Software tools for Complex Networks Analysis

Fabrice Huet, University of Nice Sophia-Antipolis
SCALE Team

MOTIVATION

Why do we need tools?

• Visualization
• Properties extraction
• Complex queries

Graphs are everywhere

• RDF

 ("test1", writtenBy, "Sophie")
 ("test1", publishedIn, "Journal")
 ("test2", publishedIn, "Journal")

• SPARQL

 SELECT ?s WHERE {
 ?s writtenBy ?a.
 ?a hasName "Sophie".
 ?s publishedIn "Journal".
 }

 Basically a sub-graph matching

Source: Boldi et al.
Why are graphs different?

- Graphs can be large
 - Facebook: 720M users, 69B friends in 2011
 - 1.4 billions vertices, 1 trillion edges (2017)
 - Twitter: 537M accounts, 23.95B links in 2012
- Low memory cost per vertex
 - 1 ID, 1 pointer/edge
- Low computation per vertex
- Graphs are not memory friendly
 - Random jumps to memory
- They are not hardware friendly!

Lots of frameworks

- Really lots of them
 - Matlab, NetworkX, GraphChi, Hadoop, Twister, Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,…
- Why so many?
 - Not one size fits all
 - Different computational models
 - Different architecture

Possible taxonomy

- Generic vs Specialized
 - Hadoop vs GraphChi (or Giraph, GraphX…)
- Shared vs Distributed Memory
 - GraphChi vs Pregel
- Synchronous vs Asynchronous
 - Giraph vs Maiter
- Single vs Multi threaded
 - NetworkX vs GraphChi

NETWORKX
Overview

• A Python package for complex network analysis
• Simple API
• Very flexible
 – Can attach any data to vertices and edges
 – Supports visualization
• Graphs generators
 • http://networkx.github.io/

Dependencies

• Supports Python 2.7 (preferred) or 3.0
• If drawing support required
 – Numpy (http://www.numpy.org/)
 – Mathplotlib (http://matplotlib.org/)
 – Graphviz (http://graphviz.org/)

Examples

• Creating an empty graph

```python
>>> import networkx as nx
>>> G=nx.Graph()
```

• Adding nodes

```python
>>> G.add_node(1)
>>> G.add_nodes_from([2,3])
```

• Adding edges

```python
>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])
```

Examples (2)

• Graph generators

```python
>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)
```

• Stochastic graph generators

```python
>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)
```

• Reading from files

```python
>>> mygraph=nx.read_gml("path.to.file")
```
Examples (3)

- Graph analysis
  ```python
  >>> nx.connected_components(G)
  >>> nx.degree(G)
  >>> pr=nx.pagerank(G, alpha=0.9)
  ```

- Graph drawing
  ```python
  >>> import matplotlib.pyplot as plt
  >>> nx.draw(G)
  >>> plt.show()
  ```

NetworkX - Conclusion

- Easy to use
 - Very good for prototyping/testing

- Centralized
 - Limited scalability

- Efficiency
 - Memory overhead

Overview

- Edges and vertices can have values
 - Some state, weight…

- Values propagate along edges
 - From source to destination vertex

- Vertices values are (can be) computed using incoming values

- Source:
 - High-Level Programming Abstractions for Distributed Graph Processing* by Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi.
Vertex Centric model ("think like a vertex")

- **Input**:
 - Directed graph
 - A function to execute on each vertex (aka Vertex Function)
- **Execution model**
 - At step \(i\):
 - Receive values from ingoing edges sent at \(i-1\)
 - Compute local state
 - Push new values
- **Introduced in Pregel**

Gather Scatter

- **Iteration based**
- Two operations to implement
 - Gather: receive values
 - Scatter: send values
- **Very similar to vertex centric**
 - Except message sending/receiving occurs in the same step
- **Read/Write synchronization is done with inbox/outbox**
 - No write during gather, no read during scatter

The GAS Model

- Gather, Sum, Apply, Scatter
- Try to address work imbalance in power-law graph
 - Mainly low-degree vertices, few high-degree
- Gather phase
 - A user defined function is applied to each edge of a vertex in parallel
- Sum phase
 - Apply an associative and commutative function to processed edges
- Apply
 - Compute new vertex state
- Scatter
 - User defined function on edges in parallel

Motivation

- Divide a graph into partitions
- Allow for parallel/distributed processing
- Optimal partitioning?
 - NP Complete :(
- Good partitioning?
 - Based on heuristics
 - Try to optimize some metrics (std dev of size partition, inter partitions communications…)
- How to partition?
 - Vertex vs Edges

GRAPH PARTITIONING
Vertex partitioning

- Partitions

Edge partitioning

- Frontier vertices

Random approach

- RandomVertexCut computes the hash value for each pair (source id, destination id).

 - \(\text{Id} = 15832 \) \(\text{Id} = 74867 \)
 - \(\text{HASH}(\text{Id} = 3674867) \pmod{6} = 4 \)

Segmenting hash space approach

- Grid partitioner

 - \(\text{Hash}(\text{Id} = 3674867) \pmod{3} = 1 \)
 - \(\text{Hash}(\text{Id} = 4873487) \pmod{3} = 2 \)

["Graphbuilder: scalable graph ETL framework", N. Jain et al., 2013]
Greedy approach

- **Greedy** partitioner minimizes communication cost at each step

"Graphbuilder: scalable graph ETL framework", N. Jain et al., 2013

Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

PageRank algorithm

- Execution time (s)
- Observed vs predicted by best LRM

Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

Overview

- Single machine
 - Distributed systems are complicated!
- Disk-based system
 - Memory is cheap but limited
- Supports both static and dynamic graph
- Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos,
 GraphChi: Large-scale Graph Computation on Just a PC, Proceedings of OSDI’12
Computational Model

- Vertex centric
 - Vertices and Edges have associated values
 - Update a vertex values using edges values
- Typical update
 - Read values from edges
 - Compute new value
 - Update edges
- Asynchronous model
 - Always get the most recent value for edges
 - Schedule multiple updates

Storing graphs on disk

- Compressed Sparse Row (CSR)
 - Equivalent to adjacency sets
 - Store out-edges of vertex consecutively on Disk
 - Maintain index to adjacency sets for each vertex
- Very efficient for out-edges, not so for in-edges
 - Use Compressed Sparse Column (CSC)
- Changing edges values
 - On modification of out-edge: write to CSC
 - On reading of in-edge: read from CSR
 - Random read or random write

Parallel Sliding Windows

- Minimize non sequential disk access
- 3 stages algorithm
- Storing graph on disk
 - Vertices V are split into P disjoints intervals
 - Store all edges that have destination in an interval in a Shard
 - Edges are stored by source order

Parallel Sliding Windows (2)

- Loading subgraph of vertices in interval p
 - Load Shard(p) in memory
 - Get in-edges immediately
 - Out-edges are stored in the P-1 other shards
 - But ordered by sources, so easy to find
- Loading subgraph $p+1$
 - Slide a window over all shards
- Each interval requires P sequential reads
Parallel updates

- Once interval loaded, update in parallel
- Data races
 - Only a problem if considering edge with both endpoints in interval
 - Enforce sequential update
- Write back result to disk
 - Current shard totally rewritten
 - Sliding window of other shards rewritten

Example

<table>
<thead>
<tr>
<th>Shard 1</th>
<th>Shard 2</th>
<th>Shard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Shard 1</th>
<th>Shard 2</th>
<th>Shard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.304</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.221</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Performance

- Mac Mini 2.5GHz, 8GB and 256GB SSD
- Shard creation

<table>
<thead>
<tr>
<th>Graph name</th>
<th>Vertices</th>
<th>Edges</th>
<th>P</th>
<th>Preproc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal[3]</td>
<td>4.6M</td>
<td>999M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>settlement[6]</td>
<td>0.3M</td>
<td>994M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>email[14]</td>
<td>26M</td>
<td>0.37B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>twitter-2010[35]</td>
<td>42M</td>
<td>1.79B</td>
<td>20</td>
<td>16 min</td>
</tr>
<tr>
<td>uk-union[11]</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web[40]</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
Overview

- Directed graphs
- Distributed Framework Based on the Bulk Synchronous Parallel model
- Vertex Centric computation model
- Private framework with C++ API

Model of Computation (1)

- BSP : model for parallel programming
 - Takes into account communication/synchronization
 - Series of super-steps (iterations)
 - Performs local computations
 - Communicate with others
 - Barrier

From: http://www.multicorebsp.com/
Model of Computation (2)

- Vertex Centric
 - Each vertex execute a function in parallel
- Can read messages sent at previous super-step
- Can send messages to be read at next super-step
 - Not necessarily following edges
- Can modify state of outgoing edges
- Run until all vertices agree to stop and no message in transit

From Malewicz and al.

Maximum Value Example

From Malewicz and al.

Implementation and Execution (1)

- User provides a graph, some input (vertex and edges values) and a program
- The program is executed on all nodes of a cluster
 - One node become the master, other are workers
- The graph is divided into partitions by the master
 - Vertex Id used to compute partition index \(\text{e.g. } \text{hash}(\text{Id}) \ mod \ N \)
- Partitions are assigned to workers
- User input file is partitioned (no fancy hash) and sent to workers
 - If some input is not for the worker, it will pass it along

Implementation and Execution (2)

- The master request worker to perform superstep
 - At the end, each worker reports the number of active vertices for next superstep
- Aggregators can be used at end of super-step to reduce communications
 - Perform reduction on values before sending
- If no more active vertices, Master can halt computation
- What about failures?
 - Easy to checkpoint workers at end of superstep
 - If failure, rollback to previous checkpoint
 - If master fails… too bad 😞
PageRank in Pregel

\[
PR(p_i) = \frac{1 - d}{N} + d \sum_{p_j \in \text{out}(p_i)} \frac{PR(p_j)}{L(p_j)}
\]

```java
class PageRankVertex {
    public void Compute(MessagingIterator msgs) {
        if (superstep() == 1) {
            double sum = 0;
            for (; msgs.next(); msgs.next())
                sum += msgs.value();
            NormalizeValue(0.15 / sumVertices() + 0.85 * sum);
        }
        if (superstep() < 30) {
            for (int i = 0; i < pars.size(); i++)
                SendMessageToAllNeighbors(pars[i]);
        }
    }
}
```

Performance

Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

Figure 9: SSSP—log-normal random graphs, mean out-degree 127.1 (thus over 127 billion edges in the largest case): varying graph sizes on 800 worker tasks scheduled on 300 multicore machines

Frameworks:

HADOOP MAPREDUCE
Map Reduce operations

- Input data are (key, value) pairs
- 2 operations available: map and reduce
- Map
 - Takes a (key, value) and generates other (key, value)
- Reduce
 - Takes a key and all associated values
 - Generates (key, value) pairs
- A map-reduce algorithm requires a mapper and a reducer
- Re-popularized by Google
 - MapReduce: Simplified Data Processing on Large Clusters
 Jeffrey Dean and Sanjay Ghemawat, OSDI'04

Map Reduce example

- Compute the average grade of students
 - For each course, the professor provides us with a text file
 - Text file format: lines of “student grade”
- Algorithm (non map-reduce)
 - For each student, collect all grades and perform the average
- Algorithm (map-reduce)
 - Mapper
 - Assume the input file is parsed as (student, grade) pairs
 - So... do nothing!
 - Reducer
 - Perform the average of all values for a given key

Map Reduce example

- Course 1
 - Bob 20
 - Brian 10
 - Paul 15
- Course 2
 - Bob 15
 - Brian 20
 - Paul 10
- Course 3
 - Bob 10
 - Brian 15
 - Paul 20

Map

Reduce

- (Bob, 20)
- (Brian, 10)
- (Paul, 15)
- (Bob, 15)
- (Brian, 20)
- (Paul, 10)
- (Bob, 10)
- (Brian, 15)
- (Paul, 20)
- (Bob, [20, 15, 10])
- (Brian, [10, 15, 20])
- (Paul, [15, 20, 10])

Map Reduce example... too easy 😏

- Ok, this was easy because
 - We didn’t care about technical details like reading inputs
 - All keys are “equals”, no weighted average
- Now can we do something more complicated?
 - Let’s computed a weighted average
 - Course 1 has weight 5
 - Course 2 has weight 2
 - Course 3 has weight 3
 - What is the problem now?
Map Reduce example

1/18/18

Map Reduce example - advanced

- How discriminate between values for a given key
 - We can’t... unless the values look different
- New reducer
 - Input: (Name, [course1_Grade1, course2_Grade2, course3_Grade3])
 - Strip values from course indication and perform weighted average
- So, we need to change the input of the reducer which comes from... the mapper
- New mapper
 - Input: (Name, Grade)
 - Output: (Name, courseName_Grade)
 - The mapper needs to be aware of the input file

Map Reduce example - 2

What is Hadoop?

- A set of software developed by Apache for distributed computing
- Many different projects
 - MapReduce
 - HDFS: Hadoop Distributed File System
 - Hbase: Distributed Database
- Written in Java
 - Bindings for your favorite languages available
- Can be deployed on any cluster easily
Hadoop Job

- An Hadoop job is composed of a map operation and (possibly) a reduce operation
- Map and reduce operations are implemented in a Mapper subclass and a Reducer subclass
- Hadoop will start many instances of Mapper and Reducer
 - Decided at runtime but can be specified
- Each instance will work on a subset of the keys called a Splits

Graphs and MapReduce

- How to write a graph algorithm in MapReduce?
- Graph representation?
 - Use adjacency matrix

	V₁	V₂	V₃
V₁	0	0	1
V₂	1	0	1
V₃	1	1	0

 - Line based representation
 - V₁: 0, 0, 1
 - V₂: 1, 0, 1
 - V₃: 1, 1, 0

 - Size |V|^2 with tons of 0 ...

Sparse matrix representation

- Only encode useful values, i.e. non 0
 - V₁: (V₃,1)
 - V₂: (V₁,1), (V₃,1)
 - V₃: (V₁,1), (V₂,1)
- And if equal weights
 - V₁: V₃
 - V₂: V₁, V₃
 - V₃: V₁, V₂
Single Source Shortest Path

- Find the shortest path from one source node S to others
- Assume edges have weight 1
- General idea is BFS
 - $\text{Distance}(S) = 0$
 - For all nodes N reachable from S
 - $\text{Distance}(N) = 1$
 - For all nodes N reachable from other set of nodes M
 - $\text{Distance}(N) = 1 + \min(\text{Distance}(M))$
 - And start next iteration

MapReduce SSSP

- Data
 - Key: node N
 - Value: $(d, \text{adjacency list of } N)$
 - d distance from S so far
- Map:
 - $\forall m \in \text{adjacency list}: \text{emit } (m, d + 1)$
- Reduce:
 - Keep minimum distance for each node
 - This basically advances the frontier by one hop
 - Need more iterations

MapReduce SSSP (2)

- How to maintain graph structure between iterations
 - Output adjacency list in mapper
 - Have special treatment in reducer
- Termination?
 - Eventually
 - Stops when no new distance is found… (any idea how?)

Seriously?

- MapReduce + Graphs is easy
- But everyone is MapReducing the world!
 - Because they are forced to
 - And because of Hadoop
- Hadoop gives
 - A scalable infrastructure (computation and storage)
 - Fault tolerance
- So let’s use Hadoop as an underlying infrastructure
Giraph

- Built on top of Hadoop
- Vertex centric and BSP model
 - Giraph jobs run as MapReduce

Spark

- Addresses limitations of Hadoop
 - Disk intensive
 - No support for iteration (cycles)
- Spark
 - In-Memory computation
 - Workflows with cycles
 - Still relies on Map-Reduce like operations
 - Multi languages support: Scala, Java, Python, R
- https://spark.apache.org/

SPARK AND GRAPHX

Resilient Distributed Datasets

- RDDs
 - Array-like data structure
 - Mostly in-memory
 - Partitioned
 - Fault tolerant
 - Immutable ← very important!
- RDDs are created through transformations
 - Of raw data or another RDD
 - Example: map, filter, reduceByKey, groupBy...
- RDDs support actions
 - Example: collect, count, reduce, save...
- Transformations are lazy

Source: https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/1015167006153920/
Example: Word Count

```scala
val textFile = sc.textFile("...")
val counts = textFile.flatMap(line => line.split(" "))
  .map(word => (word, 1))
  .reduceByKey(_ + _)
counts.saveAsTextFile("...")
```

Spark Stack

- Spark SQL
- Spark Streaming
- MLlib (machine learning)
- GraphX (graph)

Separate Systems to Support Each View

- **Table View**
 - Hadoop
 - Spark
- **Graph View**
 - Pregel
 - GraphLab

Solution: The GraphX Unified Approach

- **New API**
 - Blurs the distinction between Tables and Graphs
- **New System**
 - Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
Abstractions

- Graphs are represented by 2 collections
 - Vertex RDD (IDs, Properties)
 - Edges RDD(sIDs, dIDs, Properties)
- Graphs have multiple properties
 - edges, vertices
- Most graphs operations can be expressed as analyzing or joining collections
 - Join stage (build a triple view)
 - Group-by-stage (reduce-like)
 - Map operations

Building a Graph

```scala
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val vertices : VertexRDD[String] = ...
val edges : EdgeRDD[Int] = ...
val graph : Graph(vertices, edges) = ...

graph.edges.count()
```

Triplets Join Vertices and Edges

The triplets view joins vertices and edges:

```sql
SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e
LEFT JOIN vertices AS src, vertices AS dst ON e.srcId = src.Id AND e.dstId = dst.Id
```

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
Aggregate Messages

- Applies a user defined function to each edge triplet
 - The messages
- Applies a user defined function to aggregate the messages at destination vertex

```python
def aggregateMessages(Msg: ClassTag):
    sendMsg: EdgeContext(VD, ED, Msg) => Unit,
    mergeMsg: (Msg, Msg) => Msg,
    tripletFields: TripletFields = TripletFields.All : VertexRDD[Msg]
```

Example: get largest incoming edge

- For each vertex compute the largest incoming edge
 - Message is edge attribute value
 - Merge function is max

```python
graph.aggregateMessages[Int]

```triplet => {
 triplet.sendToDst(triplet.attr)
}.;
(a,b) => Math.max(a,b)
```

**Misc operations**

- RDD -> Array
  - take(n)
- Compute the degree of each vertex
  - graph.inDegrees/outDegrees
- Collect edges for all vertices
  - `val coll = graph.collectNeighborIds(EdgeDirection.X)` with X In, Out, Either
- Get all edges of a given vertex id
  - coll.lookup(id)

**Distributed Graphs as Tables (RDDs)**
A Small Pipeline in GraphX

Raw Wikipedia → Hyperlinks → PageRank → Top 20 Pages

Timed end-to-end GraphX is faster than GraphLab

Conclusion

• So many frameworks to choose from...
• Criteria
  - What is the size of your graph?
  - What algorithms do you want to run?
  - How fast do you want your results?
• Distributed frameworks are no silver bullet
  - Steeper learning curve
  - Add new problems (data distribution, faults…)

Food for thought

• Distributed partitioning is a hot topic
  - But what is a good partitioner?
• New hardware is massively parallel
  - GPGPU, Xeon Phi...
• The network might not be a bottleneck anymore
  - RDMA + Infiniband = profit!
  - The end of slow networks: it's time for a redesign, Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian, Proc. VLDB Endow. 2016,
• Hardware contention is an issue

Resources

• Slides
  - http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
  - http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgo rithms.pptx
  - https://amplab.cs.berkeley.edu/wp-content/uploads/2014/02/graphx@strata2014_final.pptx