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Navigation

3 In Small world nets there
are short paths O((log(N))?)

7 But can we find them?

O Milgram's experiment
suggests nodes can find them
using only local information

O Standard routing algorithms
require O(N) information
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Kleinberg's result
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3 Model: Each node has

O Short-range connections

O 1 long-range connection, up to distance r with
probability prop. to r

O For a=0 it is similar to Watts-Strogatz model:
there are short-paths




Kleinberg's result
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7 If a=2 the greedy algorithm (forward the
packet to the neighbor with position

closest to the destination) achieves avg
path length O((log(N))?)




Kleinberg's result
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73 If a<>2 no local information
algorithm can take advantage
of small world properties .

O avg path length Q(NB#/?) e

Wher-e B=(2_o()/3 for O<=O(<=2, Clustering exponent ()
B=(x-2)/(x-1), for o>2
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Kleinberg's result
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7 Conclusions

O The larger o the less distant long-range
contacts move the message, but the more
nodes can take advantage of their "geographic
structure”

O =2 achieved the best trade-off




Configuration model

3 A family of random graphs with given
degree distribution



Configuration model

3 A family of random graphs with given
degree distribution

O Uniform random matching of stubs
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Configuration model

3 A family of random graphs with given
degree distribution

O Uniform random matching of stubs
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Back to Navigation:
Random Walks

7 What can we do in networks without a
geographical structure?

o Random walks




Back to Navigation:
Random Walks

7 How much time is needed in order to reach
a given hode?



Random Walks:
stationary distribution

1
D .ﬂfl:Ek—ﬂ:]
jen, X
ko k
D j'[i= N =

7 avg time to come back to node i starting
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7 Avg time to reach node |
O intuitively =O(M/k;)




Another justification

7 Random walk as random edge sampling

O Prob. to pick an edge (and a direction) leading
to a node of degree kis p,

<k>
O Prob. to arrive to a given node of degree k:
kp,  k
p.N<k> 2M

O Avg. time to arrive to this node 2M/k

7 ...equivalent to a RW where at each step
we sample a configuration model



Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

{a,b,c,d}



Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

3 If a random walk looking for jarrives in a
the message is directly forwarded to /

{a,b,c,d}



Distributed navigation

reasoning 1
7 We discover i when we sample one of the
links of /’s neighbors . .
3 Avg # of these links: kz((k 1)Lk )= ,(< >—1)
<k> <k>

2
7 Prob. to arrive at one of them: % [<Kk">
M\ <k>




Distributed navigation
reasoning 2

3 Prob that a node of degree k is neighbor
of node /j given that RW arrives to this

node from a node different from i
1_( k )k_lzki(k—l)

1
2M 2M

7 Prob that the next edge brings to a node
that is neighbor of node i:

Ek,(k—l) kp, Kk (<k2>_1)

- <k>

2M <k> 2M

k



Distributed navigation

7 Avg. Hop# 2,24 B k2<>k_>< k>
O Regular graph with degree d: d(zdj\:ll)
O ER with <k>: ki(<2kj\i -1
O Pareto distribution | P(k) = iﬁ) :
_2M  (a=2)(a-1) If a->2..

k. x —(a-2)(a-1)



Distributed navigation

3 Application example:

O File search in unstructured P2P networks
through RWs



