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Abstract

HoP is a SCHEME-based language and system to build
rich multi-tier web applications. We present HIPHOP,
a new language layer within HOP dedicated to re-
quest and event orchestration. HIPHOP follows the syn-
chronous reactive model of the Esterel and ReactiveC
languages, originally developed for embedded systems
programming. It is based on synchronous concurrency
and preemption primitives, which are known to be key
components for the modular design of complex tem-
poral behaviors. Although the language is concurrent,
the generated code is purely sequential and thread-free;
H1PHoOP is translated to HOP for the server side and to
straight JAVASCRIPT for the client side. With a mu-
sic playing example, we show how to modularly buid
non-trivial orchestration code with HIPHOP,
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1. Introduction

Hopr [9] is a SCHEME-based programming language
and system aimed at simplifying web programming. A
HopP program embeds server code and client code in a
single program. The HOP compiler automatically splits
the compound code into server code run by the HOP
runtime and client code compiled into JavaScript. HOP
automatically manages data transmission and event
communication between the server and client. It can
also handle applications involving multiple servers and
clients.

This paper introduces the HIPHOP extension! that
adds a new dimension to HOP: the sophisticated han-
dling of events based on synchronous reactive pro-
gramming [1], with event-handling and concurrency
programming primitives inspired by the Esterel [3] and
ReactiveC [5] languages. Synchronous reactive pro-
gramming has become classical in the circuit design
and real-time programming areas, where concurrency
is ubiquitous and event handling is a crucial concern. It
has many industrial implementations in embedded sys-
tems such as airplane, train, or plant control, as well as
complex HMIs such as airplane cockpits [4].

We show that synchronous programming techniques
are also well adapted to web programming, and espe-
cially to complex requests handling. We demonstrate
that embedding synchronous concurrency and event-
handling primitives into HOP makes web programming
easier and has the potential of greatly simplifying the
development of web applications.

Section 2 presents basic examples, the way they
are programmed in JavaScript, and the way they are
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simplified by HIPHOP. Section 3 details the reactive
core of HIPHOP. Section 4 explains how the new
statements are incorporated in HOP to build HIPHOP
and how client-side synchronous event handling and
concurrency are translated into JavaScript. Section 5
briefly presents a real-life example. Section 6 gives an
overview of the HIPHOP implementation. We discuss
related work in Section 7 and conclude in Section 8.

2. A First Example

JavaScript event handling is based on scripts and event
listeners, which are functions registered to handle asyn-
chronous occurrences of events generated by the GUI,
server, and APIs. Scripts and event listeners can be used
to mimic a kind of implicitly parallel execution within
the JavaScript basically sequential language. However,
as known for long in the real-time community, such
callback-based code is subject to all possible kinds of
interference and much more difficult to develop, verify
and maintain than code based on explicit concurrency
and explicit preemption primitives.

Our first example will be about coordinating ba-
sic requests. Here the traditional XMLHttpRequest
(henceforth XHR) JavaScript example found in the
Mozilla documentation “Using XMLHttpRequest”.

function xhr(url) {
function transferComplete(evt) {
// do something on completion
}
function transferFailed(evt) {
// signal an error
}
var req = new XMLHttpRequest()
req.addEventListener("load", transferComplete, false)
req.addEventListener("error", transferFailed, false)
req.open("GET", url, true)
req.send(null)
}
xhr ("http://www.mozilla.org");

This basic example opens a HTTP connection to the
Mozilla web server that fetches the main HTML page.
The translation to HOP is direct:

(define (xhr url)

(define (transfer-complete evt)
;; do something on completion
)

(define (transfer-failed evt)

;; signal an error
)

(let ((req (new XMLHttpRequest)))
(add-event-listener! req "load" transfer-complete)
(add-event-listener! req "error" transfer-failed)
(req.open "GET" url #t)

(req.send)))

(xhr "http://www.mozilla.org")

The translation to our new HIPHOP reactive style
is more complex since it cuts work into two parts: a
reactive HTIPHOP program and the HOP linking part.
The linking part is very similar to what we had before
except that it creates a HIPHOP reactive machine and
links the events to it.

(define (xhr url)
(define (transfer-complete evt)
;; do something on completion
)
(define (transfer-failed evt)
;; signal an error

)
(let ((M (make-hiphop-machine (xhr& url))))
(add-event-listener! M "failed" transfer-failed)

(add-event-listener! M "complete" transfer-complete)))

(xhr "http://www.mozilla.org")

The HIPHOP reactive machine is driven by a HIPHOP
program, built here by calling the following HOP func-
tion with a URL as argument:

(define (xhr& url)
(let ((req (new XMLHttpRequest)))
(hiphop&

input: "load" "error"

output: "complete" "failed"

(atom& (let ((M (the-machine)))
(connect-event-listener! req "load" M)
(connect-event-listener! req "error" M)
(req.open "GET" url #t)

(req.send)))
(until& "error"
(seq&
(await& "load")
(emit& "complete" (val& "load")))
(emit& "failed" (val& "error"))))))

(define (connect-event-listener! req ev M #!optional opt)
(add-event-listener! req ev
(lambda (e)
(hiphop-input-and-react! M (or opt ev) e))))

All HIPHOP constructs end with the “&” charac-
ter. The hiphop& function defines the interface and
body of the reactive code, which is thought of as
a state machine. The initial atom& form simply exe-
cutes its HOP argument. Here, it connects actual events
to the symbolic inputs of the machine and initiates
the request. The rest of the HIPHOP code is of a
more temporal nature. The await& form waits for the
“load” reactive event and terminates. The first emit&
form emits the “complete” reactive event bound to
“transfer-complete” in the linking code. The seq&
form tells that await& and emit& act in sequence. The
until& form acts as a watchdog: if “error” occurs
during the execution of the sequence, that sequence is



immediately canceled and “failed” is emitted. Values
are transmitted using the val& form.

So far, the HIPHOP version looks more complex
than the plain HOP version for no good reason. The
advantage will become clear when we modularly ex-
tend the program. Suppose first we want to synchronize
two independent XHRs, running both of them in paral-
lel and executing the transfer-complete listener only
when both have completed. We simply create a new
program that concurrently composes two xhr& HIPHOP
programs and places them into an error watchdog:

(define (xhr2& urll url2)
(hiphop&
input: "loadl" "errorl" "completel"
"load2" "error2" "complete2"
output: "complete" "failed"
(until& (or& "errorl" "error2")
(seq&
(par&
(run& (xhr& urll)
input: "load" "loadl"
input: "error" "errorl"
input: "complete" "completel")
(run& (xhr& url2)
input: "load" "load2"
input: "error" "error2"
input: "complete" "complete2"))
(emit& "complete"))
(emit& "failed"))))

(define (xhr2 urll url2)
(define M (make-hiphop-machine (xhr2& urll url2)))
(add-event-listener! M "failed" transfer-failed)
(add-event-listener! M "complete" transfer-complete))

(xhr2 "http://www.mozilla.org" "http://hop.inria.fr")

The run& form instantiates a HIPHOP program,
binding the proper reactive events that are now renamed
into “load1”/*“load2”, etc. The par& form runs the two
xhr& instances in parallel. Its semantics is to terminate
when both have terminated. Therefore it is sufficient
to emit “complete” in seq& sequence after the parg&
parallel to signal global completion. The until& form
captures errors in both xhr& instances. If there is no
such error, it has no effect ; as soon as one error occurs,
it aborts both xhr& instances and executes the (emit&
"failed") statement that signals global failure.

Imagine we now want to control our parallel XHR
by offering the user an abort button and limiting the re-
quest durations by a timeout. We create a third HIPHOP
program that controls the behavior of xhr2&. It waits for
xhr2& to complete or fail until the user clicks the abort
button or the timeout expires:

(define (xhr3& urll url2)
(hiphop&
input: "loadl" "errorl" "load2" "error2" "abort"
output: "complete" "failed" "user-abort" "timeout"
(untilg& (timer& 1000)
(until& "abort"
(run& (xhr2& urlil url2))
(emit& "user-abort"))
(emit& "timeout"))))

(define (xhr3 urll url2 id)

(define M (make-hiphop-machine (xhr3& urll url2)))

(add-event-listener! M "failed" transfer-failed)

(add-event-listener! M "complete" transfer-complete)

(add-event-listener! M "user-abort" user-abort)

(add-event-listener! M "timeout" user-abort)

(add-event-listener! (dom-get-element-by-id id)
"click" (lambda (e) (hiphop-input! M "abort"))))

(<HTML>

(<BUTTON> id: "abort-button"

"click me to abort downloading"))

In summary, HIPHOP is based on a split between
event linking and event reaction specification, the latter
based on explicit sequential, concurrent, and temporal
programming primitives. We exemplified this with a
typical client program. Of course, HIPHOP can also
be used on the server-side, for example to synchronize
clients together or complex requests chains using other
servers. This will not be studied in this paper.

3. The HipHOP language

Technically speaking, a HIPHOP form should be seen
in two ways. First, it is a HOP form that builds a
HipHOP abstract syntax tree when evaluated, which
implies that we can dynamically build HIPHOP pro-
grams from within HOP; we shall do that in Section
5. Second, the intention is that of concurrent and tem-
poral code. In this section, we describe what HIPHOP
temporal programming means.

3.1 HiIPHOP programs and machines

The HIPHOP language specifies a reactive program
that can be instantiated in HOP to build an executable
reactive machine. A HIPHOP reactive program speci-
fies a list of abstract input events, a list of abstract out-
put events, and a reactive code. Here is a standard ex-
ample in the reactive community, which can be seen as
a reduced version of our xhr3&:

(define abro&
(hiphop& input: "A" "B" "R" output: "0O"
(loop&
(until& "R"

(par&
(await& "A")
(await& "B"))

(emit& "0")))))



A HIPHOP program is embedded into a machine M
in the following way:

(define M (make-hiphop-machine <hiphop-program>))

Note that the same program can be embedded in sev-
eral different machines. Thus, make-hiphop-machine
acts as new in object-oriented systems.

3.2 Events and reactions

At HIPHOP level, events are abstract objects known
only by their name (string) and optional value (arbi-
trary HOP data). In the previous examples, we have
shown how to link HOP actual events to HIPHOP ab-
stract events using HOP event listeners. Besides input
and output events, a HIPHOP program can also declare
local events, which behave in the same way from the
HipHop point of view but need no HOP interface. Lo-
cal events help synchronizing the concurrent parts of
the HIPHOP program when dealing with complex reac-
tive behavior. In the sequel, “[...]1” mark optional ar-
guments, “[...]*” possibly empty lists of arguments,
and “[...]1+” the same non-empty.

Input events are sent to a machine M by the HOP
statement:

(hiphop-input! M "A" [<hop>])

The optional <hop> value will be the value associated
with the abstract event “A” in the HIPHOP reactive
code. This only sets the input, without triggering ex-
ecution of M.

The machine is explicitly driven from HOP. It reacts
only when called using the following HOP form:

(hiphop-react! M)

Then, the input environment to which M reacts is com-
posed of all the input events that have been sent to the
machine from HOP since the previous reaction (or since
machine build at first reaction). All these events are
perceived as conceptually simultaneous by M, which re-
acts by building output events according to its HIPHOP
code execution. The execution of the reaction should be
seen as atomic: outputs computed in a reaction should
not influence the inputs for this reaction. This is to
avoid interference between input event registering and
reaction.

When the machine is called to react is left to the user.
It is often useful to call the reaction function each time
an input even is sent, but many other possibilities make
sense, such as making the machine react at periodic

times. To trigger a reaction in as soon as an input
occurs, one can simply write:

(hiphop-input-and-react! M "A" [<hop>])

In each reaction, an event has exactly one status
chosen between present and absent. An input event
is present if and only if it was sent by HOP before
the reaction (and after the previous reaction if any).
An output or local event is present if and only if it is
emitted by the HIPHOP program in the current reaction.
The status is recomputed at each reaction.

An event also has an optional value, which is re-
ceived from the environment using hiphop-input! for
an input event or internally emitted together with the
status for an output or local event. Unlike the status,
the value is memorized between reactions: the value of
an event in a reaction remains the value it had in the
previous reaction if the event is not received (for an in-
put) or emitted (for an output or local) in the reaction.

The value is either a single HOP value if there is
only one emitter for the event during the reaction or the
multiset of all emitted values if there are several emit-
ters. The use of multisets instead of lists is important to
guaranty determinism because multiset operations are
associative: the multiset does not depend on the inter-
nal emission order in the generated code execution.

In each reaction, all events and event values are
broadcast to all concurrent statements of the pro-
gram, which all see the same statuses and values.
Unlike asynchronous concurrent programs, concurrent
HiPHOP programs are deterministic.

3.3 The reactive code

The reactive code is based on deterministic sequencing,
concurrency, and temporal statements inspired from
Esterel [3] and ReactiveC [5]. Their intuitive seman-
tics is described below; see [2] for a complete presen-
tation of synchronous programming, including formal
semantics.

HrpHopr differs from classical languages by the tem-
poral character of its execution: current control posi-
tions are memorized from one reaction to the next.
Consider the following sequence:

(seqk

(await& "A")
(await& "B")
(emit& "0"))

At first reaction, control stops on (await& "A"). It

stays there at each subsequent reaction until the first



reaction where “A” is present. In this reaction, control
immediately moves to (await& "B") and stays there
until the next reaction where “B” is present. During this
reaction, and without further delay, it outputs “0” and
terminates.

We say that a statement that starts and terminates
in the same reaction is instantaneous or immediate;
this is the case for emit&. Otherwise, we say that the
statement pauses, waiting for the next reaction, and we
call it a delay statement; this is the case for awaité.
Things that happen in the same reaction are called
simultaneous. This is of course a conceptual notion in
terms of abstract reactions, not a physical one.

Here is the list of HIPHOP values and statements:

<hiphop> —
(hiphop& [input: [<string>]+] [output: [<string>]+]
[<hiphop-stmt>]+)

<hiphop-stmt> — (nothingg)
| (emit& string [<hop>])
(sustain& string [<hop>])
(atom& <hop>)
(if& <event-test> <hiphop-stmt> [<hiphop-stmt>])
(if& <hiphop-val> <hiphop-stmt> [<hiphop-stmt>])
(pause&)
(seq& [<hiphop-stmt>]+)
(par& [<hiphop-stmt>]+)
(loop& [<hiphop-stmt>]+)
(await& [immediate: <bool>] <event-test>)
(untilg [immediate: <bool>] <event-test>
<hiphop-stmt> [<hiphop-stmt>])
| (local& ([<string>]+) [<hiphop-stmt>]+)
| (let& ([(id <hiphop-val>)]+) [<hiphop-stmt>]+)
| (run& <hiphop> [input: <string> <string>]*)

<event-test> — <string>
| (or& <event-test>+)
| (and& <event-test>+)
| (not& <event-test>)

<hiphop-val> — (val& <string>)
| <hop>

A hiphop& program is specified by an input event
list, an output event list, and a reactive statement list
(implicitly in seq& sequence).

An event test is a Boolean expression about events
presence in the reaction. For instance, in a reaction,
(and& "A" "B") is true if both “A” and “B” are present.
The valg form returns the value attached to the men-
tioned event.

The nothing& statement does nothing and termi-
nates instantaneously. It is the HIPHOP no-op.

The emit& statement emits the event named string,
possibly with value that of the second argument. It is
instantaneous.

The sustain& statement keeps emitting the event
at each reaction. It can be defined in HOP using the
pause& statement defined below:

(define (sustain& event #!optional val)
(loop&
(emit& event val)
(pause&)))

The atom& statement calls HOP to executes its hop
argument; it is instantaneous, which means that it
should be a reasonably simple HOP expression in prac-
tice. The let& statement below makes it possible to
pass HIPHOP values to the atom body, see below.

The if& statement evaluates its test. If the result is
true, it immediately executes its second HIPHOP argu-
ment; otherwise, it immediately executes its third ar-
gument. Notice that these arguments can be arbitrary
instantaneous or delayed HIPHOP statements. Termi-
nation of the if& statement is instantaneously triggered
by termination of the selected branch. As before, values
can be passed to a HOP test using let&.

The pause& statement delays execution by one re-
action. When executed, it pauses for the reaction and
terminates at the next reaction.

The seq& statement executes its arguments in order:
the first HIPHOP statement starts immediately when the
sequence starts; when it terminates, be it immediately
or in a delayed way, the second argument is imme-
diately started, etc. For instance, (seq& (emit& "A")
(emit& "B")) immediately emits A and B, which are
seen as simultaneous within the reaction, while (seq&
(emit& "A") (pause&) (emit& "B")) emits “A” and
“B” in two successive reactions.

The loop& statement is a loop-forever, equivalent to
the infinite repetition of its argument statements, which
are themselves implicitly evaluated in sequence. For in-
stance, (loop& (pause&) (emit& "A")) waits for the
next reaction and then keeps emitting “A” at each re-
action. A loop can only be exited by using the until&
statement below.

The par& statement starts its arguments concurrently
and terminates at the reaction where the last of them
terminates. Therefore, (par& (await& "A") (await
"B")) terminates when both “A” and “B” have been re-
ceived. Remember that all arms of a par& statement see
all statuses and values of all (visible) events in exactly
the same way.

The await& statement is a delay statement that waits
for its argument to become true. By default, it pauses



in the reaction where it is started; then, at each reac-
tion, it evaluates the condition and terminates if the re-
sult is true; otherwise, it pauses again. If :immediate
#t is specified, the await& statement terminates im-
mediately if its condition is true at start time. It is
then a shorthand for: (if& event-test (nothing&)
(await& event-test)).

For the untilg statement, call the second argument
the body and the third argument the handler (assumed
to be nothing& if syntactically absent). The body is
run until it terminates or the event test becomes true.
More precisely, at each reaction, the body is run for the
reaction. If it terminates, so does the until& statement.
Otherwise, the event test is evaluated; if its value is
true, then the body is killed whichever state it was in
and control passes to the handler. The event test is
not performed at first reaction for the default form; it
is performed when :immediate #t is specified. Note
that the handler is not executed if the body terminates
normally and the event test is false.

The localg statement declares local events in the
first argument list. Their scope is the body, which is
the implicitly seq& sequential list of the HTPHOP argu-
ments. Such local events behave exactly as input and
output events, except that their scope is limited to the
local& body. They are not visible from HOP. A local&
statement terminates when its body does.

The let& statement makes it possible for HOP forms
called in emit&, atom&, and if& statements to access
the values of HIPHOP events. The syntax is similar to
that of the HOP 1let. Bindings are of the form (v (val&
"S")) to transfer the value of a event, or (v hop) to
perform any kind of HOP binding. A let& statement
terminates when its implicitly seq& sequential body
does.

The run& statement instantiates another HIPHOP
program in-place, according to a list of abstract event
bindings that act as textual substitutions for the body.
It is the basis of modular HIPHOP programming. The
optional argument list specifies how events are bound
between the caller and callee, by enumerating pairs of
the form :input caller-string callee-string. Itis
useless to specify an identity pair such as :input "A"
"A", which is implicit. A binding of the form :input
nnowpv Jeaves the “A” callee event unbound and trans-
forms it into a local event for the callee’s body. The
run& statement terminates when its body does. It may

be killed by an until& statement as for any other state-
ment.

3.4 Future additions

We plan to add the Esterel suspend& statement that
suspends execution of its body for one reaction when
its event-test is true, as well as Esterel tasks [2].
Tasks are external asynchronously concurrent compu-
tation entities whose execution is assumed to be non-
instantaneous. For instance, a task could be “close the
roller blinds” or “download the 5th Beethoven sym-
phony”. Their execution can be tightly controlled by
until& and suspend& statements.

4. HoOP Integration

In this section we present the interface between HOP
and HIPHOP, i.e., the HIPHOP machine API.

As explained in Section 3.1, building an HIPHOP
machine M from HIPHOP program P is realized by:

(define M (make-hiphop-machine P))

Notice that HIPHOP programs are HOP values.
Therefore we can use the full power of HOP to build
them, depending, for instance, on size parameters. This
will be done in Section 5.

Sending an input to M with an optional HOP value is
done using the (hiphop-input! M "A" [hop]) form.
Although this form can appear anywhere in HOP pro-
grams, it is good practice to associate it with event lis-
teners as done in our examples.

Outputs are systematically handled by HOP event
listeners attached to the machine. These are registered
with the following forms:

(add-event-listener! M string function)

where string is the output event name and function
is a one-argument function. The argument is the event
descriptor that contains the event name and optional
value. The function is called when the output is emitted
by the HIPHOP program. It is possible to register sev-
eral events listeners for the same output event, which
are invoked as for JavaScript.

Running a reaction of the machine M is done by
calling (hiphop-react! M). This call blocks until the
reaction completes. It can itself involve the evaluation
of HOP forms in emit&, atom&, and if& statements, see
Section 3.3.

Of course, the major difficulty is to generate the HOP
and JavaScript codes that performs the reaction accord-



ing to the HIPHOP specification. We shall give no de-
tails here, see for instance [8] for Esterel compilation
techniques.

A very important point is that the generated code
is purely sequential and it can be fully and faithfully
implemented in straight JavaScript. Although HIPHOP
code can be highly concurrent in its own way, its con-
currency is purely logical and does not lead to run-time
threads. Program behavior remains deterministic w.r.t.
input sequences, unlike with all forms of asynchronous
concurrency-based programming techniques.

Notice also that HIPHOP machines can also commu-
nicate with each other in HOP, possibly using standard
asynchronous web protocols. For instance, a HIPHOP
machine can drive a complex Ul on the client, another
HIPHOP machine can drive complex server mashup
activities involving a variety of other asynchronous
servers, and both machines can communicate asyn-
chronously using HOP server/client communication
primitives. This is akin to the Globally Asynchronous
Locally Synchronous (GALS) model that has become
standard in other Computer Science fields such that
Systems on Chips (SoC) design.

5. A real life example

We want to take organized benefit of the numerous
sources that provide musical contents with the help of
some specialized search sites that reply questions about
musical composers, songs, etc., by lists of URLs where
music can be found. The first step is to ask a question to
the search site and to gather the URLs (not done here).
Then, we try playing the music contents in sequence.
Some musical downloads may fail, other may come
fast, slow, etc. Our choice is to play music in a greedy
way. We first play according to the fastest response.
Then, we continue according to which download is
ready next, selecting one if many are. The whole ap-
plication completes when all the available music pieces
have been played. Of course, some downloads may fail.

Our architecture is picture in Figure 1. It consists of a
H1PHOP program concurrently composed of an orches-
trator HIPHOP subprogram orch&, a set of requesters
reqg&, one per URL returned by the search engine, and
a music player controller player&. At program creation
time, the requesters are built and indexed by the URL
they are responsible for. The set of URLs needs not be
known by orchs.

who

orché& ready (url) reqgé
go (url) reqs&
reg&
regé&
play-done play(url)

playeré

Figure 1. The multiple URLSs audio player

The subprograms chat with each other as follows:

® When the program starts or each time a music play
is over, orch& keeps broadcasting the event “who” to
all the requesters.

e When ready, each requester replies by an event
“ready” with value its URL. A requester that re-
ceives a download error simply terminates.

e When orch& receives ‘“ready”, by definition of
HipHOP simultaneous event emissions, the value
“ready” is the multiset composed of all the URLs
of the ready requesters. At that time, orch& selects
one of the requesters and replies with the event “go”
with value the selected URL.

Still in the same reaction, the selected requester
sends the “play” event to player& and terminates.
The other ready requesters discard “go” and con-
tinue waiting for “who”. The non-ready or termi-
nated requesters ignore “go” altogether.

e When receiving “play” with the URL, the player&
starts playing the music, until completion or error.
Then, it sends “play-done” to orch&, which loops
and looks for another ready requester.

In the main program called urlplayer&, the orches-
trator, requesters, and player are put in parallel. To
handle global termination, we introduce a local event
“all-done” and an untilg statement to terminate the
whole behavior, killing the orchestrator and player. The
“all-done” event is emitted when all requesters and
the currently played music have terminated.

Here is the code of the main program urlplayer&.
Notice the use of a HOP map on the URL list to build
the requesters:



(define (urlplayer& urls)
(let ((loads (rename "load-" urls))
(errors (rename "error-" urls)))
(hiphop& input: loads errors "ended"
(local& ("who" "ready" "go" "play
"reqgs-done")
(until& (and& "all-done" "play-done")
(par&
(seq&
(all-reqs& urls loads errors)
(sustain& "regqs-done"))
(run& orch&)
(run& player&)))))))

non n

play-done

(define (all-reqs& urls loads errors)
(par&
(map (lambda (u 1 e)
(run& (req& w)
input: "load" 1
input: "error" e))
urls loads errors)))

(define (rename prefix urls)
(map (lambda (u) (string-append prefix u)) urls))

The code of orch& is fairly trivial. Notice the use
of sustain& to keep broadcasting “who” until some
requester is ready:

(define orch&

(hiphop&
input: "ready" "play-done"
output: "who"
(Lloop&

(until& "ready"
(sustain& "who"))
(let& ((url-list (val& "ready"))
(url-go (apply select url-list)))
(emit& "go" url-go)
(await& "play-done")))))

The req& program first runs the xhr& subprogram of
Section 2 to start downloading. It terminates if a down-
load error occurs. If the download is complete, req&
waits for “who” and immediately replies by “ready”
with value its URL. In the same reaction, orch& replies
with “go” and the URL it has selected as “go” value.
If the selected URL is the req&’s URL, this req is se-
lected and immediately ships its URL to the player&
and provokes its own termination by emitting “done”,
which is caught by the enclosing until&. Otherwise,
req& waits for the next “who’:

(define (req& url)
(hiphop&
input: "who" "go" "load" "error"
output: "ready" "play"
(local& ("complete" "failed" "done")
(run& (xhr& url))
(if& "complete"
(until& "done"
(loop&
(await& immediate: #t "who")
(emit& "ready" url)
(let& ((go (value& "go")))
(if& (eq? go url)
(seq&
(emit& "play" url)
(emit& "done"))
(pause&)))))))))

The player& just plays the music when requested
and emits “play-done” when done:
(define player&

(hiphop&

input: "play" "ended"

output: "play-done"

(loop&
(await& immediate: #t "play")
(let& ((url (val& "play")))

(atom& (set! audio.src url)))

(await& "ended")
(emit& "play-done"))))

To finish the whole HOP program, we need to link
the HIPHOP code to a HOP master. This is almost
trivial since most of the work was already done in
xhr&. We only need to define the main function and
perform an audio “ended” event connection for the
actual HTMLS player:

(define (urlplayer urls)
(<HTML>
(<AUDIO> onended:
~(hiphop-input-and-react! M "ended" event))
“(let ((M (make-hiphop-machine (urlplayer& urls))))
(hiphop-react! M))))

6. Implementation

In this section, we explain how HIPHOP programs are
compiled and executed on the server and client sides.
Figure 2 sketches the associated architecture.

6.1 HirPHoOP to HOP compiling

HIPHOP programs are parsed by the server’s HOP
system using the hiphopc function, which translates
HipHoOP programs into HOP values that represent
their ASTs (abstract syntax trees). For server-side
execution, the ASTs are directly taken as input by
the server’s HOP compiler and HIPHOP runtime. For
client-side execution, the ASTs are processed further
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by the hop2client function that generate client-side
code.

Notice that the hiphopc and hop2client functions
reside on the server. Therefore, if the client wants
to compile HIPHOP source code (for instance, in-
teractively entered by the user), the client sends this
code to the server, which processes it by hiphopc and
hop2client and sends back the result.

6.2 The HIPHOP runtime

The HIPHOP runtime manages reactive machines by
defining the functions mentioned in Sections 3.2 and
4: make-hiphop-machine and all the functions whose
names start by hiphop-.

The HIPHOP runtime is written as a HOP module.
Thus, any HOP program running on the server can
import the HIPHOP module and use its API code to
interface reactive machines. To run reactive machines
on the client-side, the HIPHOP runtime is compiled to
client code by calling the hop2client HOP function
described above.

Communication between client and server reactive
code requires no particular addition to HOP.

Causality cycles The heart of the HIPHOP runtime
is an interpreter that executes the reactive instructions
specified in the HIPHOP ASTs. This interpreter is
based on the Constructive Semantics described in [8].
In the synchronous languages field, it is well-known
that synchronous concurrency can provoke causality
cycles, i.e., internal synchronous deadlocks. Such cy-

cles are detected at run-time by the HIPHOP inter-
preter; they raise an exception and abort execution in-
stead of stupidly deadlocking as would asynchronous
threads do. In the future, we will add a static analysis
pass to detect the absence of causality cycles before
compiling, as for Esterel.

Timers In addition to the basic reactive primitives,
HipHOP provides the user with a timer& function,
which we used in section 2 within the definition of
xhr3%. Executing (timer& delay) generates an inter-
nally named event that occurs after (at least) delay
milliseconds and make the HTPHOP code react to it.
On the server side, the implementation of timer is
directin HOP. On the client side, it uses the JAVASCRIPT
timers, which are asynchronous entities that call back
some event handler code at the specified time. Client
HoP uses JAVASCRIPT timers to defines the after
Hor function, which takes as arguments a delay and
an argumentless function to be called when the timer
expires. This mechanism is used to define timer:

(define (timer& delay)
(lambda (current-machine)
(let ((event (format "Timer-"a" (gensym))))
(after delay
(lambda (O
(hiphop-input! current-machine event)))
event)))

7. Related work

Our first example, showed in Section 2, is about coordi-
nating requests. The Orc language [6] addresses this is-
sue by proposing a process calculus composed of three
basic combinators: symmetric composition, dynamic
parallel-for loop, and pruning. Our par& form is akin to
Orc’s symmetric composition, while until& is a way
to preempt computations similar to pruning but more
general. The temporal algebra of HIPHOP is richer than
that of Orc. However HIPHOP does not offer the flexi-
bility of the Orc f > = > g operator that dynamically
creates parallel executions and connects data streams,
which is fundamental for large-scale data processing.
We do not know yet how to incorporate such dataflow
primitives in HIPHOP.

Flapjax [7] provides a unified framework for pro-
gramming with events on the client-side. The authors
highlight three principles that should ease program-
ming mashup applications: event-driven reactivity,
consistency, and uniformity when treating events. We
obey the same principles: the HIPHOP machine only
needs to react upon new inputs (e.g. external events);



consistency is guaranteed by the atomicity of a reac-
tion (i.e. output events cannot change the status of in-
put events within a reaction); HIPHOP events are all
handled using the same set of primitives. Furthermore
use the addEventListener primitive to register output
events handler on an HIPHOP machine, syntactically
sticking to the DOM standard’s primitive.

Orc and Flapjax are dataflow languages. Data chan-
nels are implicit in Orc: the combinators implicitly
build and connect channels between expressions. Flap-
jax uses explicit event streams in conjunction with
flow behaviors to manipulate data. Evaluation is asyn-
chronous, and values are propagated at any time. Flap-
jax choose to use the topological order to prioritize
computation and avoid glitches. Because of the reactive
semantics, a safe scheduling is computed at compile-
time, there is no need for priorities, and there are no
glitches. Event and data causality is respected at run-
time by construction.

8. Conclusion

We have presented HIPHOP a new way to orches-
trate activities within Hop. HTPHOP deals with abstract
events linked to actual web, UI, or API events by triv-
ial HOP linking code. The HIPHOP reactive statements
are imported from the Esterel [3] and ReactiveC [5]
languages, which were created in the 80’s for program-
ming embedded systems. They are based on temporal
sequentiality, concurrency, and preemption. They have
a well-understood and well-published formal seman-
tics, not repeated here. Integrating these statements in
HoP gives new possibilities in two directions: first,
bringing the power of reactive programming into HOP-
based web programming; second, because of the reflex-
ive character of HOP that can build its own programs
as data structures, making it possible to dynamically
build and execute complex HIPHOP reactive code in
function of the problem to solve and to the current en-
vironment of a client or server. Of course, much work
remains to be done to implement HIPHOP in a really
efficient way, to develop bigger web applications with
it, and to incorporate orchestration mechanisms avail-
able elsewhere but not yet in HIPHOP.
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