Abstract:
In this paper we study an asynchronous
distributed pi-calculus, with constructs for localities and
migration. We show that a simple static analysis ensures the
receptiveness of channel names, which, together with a simple type
system, guarantees a local deadlock-freedom property, that we call
message deliverability. This property states that any migrating
message will find an appropriate receiver at its destination
locality. We argue that this distributed, receptive calculus is still
expressive enough while allowing for an effective type inference
à la ML.
[PostScript, .ps.gz]