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1 Six degrees of separation

Everything starts with the experiment done by Milgram [Mil67]. Around 100 people had to
send letters to one person they knew the name, the address (Cambridge, MA) and some other
practical informations (job, hobbies, etc.). To send the letter, people were guided by the infor-
mations about the destination, but under the constraint that they had to transmit the letter
to someone they know (hand to hand). It appears that 20 letters arrived and that chains had
length between 2 and 10. The average length of the successful paths was 5 (meaning that the
letters passed in hands of 6 people). From there, the idea arises that people on earth are six
steps away one from each other. This is the six degrees of separation.

In 2003, Dodds, Muhamad and Watts tried another experiment using e-mails [DMW03].
There were around 25000 sources and 12 different destinations. Around 400 chains were suc-
cessful with a average length of 4 (roughly between 1 and 10). Lot of unsuccessful emails were
due to laziness or due to the fact that people did not trust in such an experiment.

From these experiments two main remarks arise: there exist short paths between humans
and it is possible to find them. This can be turned into two natural questions:

1. why do there exist short chains between humans?
2. how can we find them?

From these questions, a (one among many) definition of small worlds can be stated as follows

Definition 1 (Small World). A network has the small worlds properties if it has small di-
ameter and that short routes (with (poly)logarithmic length) can be found by a greedy algorithm.

Other definitions exist, all of them requiring the small diameter. Having a small clustering
coefficient (friends of my friends are my friends) is another common required property, but we
do not consider it in this note.

2 Augmented Graphs

To answer above questions, Watts and Strogatz propose to model small worlds by augmented
graphs [WS98].

Definition 2 (Augmented Graph). An augmented graph consists of a pair (G,D) where
G = (V,E) is a graph and D is a probability distribution defining, for any u, v ∈ V , the
probability to have an extra arc (u, v).

The extra arcs (that do not belong to E) are called the long links. It is important to note
that they are chosen independently. In the model of augmented graphs, nodes represent humans
and edges/arcs represent social links. The graph G is known by all nodes and represents the
global knowledge (geography, professional informations, etc.). On the other hand, an (oriented)



long link (u, v) is only known by u and v and it is supposed to model social links that are ”not
predictable” (hazard friendship, etc.). Let L be the set of such long links.

No, we describe how the (decentralized) greedy routing algorithm performs in an augmented
graph. For any v ∈ V , let NG(v) = {u ∈ V : {v, u} ∈ E} and ND(v) = {u ∈ V : (v, u) ∈ L}.

Definition 3 ((Decentralized) Greedy Routing). When a node v receives a message with
destination d ∈ V , d 6= v, then v sends the message to its neighbor u ∈ NG(v) ∪ ND(v) such
that the distance between u and d in G (without considering the long links) is minimum. Ties
are broken uniformly at random.

The following question has been widely studied during the last decade.

Question 1. Given a graph G, does there exist a probability distribution D such that the aug-
mented graph (G,D) is a small world?

3 Augmenting a D-dimensional grid [Kle00b]

Let GD be a D-dimensional grid, D > 0, with n vertices. Let r ≥ 0. We consider the probability
distribution Dr that is inversely proportional to the distance. That is, let u ∈ V . For any v ∈ V ,
the probability to have a long link (u, v) is

Let u ∈ V, P (u→ v) =
1

Hr(u)
· 1

distG(u, v)r
with Hr(u) =

∑
v∈V \{u}

1

distG(u, v)r

3.1 A bad solution: r 6= D. Example of the uniform distribution.

We consider the example of a 2-dimensional grid, where each node has one extra long link
uniformly chosen among all vertices, i.e., P (u→ v) = 1

n−1 (r = 0).

Let ε < 1/4. Let t ∈ V be the destination of a message and let

B = {u ∈ V : distG(u, t) ≤ nε}.

Let p be the probability that there exists a vertex u ∈ B with its long link going in B.

Lemma 1.

p = Prob{∃u, v ∈ B : (u, v) ∈ L} →
n→∞

0

Proof. Note that |B| = Θ(n2ε). p = 1 − Prob{∀u, v ∈ B : (u, v) /∈ L}. Hence, p = 1 −
Πu∈BProb{∀v ∈ B : (u, v) /∈ L}. So p = O(1−Πu∈B(1− |B|n )) = O(1− (1− 1

n1−2ε )
n2ε

).

ln[(1− 1
n1−2ε )

n2ε
] = n2ε ln(1− 1

n1−2ε ) = n2ε(− 1
n1−2ε + o( 1

n1−2ε )) = − 1
n1−4ε + o( 1

n1−4ε )

Finally, p = 1− e−
1

n1−4ε+o(
1

n1−4ε ) →
n→∞

0 (because ε < 1/4). ut

From previous lemma, when a message arrives at distance ≤ nε to t, then no long links can
be used to reach t. Hence,

Theorem 1. [Kle00b] If r = 0 and D = 2, then the expected number of steps used by the greedy
routing is at least Ω(nε), and (G2,D0) is not a small world.
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3.2 r = D turns the grid into a small world.

We consider the augmented grid (GD,Dr) with r = D, i.e., P (u→ v) = 1
Hr(u)

· 1
distG(u,v)r

. Let t
be the destination node.

Theorem 2. [Kle00b] In (Gr,Dr), the greedy routing performs in O(log2 n) steps in expecta-
tion.

Lemma 2. Let s ∈ V and δ = dist(s, t) and let B = {v ∈ V : dist(v, t) ≤ δ/2}.

p = Prob{∃v ∈ B : (s, v) ∈ L} = Ω(
1

log n
).

Proof. Note that |B| = Θ(δr). Note also that the diameter of G is rn1/r.

Hr(s) =
∑

v∈V \{s}
1

distG(s,v)r
=

∑rn1/r

i=1 |Si|/ir where Si = {x ∈ V : dist(s, x) = i}. Since

|Si| = Θ(ir−1), we get that Hr(s) = Θ(
∑rn1/r

i=1 1/i) = Θ(log rn1/r) = Θ(log n).
Let v ∈ B such that dist(v, s) = 3δ/2.

p =
∑

u∈B Prob{(s, u) ∈ L} ≥ |B|Prob{(s, v) ∈ L} = |B|
Hr(s)

· 1
(3δ/2)r ≥

δr

logn ·
1

(3δ/2)r = Θ( 1
logn).
ut

Lemma 3. Let s ∈ V and δ = dist(s, t) and let B = {v ∈ V : dist(v, t) ≤ δ/2}. The expected
number of steps to reach B from s is O(log n).

Proof. Let (s, x1, x2, · · · ) be the path followed by a message with destination t, according to
the greedy routing. Since, for all i ≥ 1, dist(xi, t) ≤ dist(s, t), and because Dr is inversly
proportional to the distance, we get that, for all i ≥ 1, Prob{∃v ∈ B : (xi, v) ∈ L} ≥ Ω( 1

logn).
Bernoulli distribution: Prob{X = 0} = p ≤ 1 and Prob{X = 1} = 1−p. Then, the expected

number of steps before getting a 0 is
∑

i≥1 i(1− p)i−1p = 1/p. ut

Hence, in expectation, every log n steps, the greedy algorithm divides the distance from
the current message’s position to its destination by 2. So, it takes, in expectation, log n log `
steps for a message to reach its destination, where ` is the diameter of Gr, i.e., ` = rn1/r. This
concludes the proof of Theorem 2.

Theorem 3. [Kle00b] The D-dimensional grid with probability distribution Dr is a small world
iff D = r.

4 Beyond the grids: is every graph small-worldisable?

In previous sections, we saw how grids can be augmented into small worlds. That is, there
is a probability distribution D such that the greedy routing algorithm performs in log2 n
steps (in expectation) in the D-dimensional grid augmented via D. Apart the grid, several
other graphs’ classes have been investigated as bounded treewidth graph [Fra05], bounded
growth graphs [DHLS06a], graphs excluding a minor [AG06], bounded doubling dimension met-
rics [Sli05], etc. In all these classes of graphs, probability distributions have been proposed to
make the greedy routing algorithm to perform in poly-logarithmic number of steps. The question
was to know whether similar probability distributions for any graph.

More generally, Question 1 can be reformulated as follows:

Question 2. What is the smallest function f(n) such that there exists a probability distribution
D such that the greedy routing algorithm performs in f(n) steps (in expectation) in any graph
augmented via D?
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Actually, it is easy to see that f(n) = O(
√
n) as noticed in [FGK+09].

Lemma 4. f(n) = O(
√
n)

Proof. Let G be any graph and, for any v ∈ V , choose uniformly at random u ∈ V and add a
long link (v, u). Now consider any target t. Consider the ball B of radius

√
n centered at the

target. For any vertex x /∈ B, the probability that the long link (x, u) is such that u ∈ B is
|B|/n = 1/

√
n. Hence, the expected number of steps before the message arrives in B is

√
n.

Once the message ais arrived in B, the number of remaining steps is at most
√
n. ut

Moreover:

Theorem 4. [FGK+09] f(n) = O(n1/3).

Theorem 5. [FLL10] f(n) = Ω(2
√
logn). More precisely, there exists a infinite family of graphs

such that for any augmentation scheme, greedy routing requires an expected number of Ω(2
√
logn)

steps, for some source-target pair.

Theorem 6. [FG10] f(n) = O(2
√
logn) = no(1).

5 Improving the greedy routing

Let (G,D) be an augmented graph. In this section, we assume that each node knows the graph
topology G, its own long links, but also some long links of some vertices of G. More precisely, it
is natural to assume that a vertex knows the long links of the vertices that are close to it. We
will see that this improves the performance of the greedy algorithm.

More precisely, let v ∈ V and let Kv be the set of vertices u such that v knows the long
links of w. Let K̄v = {w ∈ V : (u,w) ∈ V and u ∈ Kv} be the set of head of the long links
with tails in Kv.

The indirect greedy routing performed as follows. When a node v receives a message with
destination d ∈ V , d 6= v, then v selects a vertex u ∈ NG(v)∪ND(v)∪ K̄v such that the distance
between u and d in G is minimum. Ties are broken uniformly at random. Then, v sends the
message directly to u if u ∈ NG(v) ∪ND(v) or uses recursively the greedy routing to send the
message to w ∈ Kv such that (w, u) ∈ L (in case u ∈ K̄v).
Remark. If at some step, a node v chooses to route the message toward a vertex u because v
knows that u has a long link that will be closer to the destination, then during the route between
v and u, then another node could know a better intermediary target and then the message will
never go to u. Note that, depending on how the sets Kv are defined, the indirect greedy routing
may have loops.

In what follows, Kv will be the set of the log n vertices closest to v. With such a setting, the
indirect greedy routing converge (there are no loops).

Theorem 7. [FGP06] For any v ∈ V , let Kv be the set of the log n vertices closest to v. Then,

the undirect greedy routing performs in O(log1+
1
r n) steps in expectation in (Gr,Dr).

Proof. Let x ∈ V at distance δ to t. Let B = {v ∈ V : dist(v, t) ≤ δ/2}.
Let u ∈ B. Prob{∃v ∈ Kx : (v, u) ∈ L} = 1 − Prob{∀v ∈ Kx : (v, u) /∈ L} =

1−Πv∈KxProb{(v, u) /∈ L} = 1−Πv∈Kx(1−Prob{(v, u) ∈ L}) = 1−Πv∈Kx(1− 1
logn ·

1
dist(v,u)r ).

If δ >> K
1/r
x , then Πv∈Kx(1− 1

logn ·
1

dist(v,u)r ) = Θ(1− 1
logn·δr )|Kx|.

So Prob{∀v ∈ Kx : (v, u) /∈ L} = Θ(e
− |Kx|

logn·δr )), and

Prob{∃v ∈ Kx : (v, u) ∈ L} = Θ(1− e−
|Kx|

logn·δr ))
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Prob{∃v ∈ Kx,∃u ∈ B : (v, u) ∈ L} =
∑

u∈B Prob{∃v ∈ Kx : (v, u) ∈ L}. Hence,

Prob{∃v ∈ Kx,∃u ∈ B : (v, u) ∈ L} = |B|(1− e−
|Kx|

logn·δr ))

Prob{∃v ∈ Kx,∃u ∈ B : (v, u) ∈ L} = Θ(|B| |Kx|logn·δr ) = Θ( |Kx|logn).

Therefore, in expectation,Θ( logn|Kx| ) setsKx must be visited to find a long link towardB. More-

over, to cross each set Kx takes |Kx|1/r steps (the radius of Kx) in expectation. Hence, dividing
the distance from the current message’s position to its destination by 2 takes Θ(|Kx|1/r logn|Kx| )
steps in expectation.

Therefore, to reach t takes Θ(log n · |Kx|1/r logn|Kx| ) which is O(log1+
1
r n) for |Kx| = log n. ut

[LS05] proposed a decentralized routing algorithm that computes paths of lengthO(log n(log log n)2),
improving previous result. However, it is still larger than shortest paths (O(log n)). Recently,
Giakkoupis and Schabanel proved that:

Theorem 8. [GS11] Consider the D-dimensional augmented grid.

– if D ≥ 2, there is a decentralized routing algorithm that computes paths of expected length
O(log n)

– if D = 1, there is a decentralized routing algorithm that computes paths of expected length
O(log n(log log n)) and no distributed algorithm can do better.

6 What’s next? Applications...

The model of Kleinberg has been used for the design of several peer-to-peer protocols [GG02]. It
is clearly interesting to understand how it could help for the design of routing tables in complex
Networks like the AS-network of the Internet, etc.
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