
Random Walk Based Algorithms for

Complex Network Analysis

Konstantin Avrachenkov
Inria Sophia Antipolis

Winter School on Complex Networks 2015, Inria SAM,
12-16 Jan.

Complex networks

Main features of complex networks:

I Sparse topology;

I Heavy-tail degree distribution;

I Small average distance;

I Many triangles.

Complex networks

Many complex networks are very large. For instance,

I The static part of the web graph has more than 10 billion
pages. With an average number of 38 hyper-links per page,
the total number of hyper-links is 380 billion.

I Twitter has more than 500 million users. On average a user
follows about 100 other users. Thus, the number of
”following”-type social relations is about 50 billion.

Complex network analysis

Often the topology of a complex network is not known or/and
constantly changing.

And crawling networks is often subject to a limit on the
number of requests per minute.

For instance, a standard Twitter account can make no more
than one request per minute.

With this rate, we would crawl the entire Twitter social
network in 950 years...

Complex network analysis

Thus, for the analysis of complex networks, it is just essential
to use methods with linear or even sub-linear complexity.

Complex network analysis

In this tutorial we answer the following questions:

I How to estimate quickly the size of a large network?

I How to count the number of network motifs?

I How to detect quickly most central nodes?

I How to partition network in clusters/communities?

And we answer these questions by
random walk based methods with low complexity.

How to estimate quickly the number of nodes?

Suppose that we can only crawl the network.

And we would like to estimate quickly the total number of
nodes in the network.

The first element of our method is
the inverse birthday paradox.

How to estimate quickly the number of nodes?

In a class of 23 students, the probability of having at least one
pair of students with the same birthday is more than 50%!

A closely related the inverse birthday paradox says:

If we sample repeatedly with replacement, independently and
uniformly, from a population of size n, the number of trials
required for the first repetition has expectation

√
2n and

variance Θ(
√
n).

How to estimate quickly the number of nodes?

Let L be the number of node samples until a repetition occurs.
Then, an obvious estimator of the network size is just

n̂ =
L2

2
.

Since the variance is quite high, we need to perform and
average several experiments.

Theorem
Denote by k the number of trials and let n̂k = 1/k

∑k
i=1 L

2
i /2.

Then, the relative error |n̂k − n|/n is less than ε with high
probability if we take Θ(1/ε2) trials.

How to estimate quickly the number of nodes?

In many complex networks, generating samples from the
uniform distribution is costly or even infeasible.

To obtain a sample, which is very close to the uniformly
random, we can use either discrete-time or continuous-time
random walks.

How to estimate quickly the number of nodes?

Let us first consider the discrete-time random walk.

How to estimate quickly the number of nodes?

Denote by di the degree of node i . Then, the stationary
distribution of the random walk is given by

πi = P{St = i} =
di

2m
,

where m is the number of links.

We can unbias the RW sampling by retaining a sample with
probability 1/di .

How to estimate quickly the number of nodes?

Alternatively, we can use a continuous time random walk also
choosing uniformly from the list of neighbours and waiting an
exponentially distributed time with the mean duration of 1/di .

In such a case, the stationary distribution is described by the
differential equation

π̇(t) = π(t)(A− D),

where D = diag{di} and A is the adjacency matrix

Aij =

{
1, if (i , j) ∈ E ,
0, otherwise.

How to estimate quickly the number of nodes?

For two distributions p and q, let d(p, q) denotes the total
variation distance:

d(p, q) =
1

2

n∑
i=1

|pi − qi |.

How to estimate quickly the number of nodes?

Theorem
Let λ2 = min{λ : (D − A)x = λx & λ > 0} and let πi(t) be
the distribution of the continuous-time random walk when the
process starts at node i . Then, we have

d(πi(t), π) ≤ 1

2
√
πi
e−λ2t ,

where π is the stationary distribution.

In our case, πi = 1/n. Next, taking t = 3/2 log(n)/λ2 we
obtain

d(πi(t), π) ≤ 1

2n
.

How to estimate quickly the number of nodes?

Thus, we can conclude that the complexity of the
continuous-time random walk method on expander-type
networks is O(

√
n log(n)), which is sub-linear complexity.

How to estimate quickly the number of links?

To estimate the number of edges, we take a different point of
view on the random walk.

Consider the first return time to node i

T+
i = min{t > 0 : St = i & S0 = i}.

The expected value of the first return time is given by

E [T+
i] =

1

πi
=

2m

di
.

How to estimate quickly the number of links?

Let Rk =
∑k

j=1 Tk be the time of the k-th return to node i .
Then, we can use the following estimator for the number of
links

m̂ =
Rkdi
2k

.

To estimate the required complexity, we need to have an idea
about the variance of T+

i . We can use the following formula

Var [T+
i] = E [(T+

i)2]− (E [T+
i])2 =

2Zii + πi
π2
i

− 1

π2
i

with

Zii =
∞∑
t=0

(P{St = i |S0 = i} − πi).

How to estimate quickly the number of links?

Next, we note that

Zii =
∞∑
t=0

(P{St = i |S0 = i}−πi) ≤
∞∑
t=0

|P{St = i |S0 = i}−πi |

and using |P{St = i |S0 = i} − πi | ≤ λ̃t2, we obtain

Zii ≤
1

1− λ̃2
,

and hence,

Var [T+
i] .

2

(1− λ̃2)π2
i

or, in our context,

Var [T+
i] .

8m2

(1− λ̃2)d2
i

.

Twitter as example

Twitter as example

Assuming that a rough estimation of the number of users is
500 · 106 and the average number of followers per user is 10,
the expected return time from the nodes like “Katy Perry” or
“Justin Bieber” is about 2 · 10 · 500 · 106/50 · 106 = 200.

To obtain a decent error (≤ 5%), we need about 1000
samples, and hence in total about 200000 operations. This is
orders of magnitude less than the size of the Twitter follower
graph!

How to estimate quickly the number of triangles?

To evaluate the degree of clustering in a network, we need to
estimate the number of triangle.

Towards this goal, we consider a random walk on weighted
network where for each link (i , j) we assign a weight 1 + t(i , j),
with t(i , j) being the number of triangles containing (i , j).

The stationary distribution of the random walk on such
weighted network is given by

πi =
di +

∑
j∈N(i) t(i , j)

2m + 6t(G)
.

How to estimate quickly the number of triangles?

Thus, if Rk =
∑k

j=1 Tk is the time of the k-th return to node
i , we can use the following estimator

t̂(G) = max

{
0,

(di +
∑

j∈N(i) t(i , j))Rk

6k
− m

3

}
,

where m is the number of links which we already know how to
estimate.

Example of the Web graph with 855802 nodes, 5066842 links
and 31356298 triangles: Starting from the node with 53371
triangles, the expected return time is 1753. For a good
accuracy it was needed to make about 100 returns.

Quick detection of top-k largest degree nodes

What if we would like to find quickly in a network
top-k nodes with largest degrees?

Some applications:

I Routing via large degree nodes

I Finding influential users in OSN

I Proxy for various centrality measures

I Node clustering and classification

I Epidemic processes on networks

Top-k largest degree nodes

Even IF the adjacency list of the network is known...

the top-k list of nodes can be found by the HeapSort
with complexity O(n + klog(n)), where n is the total number
of nodes.

Even this modest complexity can be quite demanding for large
networks (i.e., 950 years for Twitter graph).

Random walk approach

Let us again try a random walk approach.

We actually recommend the random walk with jumps with the
following transition probabilities:

pij =

{
α/n+1
di+α

, if i has a link to j ,
α/n
di+α

, if i does not have a link to j ,
(1)

where di is the degree of node i and α is a parameter.

Random walk approach

This modification can again be viewed as a random walk on
weighted graph.

Since the weight of link is 1 + α/n, the stationary distribution
of the random walk is given by a simple formula

πi(α) =
di + α

2|E |+ nα
∀i ∈ V . (2)

Random walk approach

Example:

If we run a random walk on the web graph of the UK domain
(about 18 500 000 nodes), the random walk spends on average
only about 5 800 steps to detect the largest degree node.

Three order of magnitude faster than HeapSort!

Random walk approach

We propose the following algorithm for detecting the top k list
of largest degree nodes:

1. Set k , α and m.

2. Execute a random walk step according to (1). If it is the first
step, start from the uniform distribution.

3. Check if the current node has a larger degree than one of the
nodes in the current top k candidate list. If it is the case,
insert the new node in the top-k candidate list and remove
the worst node out of the list.

4. If the number of random walk steps is less than m, return to
Step 2 of the algorithm. Stop, otherwise.

Random walk approach

Let us investigate how the performance of the algorithm
depends on parameters α and m.

Let us first discuss the choice of α.

The choice of α

We calculate

Pπ[Wt = i |jump] =
Pπ[Wt = i , jump]

Pπ[jump]

=
Pπ[Wt = i]Pπ[jump|Wt = i]∑n
j=1 Pπ[Wt = j]Pπ[jump|Wt = j]

=

di+α
2|E |+nα

α
di+α∑n

j=1
dj+α

2|E |+nα
α

dj+α

=
1

n
,

and, similarly,

Pπ[Wt = i |no jump] =
di

2|E |
= πi(0), i = 1, 2, . . . , n.

The choice of α

There is a trade off for α: we would like to maximize the
long-run fraction of independent observations from π(0).

To this end, we note that given m′ cycles, the mean total
number of steps is

m′E [cycle length] = m′(Pπ[jump])−1.

On average m′Pπ[jump] observations coincide with a jump.

m′ −m′Pπ[jump]

m′(Pπ[jump])−1
= Pπ[jump](1− Pπ[jump])→ max .

Obviously, the maximum is achieved when

Pπ[jump] =
1

2
.

The choice of α

It remains to rewrite Pπ[jump] in terms of the algorithm
parameters:

Pπ[jump] =
n∑

j=1

Pπ[Wt = j]Pπ[jump|Wt = j]

=
n∑

j=1

dj + α

2|E |+ nα

α

dj + α
=

nα

2|E |+ nα
=

α

d̄ + α
, (3)

where d̄ := 2|E |/n is the average degree.

For the maximal efficiency, the last fraction above must be
equal to 1/2, which gives the optimal value for parameter α

α∗ = d̄ .

The choice of m

Let us now discuss the choice of m.

We note that once one of the k nodes with the largest degrees
appears in the candidate list, it remains there subsequently.

Thus, we are interested in the hitting events.

The choice of m

Theorem (Adaptation from B. Bollobás)
Let H1, ...,Hk denote the hitting times to the top-k nodes with
the largest degrees (d1 ≥ ... ≥ dk ≥ dk+1 ≥ ...). Then, the
expected time, Eu[H̃], for the random walk with transition
probabilities (1) and starting from the uniform distribution to
detect a fraction β of top-k nodes is bounded by

Eu[H̃] ≤ 1

1− β
Eu[Hk]. (4)

The choice of m

Under reasonable technical assumption, we can show that

Eu[Hk] .
1

πk(α)
=

2|E |+ nα

dk + α
. (5)

In particular, choosing α = d̄ in (5) yields

Eu[Hk] .
2d̄n

dk + d̄
. (6)

Example: From (4) and (5), we have for the Twitter network

Eu[time to hit 70% of top-100 nodes] ≤ 1

1− β
2d̄n

d100 + d̄
= 18days

Sublinear complexity for configuration model

Consider a configuration random graph model with power law
degree distribution.

We assume that the node degrees D1, . . . ,Dn are i.i.d. random
variables with a power law distribution F and finite
expectation E [D]. That is,

F̄ (x) = Cx−γ for x > x ′. (7)

In the configuration model, one can use the quantile x(j−1)/n
to approximate the degree D(j) of the top-j node, j = 2, ..., k :

D(j) ≈ C 1/γ(j − 1)−1/γn1/γ. (8)

Sublinear complexity for configuration model

Combination of equation (8) and inequalities (4) and (5), and
taking α = d̄ , yields

Eu[H̃] ≤ 1

1− β

(
2E [D]n

C 1/γ(k − 1)−1/γn1/γ + E [D]

)
∼ C̃n

γ−1
γ ,

and consequently

Eu[H̃] = O(n
γ−1
γ),

which means that we can find a β fraction of top-k largest
degree nodes in sublinear expected time in the configuration
model.

Stopping rules

Suppose now that node i can be sampled independently with
the stationary probability πi(0).

And let us estimate the probability of detecting correctly the
top k list of nodes after m i.i.d. samples from (2).

Denote by Xi the number of hits at node i after m i.i.d.
samples.

P[X1 ≥ 1, ...,Xk ≥ 1] =∑
i1≥1,...,i1≥1

m!

i1! · · · ik !(m − i1 − ...− ik)!
πi1
1 · · · π

ik
k (1−

k∑
i=1

πi)
m−i1−...−ik

Stopping rules

We propose to use the Poissonization technique.

Let Yj , j = 1, ..., n be independent Poisson random variables
with means πjm.

It is convenient to work with the complementary event of not
detecting correctly the top k list.

P[{X1 = 0} ∪ ...∪ {Xk = 0}] ≤ 2P[{Y1 = 0} ∪ ...∪ {Yk = 0}]

= 2(1−P[{Y1 ≥ 1}∩...∩{Yk ≥ 1}]) = 2(1−
k∏

j=1

P[{Yj ≥ 1}])

= 2(1−
k∏

j=1

(1− P[{Yj = 0}])) = 2(1−
k∏

j=1

(1− e−mπj)) =: a,

(9)

Stopping rules

This can be used to design the stopping criteria for our
random walk algorithm.

Let ā ∈ (0, 1) be the admissible probability of an error in the
top k list.

Now the idea is to stop the algorithm after m steps when the
estimated value of a for the first time is lower than the critical
number ā.

âm = 2(1−
k∏

j=1

(1− e−Xj))

is the maximum likelihood estimator for a, so we would like to
choose m such that âm ≤ ā.

Stopping rules

The problem, however, is that we do not know which Xj ’s are
the realisations of the number of visits to the top k nodes.

Then let Xj1 , ...,Xjk be the number of hits to the current
elements in the top k candidate list and consider the estimator

âm,0 = 2(1−
k∏

i=1

(1− e−Xji)),

which is the maximum likelihood estimator of the quantity

2(1−
k∏

i=1

(1− e−mπji)) ≥ a.

Stopping rule: Stop at m = m0, where

m0 = arg min{m : âm,0 ≤ ā}.

Stopping rules

In the introduced stopping rule we have strived to detect all
nodes in the top k list. This costs us a lot of steps of the
random walk.

We can significantly gain in performance by following a generic
“80/20 Pareto rule” that

80% of result can be achieved with 20% of effort.

Stopping rules

Let us calculate the expected number of top k elements
observed in the candidate list up to trial m.

Hj =

{
1, node j has been observed at least once,
0, node j has not been observed.

Assuming we sample in i.i.d. fashion from the distribution (2),
we can write

E [
k∑

j=1

Hj] =
k∑

j=1

E [Hj] =
k∑

j=1

P[Xj ≥ 1] =

k∑
j=1

(1− P[Xj = 0]) =
k∑

j=1

(1− (1− πj)m). (10)

Stopping rules

Here again we can use the Poisson approximation

E [
k∑

j=1

Hj] ≈
k∑

j=1

(1− e−mπj).

and propose stopping rule. Denote

bm =
k∑

i=1

(1− e−Xji).

Stopping rule: Stop at m = m2, where

m2 = arg min{m : bm ≥ b̄}.

Stopping rules

(a) α = 0.001 (b) α = 28.6

Figure: Average number of correctly detected elements in top-10
for UK.

References:

I Bawa, M., Garcia-Molina, H., Gionis, A., & Motwani, R.
(2003). Estimating aggregates on a peer-to-peer network.
Stanford Technical Report no.8090/586.

I Ganesh, A. J., Kermarrec, A. M., Le Merrer, E., & Massouli,
L. (2007). Peer counting and sampling in overlay networks
based on random walks. Distributed Computing, 20(4),
267-278.

I Cooper, C., Radzik, T., & Siantos, Y. (2013). Fast Low-Cost
Estimation of Network Properties Using Random Walks. In
Algorithms and Models for the Web Graph, WAW 2013, (pp.
130-143).

I Avrachenkov, K., Litvak, N., Sokol, M., & Towsley, D.
(2012). Quick detection of nodes with large degrees. In
Algorithms and Models for the Web Graph, WAW 2012, (pp.
54-65).

Thank you!

Any questions and suggestions are welcome.

