs to be aware of the input file
Map Reduce example - 2

Course 1
Bob 20
Brian 10
Paul 15

Course 2
Bob 15
Brian 20
Paul 10

Course 3
Bob 10
Brian 15
Paul 20

Map

Reduce

(Bob, [C1_20, C2_15, C3_10])
(Brian, [C1_10, C2_15, C3_20])
(Paul, [C1_15, C2_20, C3_10])

(Bob, C1_20)
(Brian, C1_10)
(Paul, C1_15)
(Bob, C2_15)
(Brian, C2_20)
(Paul, C2_10)
(Bob, C3_10)
(Brian, C3_15)
(Paul, C3_20)

(Bob, 16)
(Brian, 14)
(Paul, 14.5)
What is Hadoop?

- A set of software developed by Apache for distributed computing
- Many different projects
 - MapReduce
 - HDFS: Hadoop Distributed File System
 - Hbase: Distributed Database
 - ...
- Written in Java
 - Bindings for your favorite languages available
- Can be deployed on any cluster easily
Hadoop Job

• An Hadoop job is composed of a map operation and (possibly) a reduce operation
• Map and reduce operations are implemented in a Mapper subclass and a Reducer subclass
• Hadoop will start many instances of Mapper and Reducer
 • Decided at runtime but can be specified
• Each instance will work on a subset of the keys called a Splits
Hadoop workflow

Source: Hadoop the definitive guide
Graphs and MapReduce

• How to write a graph algorithm in MapReduce?
• Graph representation?
 - Use adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• Line based representation
 - $V_1: 0, 0, 1$
 - $V_2: 1, 0, 1$
 - $V_3: 1, 1, 0$

• Size $|V|^2$ with tons of 0 …
Sparse matrix representation

- Only encode useful values, i.e. non 0
 - $V_1: (V_3, 1)$
 - $V_2: (V_1, 1), (V_3, 1)$
 - $V_3: (V_1, 1), (V_2, 1)$

- And if equal weights
 - $V_1: V_3$
 - $V_2: V_1, V_3$
 - $V_3: V_1, V_2$
Single Source Shortest Path

• Find the shortest path from one source node S to others
• Assume edges have weight 1
• General idea is BFS
 – Distance(S) = 0
 – For all nodes N reachable from S
 ● Distance(N) = 1
 – For all nodes N reachable from other set of nodes M
 ● Distance(N) = 1 + min(Distance(M))
 – And start next iteration
MapReduce SSSP

- **Data**
 - Key: node N
 - Value: (d, adjacency list of N)
 - d distance from S so far
- **Map**:
 - \(\forall m \in \text{adjacency list}: \text{emit} (m, d + 1) \)
- **Reduce**:
 - Keep minimum distance for each node
- **This basically advances the frontier by one hop**
 - Need more iterations
MapReduce SSSP (2)

• How to maintain graph structure between iterations
 – Output adjacency list in mapper
 – Have special treatment in reducer
• Termination ?
 – Eventually 😊
 – Stops when no new distance is found… (any idea how?)
Seriously?

- MapReduce + Graphs is easy

- But everyone is MapReducing the world!
 - Because they are forced to
 - And because of Hadoop

- Hadoop gives
 - A scalable infrastructure (computation and storage)
 - Fault tolerance

- So let’s use Hadoop as an underlying infrastructure
Giraph

- Built on top of Hadoop
- Vertex centric and BSP model 😊
 - Giraph jobs run as MapReduce

Source: https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
SPARK AND GRAPHX
Spark

- Addresses limitations of Hadoop
 - Disk intensive
 - No support for iteration (cycles)
- Spark
 - In-Memory computation
 - Workflows with cycles
 - Still relies on Map-Reduce like operations
 - Multi languages support: Scala, Java, Python, R
- https://spark.apache.org/
Resilient Distributed Datasets

• RDDs
 – Array-like data structure
 – Mostly in-memory
 – Partitioned
 – Fault tolerant
 – Immutable ← very important!

• RDDs are created through transformations
 – Of raw data or another RDD
 – Example: map, filter, reduceByKey, groupBy…

• RDDs support actions
 – Example: collect, count, reduce, save…

• Transformations are lazy
val textFile = sc.textFile("...")
val counts = textFile.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
counts.saveAsTextFile("....")
Spark Stack

Spark SQL
Spark Streaming
MLlib (machine learning)
GraphX (graph)

Apache Spark

http://spark.apache.org/
Separate Systems to Support Each View

Table View

Graph View

Table

Row

Row

Row

Row

Dependency Graph

Result

had oop

Spark

Pregel

GraphLab

Apache Giraph
Solution: The GraphX Unified Approach

New API
Blurs the distinction between Tables and Graphs

New System
Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
Abstractions

• Graphs are represented by 2 collections
 – Vertex RDD (IDs, Properties)
 – Edges RDD(sIDs, dIDs, Properties)
• Graphs have multiple properties
 – edges, vertices
• Most graphs operations can be expressed as analyzing or joining collections
 – Join stage (build a triple view)
 – Group-by-stage (reduce-like)
 – Map operations
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val vertices : VertexRDD[String] =

val edges : EdgeRDD[Int] =

val graph : Graph(vertices, edges) = ...

graph.edges.count()
Triplets Join Vertices and Edges

• The *triplets* view joins vertices and edges:

```
SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e
  LEFT JOIN vertices AS src ON e.srcId = src.Id
  LEFT JOIN vertices AS dst ON e.dstId = dst.Id
```

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
Triplet view

graph.triplets

- Each Triplet contains
 - srclId and srcAttr
 - dstId and dstAttr
 - attr
Aggregate Messages

• Applies a user defined function to each edge triplet
 - The messages
• Applies a user defined function to aggregate the messages at destination vertex

```scala
def aggregateMessages[Msg: ClassTag](
    sendMsg: EdgeContext[VD, ED, Msg] => Unit,
    mergeMsg: (Msg, Msg) => Msg,
    tripletFields: TripletFields = TripletFields.All) : VertexRDD[Msg]
```
Example: get largest incoming edge

- For each vertex compute the largest incoming edge
 - Message is edge attribute value
 - Merge function is max

```java
graph.aggregateMessages[Int](
  triplet => {
    triplet.sendToDst(triplet.attr)
  },
  (a,b) => Math.max(a,b)
)
```
Misc operations

- RDD -> Array
 - `take(n)`
- Compute the degree of each vertex
 - `graph.inDegrees/outDegrees`
- Collect edges for all vertices
 - `val coll = graph.collectNeighborIds(EdgeDirection.X)`
 with X In, Out, Either
- Get all edges of a given vertex id
 - `coll.lookup(id)`
Distributed Graphs as Tables (RDDs)

Property Graph

2D Vertex Cut Heuristic

Part. 1

Part. 2

Vertex Table (RDD)

Routing Table (RDD)

Edge Table (RDD)

Routing Table (RDD)
A Small Pipeline in GraphX

Raw Wikipedia → Hyperlinks → PageRank → Top 20 Pages

Spark Preprocess → Compute → Spark Post.

- Spark: 1492 seconds
- Giraph + Spark: 605 seconds
- GraphX: 342 seconds
- GraphLab + Spark: 375 seconds

Total Runtime (in Seconds)

Timed end-to-end GraphX is faster than GraphLab
Conclusion

• So many frameworks to choose from…
• Criteria
 – What is the size of your graph?
 – What algorithms do you want to run?
 – How fast do you want your results?
• Distributed frameworks are no silver bullet
 – Steeper learning curve
 – Add new problems (data distribution, faults…)
Food for thought

• Distributed partitioning is a hot topic
 – But what is a good partitioner?
• The network might not be a bottleneck anymore
 – RDMA + Infiniband == profit!
 – *The end of slow networks: it's time for a redesign*, Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian, Proc. VLDB Endow. 2016,
• Hardware contention is an issue
Resources

• Slides
 – http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
 – http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgorithms.pptx
 – https://amplab.cs.berkeley.edu/wp-content/uploads/2014/02/graphx@strata2014_final.pptx