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Preface
We present the reference semantical framework for the synchronous pro-

gramming language Esterel, which we call the constructive framework. After
a detailed explanation of the causality issues in the language and an intuitive
presentation of constructiveness, we show the equivalence between three se-
mantics: the constructive behavioral semantics, the constructive operational
semantics, and the electrical semantics, which is based on a translation of
Esterel programs into digital circuits. The main full abstraction result is
that an Esterel program is constructive if and only if its possibly cyclic
circuit reaches electrical stabilization in bounded time. The constructive
semantics supersedes all previous semantical attempts for the definition of
Esterel, while remaining perfectly compatible with them. The constructive
semantics is compositional, unlike its predecessors.

The constructive semantics is implemented in the Esterel v5 compiler.
This new compiler accepts all programs accepted by the previous Esterel v3
and v4 compiler, as well as all the constructive programs these compilers
reject.

This draft book is directed to the users of Esterel who want to understand
the underlying language and semantics design, and, more generally, to the
readers who are interested in language semantics. It complements the gen-
eral presentation of Esterel called “The Foundations of Esterel”, see [8], the
Esterel Primer, [7], and the Esterel v5 Systems Manual [12]. Our central
aims are to explain the design and properties of the constructive semantics,
which, to our belief, should be the final one, to make causality issues under-
standable, a thing that has long been missing, and finally to fully explain the
translation of Esterel programs into circuits.

In the former releases 1.1 and 2.0 of this book, there were subtle bugs
in the behavioral semantics rules. Please accept my apologies, and throw
away copies. Fortunately, the circuit translation was already correct and so
was the compiler. The bug in version 2.0 was found by Delphine Terrasse
(now Kaplan), who tried to prove the correctness of the circuit translation
using the COQ proof-checker [40]; many thanks to her. Some other minor
mistakes have also been corrected.

The operational semantics was presented in version 1.0, but removed from
version 1.1 and 2.0. This is because the author designed a much improved
version but had no time to write it down yet; so far, he has chosen to favor
the development of the v5 system over the writing of this book. Hopefully, the
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operational semantics will be included in the next release. The other missing
parts concern the extension to data-handling and the implementation issues.

Acknowledgements: Our work on the constructive semantics owes much
to Frédéric Boussinot, from École des Mines, Olivier Ploton and Robert
de Simone, from INRIA, Tom Shiple, from Synopsys, and Ellen Sentovich,
from Cadence. Many thanks to Ellen Sentovich, Emmanuel Ledinot (from
Dassault Aviation), and John Plaice, who performed a careful proof-reading.

Comments from readers are very welcome. Please send them
by e-mail to berry@sophia.inria.fr.



Chapter 1

Introduction

Esterel [11, 14, 4, 5] is an imperative synchronous parallel programming lan-
guage dedicated to reactive systems [22]. Esterel is tailored for programming
hardware or software synchronous controllers for which the control-handling
aspects are predominant. Esterel programs are input-driven: they wait for
inputs and compute corresponding outputs in a cyclic manner. An input-
output computation is called a reaction. Synchrony conceptually means
that reactions take no time, or, equivalently, that outputs become available
as inputs become available. By abstracting away reaction times, synchrony
reconciles concurrency and determinism, and it greatly simplifies controller
programming. Furthermore, it becomes possible to use sophisticated imple-
mentation, optimization, and verification techniques commonly used in areas
such as process calculi or hardware design, and to extend them to software
applications [22, 41].

Other synchronous languages are the graphical languages Argos [29] and
SyncCharts [1], also dedicated to controllers, the data-flow languages Lus-
tre and Signal, and the TCCP timed concurrent constrained programming
language of [35]. See [22] for a comprehensive survey of Esterel, Argos, Lus-
tre, and Signal. Although it is not fully synchronous, Harel’s Statecharts
graphical formalism [25] clearly belongs to the same language family 1

This book is devoted to the formal semantics of Esterel and to the trans-
lation of Esterel programs into Boolean circuits, upon which the current
Esterel hardware or software compiling and verification technology is based.

1One can indeed see Maraninchi’s Argos formalism as a simplification of Statecharts
with a fully synchronous semantics and André’s SyncCharts as an extension of Argos
towards the greater expressive power of Esterel. Since SyncCharts can be translated into
Esterel, its semantics is covered by this book.

9
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The book should serve as a reference manual for the language semantics and
for the Esterel compiling algorithms. We shall not discuss programming style
or adequacy to practical applications, this being done elsewhere. See [8] for a
general overview, see [7] for the Esterel Manual, and [22, 2, 13, 3, 10, 32, 27]
for examples.

The book concentrates on Pure Esterel, which is restricted to pure sig-
naling. Pure Esterel is enough to express all the semantical difficulties and
their solution. The extension to the full Esterel language that handles data
of arbitrary data types will only be outlined; if not entirely straightforward,
it raises no particularly difficult problems.

The Constructive Semantics

The main semantics we present is called the constructive semantics. It is
a major improvement over previous semantics discussed in [11, 5], since it
solves the causality problem common to all synchronous formalisms, although
particularly acute in Esterel. Many Esterel users have suffered from the
insufficiencies of the previous attempts, and we hope that the constructive
semantics will make them happy.

The constructive semantics is presented in several variants, which are
shown to be equivalent. The variants serve different purposes. The con-
structive behavioral semantics is the simplest and the most abstract one. Its
main use is to formally define what a program means. It is effective and it
could be directly used to build interpreters and compilers; however, these
would be very inefficient. The constructive operational semantics is a mi-
crostep semantics, which analyzes the fine structure of control and signal
propagation in the reaction. It extends the original operational semantics
of [11], which was used in the Esterel v3 compiler. The circuit semantics
translates an Esterel program into a constructive Boolean circuit. It is the
basis of the current Esterel v5 implementation.

The translation into a circuit avoids the state explosion problem, which
occurred when translating Esterel programs into explicit automata, as in
Esterel v3. Circuits can be directly implemented in hardware, or they can be
simulated for software implementation. The vast amount of work on circuit
optimization and verification can be used to optimize and verify hardware
or software implementations of Esterel.

The path from the constructive behavioral semantics to the circuit se-
mantics is not a trivial one, and half of the book is devoted to its formal-
ization and correctness proof. The final result we obtain is that an Esterel
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program is constructive if and only if its circuit electrically stabilizes for all
gate and wire delays, this even if the circuit has combinational cycles. This
result deeply roots our constructive approach in the physics of electronic
designs.

The semantical study of Esterel we present is mostly implementation-
oriented and it does not cover all possible fields of interest. All our seman-
tics explain what happens within one reaction and handle sequences of reac-
tions using state changes. We do not discuss denotational semantics where
a program is directly seen as a flow transformer, forgetting about internal
states. Such semantics are useful when dealing with compositionality issues
and when mixing Esterel programs with programs written in synchronous
data-flow languages, which is outside the scope of this book. Denotational
semantics can be indirectly derived from the circuit translation, since defin-
ing the denotational semantics of circuits is easy. The reader interested in a
direct denotational semantics can refer to G. Gonthier’s thesis [18]. We do
not discuss either axiomatic semantics where one is interested in characteriz-
ing term equality using algebraic rewrite rules. Such semantics are useful for
program transformation and for proofs by rewriting. The axiomatic theory
of Esterel remains to be done.

A Short Overview

The book consists of four parts: informal presentation, structural operational
semantics, circuit translation, and implementation.

Part I: Informal Presentation

Chapter 2 describes the kernel of Pure Esterel: no-op statement “nothing”,
signal broadcasting “emit S”, signal test “present S then p else q end”,
suspension “suspend p when S”, sequencing “p; q”, looping “loop p end”,
explicit concurrency “p || q”, unit delay “pause”, a “trap–exit” exception
mechanism compatible with concurrency, and the local signal declaration
“signal S in p end”. The intuitive semantics describes instantaneous sig-
nal broadcasting and control transmission. Its cornerstone is the signal co-
herence law, which expresses that a signal is present in a reaction if and only
if it is explicitly emitted in this reaction.

Chapter 3 discusses logical correctness of programs, which is the con-
junction of reactivity and determinism. Reactivity is the ability to react to
any input, while determinism is uniqueness of the reaction. Both properties
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are essential for synchronous controller programming. Logical correctness
can be established by making all possible hypotheses about signal presence
or absence and checking that exactly one hypothesis is consistent with the
signal coherence law. Not all programs are logically correct: using instan-
taneous feedback, which is available in synchronous frameworks, one can
write non-reactive programs such as “present S else emit S”, which in-
ternally deadlocks as does the liar paradox, or non-deterministic programs
such as “present S then emit S”, which does not properly define its out-
put, since both S present and S absent respect the signal coherence law.
Reactivity and determinism are not built into the signal coherence law and
the logical behavioral semantics; they must be added as additional condi-
tions to be satisfied at each instant, which is not very satisfactory. We end
the chapter by showing that bare logical correctness is not a nice and ro-
bust consistency notion: we exhibit a logically correct program whose unique
behavior is absolutely counter-intuitive (program P9, page 33). In this pro-
gram, signal information flows backwards, compared to sequential control,
which is unacceptable on intuitive grounds.

A cheap way of rejecting non-reactive and non-deterministic programs is
to reject instantaneous feedback altogether. This is what is generally done
in synchronous circuits design and in synchronous data-flow languages, and
we did it in the Esterel v4 compiler. Technically, one requires acyclicity of
the static signal instantaneous dependency relation. Both previous exam-
ples are rejected right away since S depends on itself. However, this method
has been dismissed by Esterel users as being too restrictive. In Esterel, one
can easily and naturally write cyclic feedback dependencies, which raise no
problem at run-time, and users do that. For example, if an instantaneous
dependency A → B and the reciprocal dependency B → A appear respec-
tively in the then and else branches of a test or are separated by a delay,
it is immediately visible that only one dependency matters at a time, and
there is no reason to reject the program. Users ask us to control feedback,
not to restrict it2. Examples of useful cyclic programs are given in [7].

Chapter 4 informally presents the constructive approach, which exactly
characterizes sensible feedback using a dynamic analysis instead of a static
one. The analysis is performed separately for every program state and every
input. It computes what a program must do or cannot do, based solely on
pedestrian fact-to-fact propagation. The analysis is recursive in the signals

2This is also the aim of the authors of [35]; we have not yet compared our techniques
with theirs.
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and control. Intuitively, a signal S must be emitted if some “emit S” state-
ment must be executed, and it cannot be emitted if no such statement can
be executed. A signal is set present if and only if it must be emitted, and
it is set absent if and only if it cannot be emitted. Facts about signals feed-
back to control: for example, in a test “present S then p else q”, if S is
known to be present, then p must be executed and q cannot be executed.
In turn, these facts make it possible to determine new signal statuses, and
so on. The constructive analysis accepts all sensible cyclic programs. it re-
jects the aforementioned logically correct but counter-intuitive program P9,
since the unique consistent signal status cannot be computed by fact-to-fact
propagation but only as a self-justified hypothesis.

In the terminology of proof theory [17], the logical behavioral semantics
is an extensional logic of presence or absence values, while its constructive
version is an intensional logic of presence or absence proofs. This is very
much in the spirit of constructiveness in the Curry-Howard isomorphism [17],
but in a much simpler setting. This analogy explains why we call our new
semantics a constructive one.

Using simple examples, Chapter 4 briefly presents the different techni-
cal approaches to constructiveness we shall deal with. It also includes a
comparison with previous attempts to solve the causality problem.

Part II: Structural Operational Semantics

All the formal semantics presented in this part define what happens in an
instant. They are given in Plotkin’s Structural Operational Semantics [34]
inference-rule style. To enhance the readability of semantic definitions, we re-
place the original keyword-based syntax by an equivalent but terser process-
calculus syntax, presented in Chapter 5 and first defined in [5].

Chapter 6 presents the formal definition of the logical behavioral seman-
tics and defines what it means for a program to be reactive and determin-
istic. The inference rules define a reaction of a program P to an input I as
an atomic transition P

O−→
I

P ′, where O is the output and P ′ is the program

that will execute the next reaction. The signal coherence law is embodied in
two rules for local signal declaration, one for presence and one for absence.
Reactivity and determinism are not built in since the two signal rules are
not disjoint; they are imposed as additional conditions. Although the logical
behavioral semantics accepts too many programs, it still plays an important
safeguard role since any other semantics must be a refinement of it.
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Chapter 7 presents the constructive behavioral semantics, which also de-
fines atomic transitions P ↪

O−→
I

P ′. It is obtained by augmenting the logical

behavioral semantics by the must and cannot predicates, which are defined
inductively on statements. All the rules of the logical behavioral semantics
are kept unchanged, except the signal presence rule, which receives the side-
condition “S must be present”, and the signal absence rule, which receives
the side-condition “S cannot be present”. The accepted programs are called
constructive ones. We show that any constructive program is reactive and
deterministic.

The simplicity of the logical and constructive behavioral semantics is
offset by the need to change the program text from P to P ′ to handle the next
reaction. In the state logical and constructive behavioral semantics presented
in Chapter 8, we replace the rewriting by a much simpler marking of active
delays in the original program, thereby defining a program state. This is
just what we do in the Esterel v5 symbolic debugger. The state semantics
are more practical, but the number of rules is roughly doubled. Both state
semantics are shown to be equivalent to their rewriting counterparts, which
proves in passing that Pure Esterel programs are finite-state.

Chapter 9 is devoted to the constructive state operational semantics.
This semantics defines a reaction as a sequence of microsteps, where each
microstep is either an elementary control transmission or the setting of a
signal status. Parallel statements interleave the microsteps of their branches.
The recursive computation of the must predicate is replaced by the actual
execution of statements, which makes it much more efficient and somewhat
more natural. However, the operational semantics is technically much more
complex than the behavioral one. In particular, because of interleaving, there
are several possible microstep sequences for a reaction. The main theorem
refers to confluence and strong normalization: all microstep sequences yield
the same result, in which all signal statuses are determined if and only if
the program is constructive. It follows that the constructive operational
semantics is equivalent to the constructive behavioral one.

Part III: Circuit Translation

In Chapter 10, we define the notion of a constructive circuit. Unlike classical
circuits [21], which may not have cycles in their combinational part, construc-
tive circuits are allowed to have combinational cycles. Constructiveness is
exactly the characterization of safe cycles. We characterize constructive cir-
cuits in three equivalent ways: proof-theoretic, denotational, and electrical.
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Building up on work by Brzozowski and Seger [15], Shiple [38, 39] has shown
the following fundamental result guessed by the author: a possibly cyclic
circuit is logically constructive if and only if, in any physical implementa-
tion into wires and gates, all wires stabilize in bounded time to a voltage
encoding either 0 and 1, this for any electrical propagation delay in the wires
and gates3. The result implies that constructive cyclic circuits can be used
exactly as acyclic ones in synchronous circuit design.

In Chapter 11, we informally present the basic structural translation
idea: to translate a statement, we first translate its substatements and we
connect them by appropriate gates and wiring. The translation is explained
by pictures. It improves the original translation of [4], which turns out to
be inaccurate in the constructive setting.

The basic translation is relatively simple, but it does not work for all pro-
grams because of a rather intricate phenomenon we call schizophrenia. The
problem is due to the possibility of reincarnating a statement several times
in a reaction by instantaneously looping loops. We could avoid schizophre-
nia by restricting the class of programs we translate, but we do not like
the idea of restricting the language. In Chapter 12, we carefully analyze
schizophrenia and we find a cure for it: logic duplication.

The final translation is formalized and proved correct in Chapter 13.
There, we use a textual presentation of (hierarchical) circuits, since logic
duplication makes pictures too difficult to draw. The main theorem is that
constructiveness of an Esterel program is equivalent to constructiveness of
its circuit. The proof idea is that propagation of 1’s in the circuit mimics
the computation of the must predicate, while propagation of 0’s mimics
the computation of the cannot predicate. In other words, the translation
directly implements the semantic rules of the behavioral semantics using
simple Boolean gates.

Part ??: Implementation

Yet to be written. Will be shortly presented: an interpreter for constructive
circuits. A compiler that uses BDD algorithms to check for constructiveness.
Hardware circuit optimization. Extension to the full language. Software
implementation and optimization.

3In the up-bounded inertial delay model of [15].
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Part I

Informal Presentation
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Chapter 2

The Pure Esterel Kernel
Language

This section describes the kernel language and its intuitive semantics. It can
be skipped by the experienced Esterel user.

2.1 Signals and Reactions

Esterel deals with broadcast signals. In most of this book, we limit ourselves
to the Pure Esterel sublanguage, where the information carried by a signal
is limited to a presence / absence status. In the full Esterel language, signal
can also carry values of arbitrary types.

A Pure Esterel program or module has a input-output signal interface
and an executable body, which is an imperative statement:

module M:
input names;
output names;
statement
end module

An input event specifies the presence / absence status of each input signal. A
Pure Esterel program reacts to an input event by computing an output event,
i.e. by assigning a status to each output signal. The reaction is conceptually
instantaneous, and a reaction is also called an instant.

Reacting instantaneously is done repeatedly for input event sequences,
also called input histories, thus generating output histories. The reaction to

19
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an input history is “sequential” in hardware terminology: an Esterel program
has a state, which is implicitly encoded in its executable body. The reaction
to an input event provokes a state change, and the reaction to the next input
in an input history is computed from the new state.

2.2 Kernel Esterel Statement

Pure Esterel statements are divided into kernel statements, which form the
Kernel Esterel primitive core of the language and derived statements, which
make programming more convenient but are definable as combinations of
kernel ones. As far as semantic issues are concerned, only kernel statements
matter. The kernel language we consider is that of [5]:

nothing
emit S
pause
present S then p else q end
suspend p when S
p; q
loop p end
p || q
trap T in p end
exit T
signal S in p end

By default, ‘;’ binds tighter than ‘||’. One can use brackets ‘[’ and ‘]’ to
group statements in arbitrary ways. Both the then and else parts are op-
tional in a present statement. If omitted, they are assumed to be nothing.

The statements are imperative and manipulate control flow and signal
status. Most of them are classical in appearance. The trap-exit com-
bination defines an exception mechanism fully compatible with parallelism.
Traps are lexically scoped. The local signal declaration “signal S in p end”
declares a lexically scoped signal S, which can be used for internal broadcast
communication within p.

2.3 The Intuitive Semantics

We describe how signals are emitted and how control is transmitted between
statements.
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The status of an input signal is only determined by the input event.
Explicit emission of an input signal by “emit I” is disallowed.

The status of a local or output signal is determined on a per-instant
basis. In each instant, the status is absent by default. The only way to set
a signal S present in an instant is to execute an “emit S” statement.

A statement can start in some instant; it then remains active within the
instant and possibly for some further instants until it relinquishes control,
either by terminating or by exiting a trap. The only way for a statement to
stay active from one instant to the next one is to explicitly execute a pause
statement, which pauses for exactly one instant. For example, consider the
following statement:

trap T in
loop

present I then
emit O;
pause

else
exit T

end
end

end

When started, the statement emits O if I is present, and it reproduces this
behavior until the first instant where I is absent, where it terminates instan-
taneously. Termination is provoked by executing the “exit T” statement,
which provokes instantaneous termination of the enclosing “trap T” state-
ment. Notice that the statement terminates instantaneously when started
if I is initially absent. Notice also that the internal state encoded by the
activity of the pause statement propagates from one instant to the next one.

Besides pause, all constructs propagate control in an instantaneous (or
combinational) way. Signals are also broadcast and tested instantaneously.
A statement that terminates or exits a trap in the same instant it starts is
said to be instantaneous.

The intuitive semantics is defined by structural induction on statements:

• nothing terminates instantaneously.

• pause pauses in the current instant and terminates in the next instant.
The pause statements act as state variables.
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• An “emit S” statement instantaneously broadcasts the signal S, i.e.
sets its status to present and terminates instantaneously. The emission
of S is transient, i.e. valid for the current instant only.

• When a “present S then p else q end” statement starts, it imme-
diately starts p if S is present in the current instant; otherwise it starts q
if S is absent.

• In the “suspend p when S” suspension statement, S is called the guard.
The guard controls execution of the body in each instant except for the
first one, where it is ignored (masked in common terminology). In the
initial instant, the body p is started; if p terminates or exits a trap, so
does the suspend statement, and the guard is transparent. Interesting
things only happen in the following instants if p paused in the first
instant. Then, as long as p remains active, the guard signal S is tested
for presence.

– If S is present, then p is not executed in the instant and it is kept
frozen for the next instant. The whole suspend statement pauses.
In this case, we say that p is suspended for the instant.

– If S is absent, then p receives the control for the instant. We say
that p is activated for the instant. If p terminates or exits a trap,
so does the suspend statement. If p pauses, then the suspend
statement also pauses.

In other words, when S is present, we “steal the clock” from p. Notice
that a suspend statement remains active until its body terminates or
exits a trap, which can only occur in the first instant or in successive
instants during which S is absent.

• When started, a sequence “p; q” immediately starts p and behaves as
such as long as p remains active. If and when p terminates, control
is passed instantaneously to q, which determines the behavior of the
sequence from then on. If and when p exits a trap T, so does the whole
sequence, q being discarded in this case. Notice that q is never started
if p always pauses. Notice also that “emit S1; emit S2” emits S1
and S2 simultaneously and terminates instantaneously.

• When started, “loop p end” immediately starts its body p. If and
when p terminates, it is immediately restarted. If p exits a trap, so
does the whole loop. The body of a loop is not allowed to terminate
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instantaneously when started; it must execute either a pause or an
exit statement. A loop statement never terminates, but it is possible
to escape from the loop by enclosing it within a trap and executing an
exit statement.

• When started, a parallel statement “p||q” immediately starts p and q
in parallel. The parallel statement remains active as long as one of
its branches remains active, unless some branch exits a trap. The
parallel statement terminates instantaneously if and when both p and q
are terminated. The branches can terminate in different instants, the
parallel waiting for the last one to terminate. Parallel branches may
simultaneously exits traps. If, in some instant, one branch exits a
trap T or both branches exit the same trap T, then the parallel exits T.
If both statements exit distinct traps T1 and T2 in the same instant,
then the parallel only exits the outermost of these traps, the other one
being discarded.

• The statement “trap T in p end” defines a lexically scoped exit point T
for p. When the trap statement starts, it immediately starts its body p
and behaves as p until termination or exit. If p terminates, so does
the trap statement. If p exits T, then the trap statement terminates
instantaneously. If p exits an enclosing trap U, this exit is propagated
by the trap statement.

• An “exit T” statement instantaneously exits the trap T. The corre-
sponding trap statement is terminated, unless an outermost trap is
concurrently exited (see the parallel and trap statements above).

• When started, the statement “signal S in p end” immediately starts
its body p with a fresh signal S, overriding any that might already exist.
The statement behaves as its body until termination or exit, except
that the status of the local signal S is not exported.

2.4 Comparison with Previous Kernels

There are slight technical differences with the original kernel language and
semantics of [11, 4]. We describe the differences and show how to recover
the old kernel from the new one. This is an interesting exercise in Kernel
Esterel programming.
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• In the above presentation, a statement can exit at most one trap.
If both branches of a parallel statement exits traps, then the parallel
statement exits only the outermost one. In [11], a statement could exit
a set of traps and the trap statement did the sorting. Both solutions
are equivalent, but the new one has the technical advantage of yielding
a nice numerical encoding of traps, see Chapter 5.

• The original halt statement, which pauses forever, is replaced by the
pause statement, which pauses for one reaction only; halt is recovered
as “loop pause end”.

• The original kernel used the “do p watching S” watchdog statement,
which behaves as its body p until the first following instant where S
occurs, where the whole watchdog statement terminates without trans-
ferring control to p in this instant. The watchdog construct is used to
abort the body when an event occurs. In the kernel, it is now replaced
by the semantically simpler and more powerful “suspend p when S”
suspension statement, which suspends its body instead of aborting it,
see [5]. Recovering the “do p watching S” statement is a good ex-
ample of kernel expansion:

trap T in
suspend p when S;
exit T

||
loop

pause;
present S then exit T end

end
end

The first parallel branch suspends the watchdog’s body when S is
present, and, otherwise, it exits T if p terminates to propagate ter-
mination. The second branch makes the whole expansion terminate
when S occurs. The instantaneous combination of suspension and trap
exit has the intended effect.

• In [11, 4], we assumed the existence of an always present tick sig-
nal. The new pause statement could be written “await tick”, i.e.
“do halt watching tick”. If needed, the tick can now be derived
as a local signal by executing
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loop
emit tick;
pause

end

in parallel with the module’s body.
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Chapter 3

Logical Correctness

The intuitive semantics specifies what should happen when executing a pro-
gram, but it does not guarantee that an execution actually exists and is
unique. Indeed, we shall need extra criteria for this to happen. In this chap-
ter, we study the apparently simplest possible criterion, logical correctness.

In the intuitive semantics, we said that a signal S is absent by default
and present if an “emit S” statement is executed. Let us rephrase this
requirement in a more logical style, getting rid of imprecise notions such as
“default” behaviors:

The Logical Coherence Law: A signal S is present in an
instant if and only if an “emit S” statement is executed in this
instant.

Logical correctness is simply the requirement that there exists exactly one
status for each signal that respects the coherence law. Of course, there is a
strong relationship between signal status and control propagation: a signal
status determines which branch of a present test is executed, which in turn
determines which emit statements are executed.

We shall see that paradoxical statements can be written between control
and signals. All the problems we shall mention appear only within instanta-
neous reactions. Program states do not add extra complexity; they will be
ignored until we present the formal treatment, from Chapter 6 on.

We begin by intuitively defining logical correctness of Esterel programs.
We then give examples of logically correct and incorrect programs. Finally,
we show that composing several logically incorrect programs may result in
a logically correct one.

27
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3.1 Logical Correctness

Consider a fixed program and a fixed input event. Given a global status,
i.e. a status for each signal of the program respecting the given input event,
the flow of control is entirely determined and each emit statement is known
to be either executed or not executed. Therefore, one can check whether
the coherence law is respected for each signal: the global status is logically
coherent iff at least one emit statement is executed for each signal assumed
present and no emit statement is executed for each signal assumed absent.

We say that the program is logically reactive (resp. logically deterministic)
w.r.t. the input event if there is at least (resp. at most) one logically coherent
global status. We say that the program is logically correct w.r.t. the input
event if it is both logically reactive and deterministic. We say that a program
is logically correct if it is logically correct w.r.t. all possible input events.

Pure Esterel programs can be analyzed for logical correctness by per-
forming exhaustive case analysis. Given the status of each input signal, one
can make all possible assumptions about the global status and check them
individually. Therefore, logical correctness is decidable.

3.2 Examples of Logically Correct Programs

Our first example is the following Esterel program P1:

module P1:
input I;
output O;
signal S1, S2 in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal
end module

The program P1 has no internal state, and only its first reaction matters. It
is easy to check that P1 is logically correct for all inputs:

• If I is present, the unique logically coherent assumptions are S1
present, S2 absent, and O absent. According to these assumptions,
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the first present statement takes its then branch, the second present
statement takes its empty then branch, and the third present state-
ment takes its empty else branch. The “emit S1” statement is exe-
cuted, justifying the assumption S1 present. No “emit S2” and “emit O”
statement are executed, justifying the assumptions S2 absent and O
absent. It is easy to check that no other assumptions are logically
coherent.

• If I is absent, the unique logically coherent assumptions are S1 ab-
sent, S2 present, and O present. According to these assumptions,
the first present statement takes its empty else branch, the second
present statement takes its else branch, and the third present state-
ment takes its then branch. The “emit S1” statement is not executed,
justifying the assumption S1 absent. The “emit S2” and “emit O”
statement are executed, justifying the assumptions S2 present and O
present. It is easy to check that no other assumptions are logically
coherent.

Our second example P2 is slightly more intricate since it involves a pause
statement:

module P2:
signal S in

emit S;
present O then

present S then
pause

end;
emit O

end
end signal

Notice that P2 is inputless. Inputless programs react on empty input events,
i.e. on “clock ticks”. The only logically coherent set of assumptions is S
present and O absent. The “emit S” statement is executed, justifying the
assumption S present. The “present O” statement takes its empty else
branch, which implies that the “emit O” statement is not executed, jus-
tifying the assumption O absent. All other assumptions are incoherent as
follows. Since the “emit S” statement is executed whatever assumption we
make, an assumption where S is absent is incoherent. Now, assume S present
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and O present. Then both present statements take their then branches and
the pause statement is executed, which implies that the “emit O” statement
is not executed in the instant, contradicting the assumption O present.

3.3 Examples of Logically Incorrect Programs

We now turn to logically incorrect programs. The following inputless pro-
gram P3 is the simplest example of a non-reactive program :

module P3:
output O;
present O else emit O end
end module

Clearly, no logically coherent assumption can be made for P3:

• Assuming O present is not justified, since the “emit O” statement is
not executed.

• Assuming O absent is not justified, since the “emit O” statement is
executed.

The next program P4 is the simplest example of a nondeterministic program:

module P4:
output O;
present O then emit O end
end module

For P4, there are two logically coherent assumptions:

• Assuming O present is justified since the “emit O” statement is exe-
cuted.

• Assuming O absent is justified since the “emit O” statement is not
executed.

To make examples shorter, we omit input-output declarations from now on.
Inputs will be written I, I1, etc., and outputs will be written O, O1, etc.

Logical coherence problems may involve several signals. The following
program P5 is non-reactive:



3.3. EXAMPLES OF LOGICALLY INCORRECT PROGRAMS 31

module P5:
present O1 then emit O2 end

||
present O2 else emit O1 end

The case analysis shows that no assumption is logically coherent.
The following program P6 is nondeterministic:

module P6:
present O1 then emit O2 end

||
present O2 then emit O1 end

For P6, simultaneous presence or absence of O1 and O2 are logically coherent
assumptions. It is interesting to try all combinations of then and else in
the above examples; we leave this to the reader.

The next example P7 involves a pause statement:

module P7:
present O then pause end;
emit O

This program is non-reactive:

• Assume O absent. Then, the present statement takes its empty else
branch and terminates. The “emit O” statement is executed, violating
the assumption.

• Assume O present. Then, the present statement takes its then branch
and pauses. The “emit O” statement is not executed, violating the
assumption.

The example P8 below shows that coherence analysis can be quite intricate
when traps are involved:

module P8:
trap T in

present I else pause end;
emit O

||
present O then exit T end

end trap;
emit O
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The program P8 is logically correct for I present, but it is logically non-
deterministic for I absent.

• Consider the case I present. The only logically correct assumption is O
present. Under this assumption, the “present I” statement takes its
empty then branch and terminates, and the first “emit O” statement
is executed, which suffices in justifying the assumption. The second
present statement takes its then branch, the trap T is exited, the trap
statement terminates, and O is reemitted, which is no problem. The
opposite assumption O absent is incoherent since the first “emit O” is
executed.

• Consider the case I absent. Whichever assumption we take for O, the
pause statement of the first branch is executed, the enclosing present
statement pauses, and the first “emit O” is not executed, Surprisingly,
both assumptions O present and O absent are logically coherent:

– Assume O present. Then, the second parallel branch exits the
trap T, the trap statement terminates, and the last “emit O”
statement is executed, which justifies the assumption.

– Assume O absent. Then, the second parallel branch terminates
without executing the exit statement and trap T is not exited.
The parallel statement does not terminate since its first branch
does not, and the trap statement does not terminate since its
body does not. This implies that the last “emit O” statement is
not executed. Since neither “emit O ” statement is executed, the
assumption O absent is coherent.

Replacing “then” by “else” in the second parallel branch would yield a
program with no logically coherent behavior.

3.4 A Strange Logically Correct Program

Our last example P9 shows that composing programs can lead to counter-
intuitive phenomena. The program is as follows:
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module P9:
present O1 then emit O1 end

||
present O1 then

present O2 else emit O2 end
end

The first parallel branch is a copy of the nondeterministic program P4,
while the second branch contains a copy of the non-reactive program P3
enclosed in an apparently innocuous “present O1” statement. Surprisingly
enough, P9 is reactive and deterministic, since there is only one logically co-
herent assumption: O1 absent and O2 absent. With this assumption, the first
present O1 statement takes its empty else branch, which justifies O1 ab-
sent. The second “present O1” statement also takes its empty else branch,
and “emit O2” is not executed, which justifies O2 absent. Disproving the
other assumptions is left to the reader.
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Chapter 4

The Constructive Approach

Logical correctness is a sound semantics for Esterel. However, we have two
strong reasons to reject it as the basis of the language. The primary reason
is lack of fidelity to the programmer’s intuition. A secondary but practically
important reason is computational complexity. In this chapter, we present
the constructive semantics, which solves both problems.

4.1 External Justification Versus Self-justification

In practice, programming in Esterel consists of analyzing input events to
generate appropriate output signals, and using concurrent statements and
intermediate local signals to create modular, well-structured programs. The
programmer’s natural way of thinking is in terms of information propagation
by cause and effect . For example, in the statement

present I then
emit O

end

the presence of I causes that of O, and the absence of I causes that of O.
Clearly, the programs P1, page 28, and P2, page 29, are well behaved

as far as information propagation is concerned. For example, in P1 with I
present, information is propagated as follows: the then branch of the first
present statement is taken, S1 is emitted and therefore present; the else
branch of the second present is not taken, and the only “emit S2” state-
ment is not executed, which implies that S2 is absent; the only “emit O”
statement is not executed, and O is absent. There is no need to study the
other assumptions about S1, S2, and O.
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On the other hand, in the logically correct program P9 that ends Chap-
ter 3 (page 33), there is no natural information propagation. The logically
coherent set of assumptions O1 absent and O2 absent happens to be self-
justified: for instance, the O1 absent assumption is valid since “emit O1”
is not executed, a fact that itself follows from the starting assumption O1
absent. Logical correctness of P9 only follows from the fact that no other set
of assumptions is self-justified.

In our opinion, accepting P9 as correct is logically possible, but not in ac-
cordance with the intention of the language, i.e. with its intuitive semantics
and with the intended sequential1 character of test statements. In an im-
perative language such as Esterel, when we write “present S then p end”,
we obviously mean “first test the status of S, then execute p if S is present”,
assuming that the status of S should not depend on what p might do. The
ordering implicit in the then word is not that of time, since everything is con-
ceptually instantaneous, but that of sequential causality. We want to allow
actual computation of the form “since S is present, we take the then branch”
and to forbid speculative computation such as “if we assume S present, then
we take the then branch”. Aside from the explicit concurrency ‘||’, all Es-
terel statements are sequential, and this character should be preserved in the
semantics. Here is an example involving an explicit sequence operator ‘;’:

module P10:
present O then nothing end;
emit O

P10 is logically coherent with O present, but we do want to reject it: in the
logical semantics, the information that O is present flows backwards across
the sequencing operator, contradicting the basic intuition about sequential
execution.

In the constructive semantics, the idea of checking assumptions about
signal statuses is replaced by the idea of propagating facts about control flow
and signal statuses. Obviously, the name is borrowed from constructive logic,
in which one handles fact-propagating proofs, instead of handling values as
in classical logic (see [17]). The analogy will be made formal in Chapter 7
and Chapter 9, where we shall present the new semantics as a constructive
version of logical correctness.

Technically speaking, there are three equivalent ways to present the con-
structive semantics. We begin with the constructive behavioral semantics,

1In classical programming terminology, not in hardware terminology!
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derived from the logical behavioral semantics by adding constructive restric-
tions to the logical coherence rule. It is the simplest way of defining the
language. Then, we present the constructive operational semantics , which
is based on an interpretation scheme expressed by term rewriting rules defin-
ing microstep sequences. It is the simplest way of defining an efficient in-
terpreter. Finally, we briefly present the circuit semantics, which is based
on a translation of programs into constructive circuits and is the core of the
Esterel v5 compiler.

4.2 The Constructive Behavioral Semantics

The constructive behavioral semantics retains the spirit of the logical coher-
ence semantics, but it adds reasoning about what a program must or cannot
do, both predicates being disjoint and defined in a constructive way. These
disjoint predicates express the following facts respectively:

• A statement must terminate, must pause, must exit a trap T, or must
emit a signal S.

• A statement cannot terminate, cannot pause, cannot exit a trap T, or
cannot emit a signal S.

The must predicate determines which signals are present and which state-
ments are executed. The cannot predicate determines when signals are ab-
sent and it serves in pruning out false execution paths. The logical coherence
law splits into two constructive sublaws, which are exclusive of each other,
thus ensuring determinism at once:

• A signal is declared present if and only if it must be emitted.

• A signal is declared absent if and only if it cannot be emitted.

The predicates are defined by structural induction on statements, in a way
that respects the sequential character of all primitives besides concurrency.
In the recursive definition of the predicates, a signal can have three sta-
tuses: +, i.e. known to be present, −, i.e. known to be absent, or ⊥, i.e.
yet unknown. Technically, it is easier to define the cannot predicate as the
negation of a can predicate; there is no constructiveness problem in taking
such a negation since we only deal with finite sets. Here are some examples
of inductive definitions:
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• In a sequence “p; q”, one must (resp. can) execute q if p must (resp.
can) terminate.

• For a test “present S then p else q end”, there are three subcases:

– If S is known to be present, the test behaves as p.

– If S is known to be absent, the test behaves as q.

– If S is yet unknown, the test can do whatever p or q can do, and
there is nothing it must do.

The main subtlety (and novelty) appears in the analysis of output or local
signals. The analysis being the same in both cases, we consider a local signal
declared by “signal S in p end”.

First consider the must predicate. The idea is as follows. Assume we
already know that we must execute “signal S in p end” in some signal
context E that defines the status of visible signals. To find in which signal
context p must be executed, we must compute the final status of S. We first
analyze p in E augmented by setting the unknown status ⊥ for S. If we find
that S must be emitted, we propagate this information by re-analyzing p
in E with S present, which may generate more information about the other
signals. Similarly, if we find that S cannot be emitted, we re-analyze p in E
with S absent; this is the only place where the can predicate is used.

For the can predicate, we just recursively analyze p with status ⊥ for S.
We cannot do any better without performing a speculative computation,
since the can predicate can be computed for statements that must not be
executed.

We refer to Chapter 7 for the other statements and the formal definitions.

4.2.1 Accepting Programs

Programs are accepted as constructive ones if and only if fact propagation
using the must and can (or cannot) predicates suffices in establishing presence
or absence of all signals. For example, the constructive behavioral analysis
of P1, page 28, is as follows:

• If I is present, then the first present statement must take its first
branch, emit S1, and terminate. From this, we deduce that S1 is
present. Then, the second present statement must take its (empty)
then branch and cannot take its else branch. Since the “emit S2”
statement cannot be executed, S2 cannot be emitted, which implies
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that S2 is absent. Finally, the third present statement cannot take
its then branch, which implies that O cannot be emitted and is absent.

• If I is absent, then the first present statement cannot take its first
branch, and the “emit S1” statement cannot be executed, which im-
plies that S1 is absent. Therefore, the second present statement must
take its then branch, the “emit S2” statement must be executed,
which implies that S2 is present. Finally, the third present state-
ment must take its then branch, and the “emit O” statement must be
executed, setting O present.

Consider now the program P2, page 29, which we recall here for readability:

module P2:
output O;
signal S in

emit S;
present O then

present S then
pause

end;
emit O

end
end signal

We first start analyzing what the “signal S” statement must do with sta-
tus ⊥ for O. For this, we analyze its body with status ⊥ for O and S. We
immediately find that S must be emitted since we must execute the “emit S”
statement. Therefore, we redo the analysis with status ⊥ for O and + for S.
We reach the test for O. Since the status of O is unknown, there is nothing
we must do and we can make progress only by analyzing what we cannot
do in the branches of the test. In the then branch, there is a present
test for S. Since S is known to be present, we cannot take the implicit else
branch that would terminate. Since the then branch is a pause statement, it
cannot terminate. Summing up things, the “present S” test cannot termi-
nate. Therefore, the “emit O” statement cannot be executed and O cannot
be emitted. As a consequence we must set O absent and redo the analysis
of the program with status − for O. We now find that we must take the im-
plicit else branch of the “present O” test that terminates execution. The
program is constructive since we have fully determined the signal statuses.
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In the analysis, we never performed speculative computation based on
assumptions about what we could do. We just propagated already estab-
lished positive or negative facts. Fact propagation is monotonic: when a fact
is established, it can never be contradicted later on.

Of course, the analysis involves tedious recomputation. Once we have set
a signal status, we re-analyze the body of its declaration (the whole program
for an output), and we re-establish facts we already know. The goal of the
operational and circuit semantics is precisely to avoid recomputing known
facts.

4.2.2 Rejecting Programs

Programs are rejected when the must and cannot predicates bring no infor-
mation about the status of some signal. This is the case for the programs P3,
page 30, and P4, page 30. For both programs, we find that O can be emit-
ted since there are potentially reachable “emit O” statements, but that it
is not true that O must be emitted. Since we cannot make any construc-
tive progress on the status of O, we reject the programs. Notice that P3
and P4 are rejected for the very same reason by the constructive semantics,
while they were rejected for two different reasons in the logical behavioral
semantics, respectively, non-reactivity and non-determinism.

Generally speaking, all logically incoherent programs are rejected. Logi-
cally coherent programs can also be rejected as being non-constructive. This
is the case for the strange example P9, page 33. For P9, the can analysis
finds that both O1 and O2 can be emitted, and the must analysis finds that
no signal must be emitted; since we cannot make any progress, we reject the
program.

To understand further which programs are rejected, consider the follow-
ing variant P11 of P2:

module P11:
output O;
signal S in

present O then
emit S;
present S then

pause
end;
emit O

end
end signal
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The “emit S” statement is now inside the then branch of the “present O”
statement. The must analysis with status ⊥ for O and S finds nothing
we must do since we are not allowed to speculatively compute within the
branches of the test for O. In the same status, the cannot analysis finds that
both S and O can be emitted since it finds potentially reachable emitters.
Therefore, we can make no progress and we reject P11.

The following program P12 is also rejected:

module P12:
present O then emit O else emit O end

The constructive analysis finds that O must not be emitted since it is not
allowed to speculatively execute the branches of the test. We shall explain
strong physical (electrical) reasons to reject P12 in Section 10.

4.3 The Constructive Operational Semantics

The constructive operational semantics is defined by a rewriting-based in-
terpretation scheme, which gives a dynamic vision of program execution.
Instead of reasoning about what we must do, we just do it. A priori, this
looks like a better idea. However, the formal definition and technical treat-
ment of the constructive operational semantics is much heavier than that of
the constructive behavioral semantics. This is why we take the latter as the
primary semantics.

4.3.1 Accepting Programs

We begin the intuitive explanation with the example of P1 with input I
present. First, we decorate the declaration of each signal with a status in +
(present), − (absent), or ⊥ (unknown). Initially, all signals except inputs
are unknown, and the body of the program is started, which is indicated by
a bullet:
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module P1:
input I+;
output O⊥;
• signal S1⊥, S2⊥ in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal

The ternary parallel statement forks three execution threads:

module P1:
input I+;
output O⊥;
signal S1⊥, S2⊥ in
• present I then emit S1 end

||
• present S1 else emit S2 end

||
• present S2 then emit O end

end signal

Such a move of bullets is called a microstep, following the terminology of [26].
When encountering a “present S” statement in a thread, we proceed as

follows. If S is annotated with +, we transfer control to the then branch.
If S is annotated with −, we transfer control to the else branch. If S is
annotated by ⊥, we block until the status of S becomes + or −. Here, only
the first thread can continue. Since I is known to be present, we can take
the then branch of the first test, rewriting the program as follows:

input I+;
output O⊥;
signal S1⊥, S2⊥ in

present I then • emit S1 end
||
• present S1 else emit S2 end

||
• present S2 then emit O end

end signal
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In the next microstep, we execute “emit S1” that sets S1 present and ter-
minates the first branch:

input I+;
output O⊥;
signal S1+, S2⊥ in

present I then emit S1 end •
||
• present S1 else emit S2 end

||
• present S2 then emit O end

end signal

Next, we take the implicit then branch of the second present:

input I+;
output O⊥;
signal S1+, S2⊥ in

present I then emit S1 end •
||

present S1 else emit S2 end •
||
• present S2 then emit O end

end signal

Since there is no more occurrence of “emit S2”, we cannot emit S2 and we
set S2 absent:

input I+;
output O⊥;
signal S1+, S2− in

present I then emit S1 end •
||

present S1 else emit S2 end •
||
• present S2 then emit O end

end signal

We now take the implicit else branch of the last present statement:
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input I+;
output O⊥;
signal S1+, S2− in

present I then emit S1 end •
||

present S1 else emit S2 end •
||

present S2 then emit O end •
end signal

Now, there are no occurrences of “emit O” reachable by the threads, and
we cannot emit O any more. We set O absent as expected. Finally, we
synchronize the three terminated threads to terminate the whole program:

input I+;
output O−;
signal S1+, S2− in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal
•

The execution of P1 with I absent is similar and left to the reader.
Let us now execute P2, page 29. We start from the following decorated

statement:

output O⊥;
• signal S⊥ in

emit S;
present O then

present S then
pause

end;
emit O

end
end signal
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In three microsteps, we traverse the local signal declaration, we execute
“emit S” that sets S present and we reach the test for O by traversing the
sequencing operator:

output O⊥;
signal S+ in

emit S;
• present O then

present S then
pause

end;
emit O

end
end signal

Since the status of O is ⊥, control is frozen at the “present O” test and we
can perform no further trivial microstep. We now perform a cannot analysis
just as in the constructive behavioral semantics. The analysis reports that O
cannot be emitted. We use a microstep to set it absent:

output O−;
signal S+ in

emit S;
• present O then

present S then
pause

end;
emit O

end
end signal

and we terminate execution by taking the implicit else branch of the test:

output O−;
signal S+ in

emit S;
present O then

present S then
pause

end;
emit O

end
end signal
•
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In the operational semantics, we avoid most of the recomputation that take
place in the constructive behavioral semantics. The reason why we can do
this is that statuses evolve in a monotonic way.

4.3.2 Rejecting Programs

Programs are rejected very much in the same way as in the constructive
behavioral semantics, i.e. whenever no progress can be made on signal sta-
tuses. Consider for example P3, page 30. There is no possible initial mi-
crostep, which prevents us from setting the status of O to +, and there is a
potential path to “emit O”, which prevents us from setting the status of O
to −. Since we cannot make progress, we reject the program. All logically
incorrect programs are rejected in the same way, as is the logically correct
strange program P9, page 33.

4.3.3 Summary of the Constructive Interpretation Scheme

The interpretation scheme handles sequential threads of control forked by
parallel statements. Signals are shared objects having a three-valued status
in {+,−,⊥} and initialized to ⊥, except for input signals, which are initial-
ized according to the input event. The status of a signal S changes from ⊥
to + as soon as an “emit S” statement is executed and from ⊥ to − as soon
as all the “emit S” statements have been found unreachable by the cannot
false path analysis. When a thread reaches a “present S” statement, it
remains there, frozen, as long as the status of S is ⊥, and it can resume by
taking the appropriate branch as soon as S has a non-⊥ status. If several
threads are enabled, any one of them can be chosen. Threads are stopped by
termination or by executing pause or exit statements, and parallel state-
ments synchronize stopped threads, as explained in the intuitive semantics.
Finally, the false path analysis explores all possible instantaneous paths to-
wards emit statements, taking into account all facts established so far and
making no speculative reasoning.

Given an input, a program is accepted if the analysis succeeds in setting
each signal status to a defined value + or −. Logical correctness is guaranteed
for accepted programs.

It is not obvious that the result is independent of the order in which
threads are executed and that the constructive operational semantics is
equivalent to the constructive behavioral one. This will be proved in Chap-
ters 9.
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4.3.4 Comparison With Previous Operational Semantics

The constructive operational semantics can be seen as an improved ver-
sion of the former operational semantics presented in [11] and used in the
Esterel v3 compiler. Technically the improvement is brought by the finer
cannot analysis that allows us to handle P2, page 29, which was rejected by
the operational semantics of [11]. Semantically, the constructive operational
semantics is fully equivalent to the constructive behavioral semantics, while
the previous operational semantics lacked proper semantical characteriza-
tion.

4.4 The Circuit Semantics

In the circuit semantics, we translate Esterel programs into Boolean digital
circuits, i.e. systems of equations between Boolean variables.

In circuits, we deal with a set of Boolean variables split into disjoint
subsets of input variables, output variables, and local variables. A circuit
must specify an equation for each output or local variables, using either a
Boolean expression or a register unit-delay operator that we shall ignore in
this informal presentation, sticking to what is usually called combinational
circuits. A Boolean solution of the equations defines a logical behavior.

4.4.1 The Logical Interpretation of Circuits

Given a circuit and an input, there may be no logical behavior, one be-
havior, or several behaviors. Therefore, we can define logical reactivity and
determinism in the same way as for Esterel programs.

Let us re-examine some of the examples of the previous chapter in terms
of behavior of Boolean circuits. The program P1, page 28 can be rewritten
as follows:

circuit C1:
S1 = I
S2 =¬S1
O = S2

Since C1 defines an acyclic dependency relation between variables, it is trivial
that C1 is logically reactive and deterministic. The program P3, page 30,
corresponds to the following circuit C2:
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circuit C2:
O = ¬O

This cyclic circuit is not reactive. Similarly, P4, page 30, corresponds to the
non-deterministic cyclic circuit “O = O”.

The program P9, page 33, and P12, page 41, corresponds to the cyclic
circuits C9 and C12 below:

circuit C9:
O1 = O1
O2 = O1 ∧ ¬O2

circuit C12:
O = O ∨ ¬O

The circuits C9 and C12 are logically reactive and deterministic, as are P9
and P12.

4.4.2 The Electrical Implementation of Circuits

Circuits are usually meant to be implemented using electrical wires and
gates composed of appropriately wired transistors. The Boolean values 0
and 1 are represented by distinct voltages, say 0V and 5V . Wires propagate
voltages with some delay, and gates compute Boolean functions of voltages
with some delay. Electrical circuits are generally pictured using conventional
symbols2. For example, the circuits C9 and C12 are respectively pictured
in Figure 4.1 and Figure 4.2. For an acyclic circuit, such as C1, it is
trivial that the output voltage remain stable after some delay if the inputs
are kept stable. Stabilization is much less trivial for cyclic circuits. For
non-reactive or non-deterministic circuits, one can always find delays such
that the outputs never stabilize. The worst case is that of C2, which never
stabilizes. For the logically correct circuits C9 and C12, one can find delays
for which there is no output stabilization (left to the reader). This already
means that electrical stabilization is not the conjunction of reactivity and
determinism.

An example of a cyclic circuit that stabilizes for all delays is the following
circuit C13, pictured in Figure 4.3:

2See Figure 10.1, page 104.
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O2

O1

Figure 4.1: Circuit C9

O

Figure 4.2: Circuit C12

circuit C13:

O1 = I ∧ O2

O2 = ¬I ∧ O1

In C13, the loop is electrically cut at one of the two and gates according to
the value of I, since a single 0 on an and gate input is enough to generate a
0 on the output.

Notice that the non-stabilizing circuits C9 and C12 correspond to the non-
constructive Esterel programs P9 and P12, while the stabilizing circuit C13
corresponds to the following constructive Esterel program P13:

module P13:

input I;

output O1, O2;

present I then

present O2 then emit O1 end

else

present O1 then emit O2 end

end
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O1

I

O2

Figure 4.3: Circuit C13

This suggests to relate constructiveness and electrical stabilization. For this,
we need a theory of constructive circuits parallel to that of constructive
Esterel programs.

4.4.3 Constructive Circuits

The appropriate theory of constructive circuits is presented in [38]. There
are three equivalent frameworks for defining circuit constructiveness:

• Constructive Boolean Logic: a circuit is constructive for an input
if one can compute all the local and output variables by applying the
following constructive Boolean laws:

¬0 = 1
¬1 = 0

0∧x = x∧0 = 0
1∧1 = 1

1∨x = x∨1 = 1
0∨0 = 0

and by replacing a variable by its value when this value has been
computed. Notice that the excluded middle law “x ∨ ¬x = 1” is not
valid in the constructive calculus unless x has been proved to be 0 or 1,
which explains why C12 is not constructive.

• Denotational Semantics: we interpret variables in Scott’s ordered
Boolean domain B⊥ = {⊥, 0, 1}. Given an input, the system of equa-
tion defines a monotonic (increasing) function f from tuples of local
and output variables to tuples of local and output variables. The cir-
cuit is constructive for the input if the least fixpoint Y of f is fully
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defined, i.e. if the value of any variable in the tuple Y is different
from ⊥.

• Electrical Semantics: we say that a circuit is constructive if, for
all gate and wire delays, all wire voltages stabilize in bounded time,
provided that the input wires are kept stable at voltages encoding the
input values.

The equivalence between these three semantics is a strong full abstraction
result that relates logical, denotational, and operational views. Its real
strength comes from the physical character of the electrical semantics.

4.4.4 From Esterel Programs to Constructive Circuits

The translation of Pure Esterel programs into circuits is a non-trivial process
presented in Chapters 11 through 13. The translation we present extends
the original translation of [4] by solving the schizophrenia problem, which
we left unsolved in [4]. The solution involves performing appropriate logic
duplication. All Esterel programs are now translated. To preserve construc-
tiveness, the priority queue used in the original translation must also be
modified in a quite subtle way, see Chapter 11.

The main result is that an Esterel program is constructive if and only if its
circuit is. This implies that constructiveness in Esterel exactly corresponds
to electrical stabilization: the full abstraction result for circuits also holds
for Esterel.

4.5 Complexity Issues

In the application class towards which Esterel is targeted, namely hardware
or software controllers, users definitely want fast simulation tools able to han-
dle large programs involving hundreds or even thousands of signals. Given
a program and an input, such a simulator should either perform the transi-
tion or report a semantical error such as non-reactivity or non-determinism.
As far as full compilation goes, users can accept comparatively longer com-
pilation and optimization times to generate efficient circuits or embedded
software code, but they still want the compiler to take a reasonable amount
of time.

Computing whether a program is constructively correct for a given input
is efficient. For instance, the execution and false path pruning steps can be
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efficiently implemented using pointers from emit statements to signals and
from signals to present statements. Because of the reincarnation problem
mentioned in [6], the worst case cost of the analysis of a program of size n
is n2. However, the squaring factors appears only for pathological examples,
and the cost is roughly linear in practice.

In the Esterel v5 interpreter, we translate a program into a digital cir-
cuit and we run a linear-time constructiveness analysis algorithm for each
input. Interpretation is very fast. In the Esterel v5 compiler, we analyze
constructive correctness for all possible input. The easy case is when the
circuit is acyclic, which is found in linear time. Then, the program is auto-
matically correct. To analyze cyclic circuits, we use an algorithm based on
Binary Decision Diagrams and presented in [38]. The algorithm is an exten-
sion of Malik’s original algorithm [28] for sequential circuits. The algorithm
checks for constructiveness, and, if it succeeds, returns an equivalent acyclic
version of the circuit that can be implemented very efficiently. The current
Esterel v5 compiler can handle cyclic programs of industrial size3.

As far as logical correctness semantics is concerned, even the simplest
problem of computing the reaction of a program to a given input is NP-
complete. The exhaustive search method we have presented in Chapter 3 is
obviously impractical since it is exponential in the number of signals. Much
less naive and more efficient algorithms such as the one presented in [24]
can be adapted to Esterel using the translation into circuits. Such heuristic
algorithms can work reasonably well on medium-size examples, but their
time and space resource requirements are somewhat unpredictable and they
will not scale to real-size examples. This is not acceptable for an interpreter.

4.6 Constructive Symbolic Debugging

The constructive semantics fits well with symbolic debugging, a must for
practical applications of the language. In the Esterel v5 symbolic debugger,
we use a coloring scheme to show control and signal status propagation
within a reaction. Executed statements and emitted signals are highlighted
in green. Replacing green by underlining, the execution of P1 with I present
is pictured below:

3We are currently working on modular analysis of programs, but it is too early to report
on the results.
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input I;
output O;
signal S1 , S2 in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal

The signal keyword is underlined since the signal statement is executed.
The ‘||’ statements are underlined since they fork the control. The three
present statements are underlined since they are executed concurrently.
The then keyword and branch of the first present are underlined since this
branch is executed, while the branches of the other two present statements
are in normal font since they are not executed. The signals I and S1 are
underlined since they are present. Since each control thread is strictly se-
quential, the picture gives complete information about what is executed and
what is not.

With I absent, the execution is pictured as follows:

input I;
output O;
signal S1, S2 in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal

This form of symbolic debugging also applies to printing appropriate error
messages for non-constructive programs. We can paint in red (here, italic)
the frozen part of each thread and the signals with status ⊥. For P3, page 30,
the picture is

output O;
present O else emit O end

The present keyword is underlined since the present statement is executed.
The declaration of O is in italic since the status of O is ⊥, and the then and
emit keywords are in italic to show where the thread is frozen.



54 CHAPTER 4. THE CONSTRUCTIVE APPROACH

4.7 Comparison with Previous Attempts

The Esterel v2 [9] and Esterel v4 compilers take a restricted topological
approach to correctness. Write S1 → S2 if there is a potential direct control
path from a “present S1” statement to an “emit S2” statement, and build
a signal dependency graph by gathering all such arrows. The dependency
graph is required to be acyclic4. All accepted programs are constructively
correct.

The topological approach is usually considered adequate for data-flow
synchronous languages [23, 20] and manually designed hardware circuits,
but it is insufficient for Esterel since it does not take care of false control
paths, of inputs, and of states. The correct program P2, page 29. is rejected
since there is an arrow O → O. However, the control path from “present O”
to “emit O” is a false one, which is detected by the constructive analysis.
Program P13, page 49, is also rejected, since there is a static cycle between O1
and O2. However, P13 is constructive and accepted by Esterel v5.

The following constructive program P14 is also rejected by both Es-
terel v2 and Esterel v4:

module P14:
input I;
output O1, O2;
present O1 then emit O2 end;
pause;
present O2 then emit O1 end

As in P13, there is a topological cycle between O1 and O2, hence the rejection.
However, the constructive analysis finds that this cycle is a false one, since
the dependency O1 → O2 is only meaningful for the first reaction, while
the dependency O2 → O1 is only meaningful for the second reaction; P13 is
accepted by Esterel v5.

In Esterel v3 [11], causality analysis is more elaborate and P13 and P14
are accepted. The analysis is performed on a per-state and per-input basis.
Given a state and an input, an approximate analysis is run to detect what
statements must and cannot do, just as in the constructive analysis. How-
ever, there is one difference: when analyzing a present statement that tests
a yet unknown signal, the information known so far is not used to prune
false branches (except for inputs). Because of this limitation, P2, page 29,

4Esterel v4 actually builds a graph between signal incarnations, correctly handling the
reincarnation problem presented in [6], which Esterel v2 did not handle.
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is rejected. All possible states and inputs are explored in a systematic way,
building the whole state graph of the program. The main weakness of the
technique is that the state graph can become exponential in the size of the
program, limiting Esterel v3 to comparatively small programs.

Esterel v5 combines the advantages of Esterel v3 and Esterel v4, without
having their drawbacks, while accepting more programs and accepting them
for clear semantical reasons. There is no need to build an explicit state
graph, as in Esterel v3. Nevertheless, the analysis is done on a per-input
and per-state basis, thanks to symbolic BDD-based algorithms presented
in [38]. Furthermore, the semantical characterization of accepted programs
is constructiveness, which can be viewed in several natural and equivalent
ways. Nothing more precise can be said without entering into the formal
aspects, which we now do.
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Part II

Structural Operational
Semantics
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Chapter 5

The Esterel Process Calculus
Syntax

The keyword-based programming language syntax we have used so far is
convenient for actual programming and for presenting examples, but we
find it too heavy to be comfortably used in the framework of mathematical
semantics. From now on, we use an equivalent terse syntax in which Esterel
takes the look and feel of a process calculus. This syntax was first introduced
in [5]. The kernel constructs are written as follows:

nothing 0
pause 1
emit S !s
present S then p else q end s ? p , q
suspend p when S s⊃p
p; q p ; q
loop p end p∗
p || q p | q
trap T in p end {p}

↑ p
exit T k with k ≥ 2
signal S in p end p\s

The main differences between the programming language syntax and the
terse syntax are the removal of trap names, the introduction of an auxiliary
shift operator ↑ p in conjunction with the trap operator {p}, and the use
of integer completion codes k ≥ 0 to encode the nothing, pause, and exit

59
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statements.
We first explain completion codes. The nothing statement is encoded

by 0, the pause statement is encoded by 1, and the “exit T” statement is
encoded by 2 if the closest trap declaration is that of T, and by n + 2 if
n trap declarations have to be traversed before reaching that of T. This is
illustrated on the following example:

trap U in
trap T in

nothing
||

pause
||

exit T
||

exit U
end

||
exit U

end

which is encoded as follows in the terse syntax:

{{0 | 1 | 2 | 3} | 2}
The first “exit U” statement is encoded by 3 since one must traverse the
declaration of T to reach that of U, while the second “exit U” statement is
encoded by 2 since, in its context, the declaration of U is the closest trap
declaration.

The idea of the encoding is as follows. Each control thread returns an
integer completion code k ≥ 0 when it has completed its execution in the
instant. The completion code is generated by executing a k statement, i.e. a
nothing, pause, or exit kernel statement. Consider a parallel statement p|q.
If p returns k and q returns l, the parallel statement returns the maximum
max (k, l) of k and l. This takes into account all the synchronization the
parallel must perform:

• The parallel terminates if and when both branches have terminated,
since max (k, l) = 0 is equivalent to k = l = 0.

• The parallel pauses if one branch pauses and the other one does not
exit a trap, since max (k, l) = 1 implies k = 1 and l ≤ 1 or vice-versa.
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• The parallel exits a trap if one branch does and exits the outermost
trap only if both branches exit traps. This follows from the encoding of
exit statements that starts from 2 and increases by 1 for each enclosing
trap.

Having lost trap names in the terse syntax, we need the auxiliary ↑ p shift
operator, whose semantical effect is to increment by one all the completion
codes greater than 1 in p, thus ensuring that {↑ p} is behaviorally equivalent
to p. To illustrate the need for that operator, consider the Esterel watching
derived statement whose kernel expansion was given in Chapter 2, page 24.
In the terse syntax, “do p watching S” is written s >> p, and its kernel
expansion is rewritten as follows:

s>>p = {(s⊃↑ p) | (1 ; s ? 2 , 0)∗}

Since the expansion adds an extra trap, it is necessary to write ↑ p instead
of p to ensure correct propagation of the exit statements internally executed
by p.

In addition to the above kernel statements, we shall use the immediate
suspension derived statement written “suspend p when immediate S” in
the language syntax and s ⊃· p in the terse syntax. This statement differs
from s⊃ p only for the starting instant. In this instant, the signal s is also
tested and p does not receive the control if s is present. The kernel expansion
is as follows:

trap T in
loop

present S then
pause

else
exit T

end present
end loop

end trap;
suspend p when S

The loop encodes the full Esterel statement “await immediate [not S]”.
In terse syntax, the definition is

s⊃· p = {(s ? 1 , 2)∗} ; s⊃p
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which means “wait until the first instant where s is absent, then execute
s ⊃ p”. Finally, we impose a minor restriction on programs that makes
semantical definitions simpler: an input signal cannot be internally emitted,
i.e. one cannot write !i if i is an input. This restriction ensures that input
statuses are defined by the environment only. Any program that does not
obey this restriction can be easily recoded using extra local signals (use one
local signal per internally emitted input).



Chapter 6

The Logical Behavioral
Semantics

This chapter is devoted to the formalization of the logical behavioral seman-
tics. Although we reject this semantics as the basis of Esterel, we want to
describe it formally for three reasons. First, it formally defines reactivity
and determinism, which are the minimal requirements that any other se-
mantics must obey. Second, it is mathematically simple and elegant. Third,
in Chapter 7, we shall present the constructive behavioral semantics as a
simple refinement of the logical one, leaving most rules unchanged.

6.1 Events

Given a set S of signals, also called a sort, an event E is the definition of
a status b in B = {+,−} for each signal. The sort of E is written S(E).
Technically, we consider E either as the subset of S containing all signals
having status +, or as a mapping from S to B. The status of s in E is
written E(s). We write s+ ∈ E (resp. s− ∈ E) if the status of s in E
is + (resp. −). We write E ⊂ E′ if s+ ∈ E implies s+ ∈ E′ for any
signal s. Given a signal s, the singleton event {s+} is defined by {s+}(s) = +
and {s+}(s′) = − for s′ �= s.

Given a signal set S and a signal s ∈ S, we write S\s = S − {s}.
Given E and s ∈ S(E), we write E\s to denote the event of sort S(E)\s
which coincides with E on all signals but s.

Given an event E of sort S, a signal s possibly not in S, and a status b
in B, we define E ∗ sb as the event E′ of sort S ∪ {s} defined by E′(s) = b
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and E′(s′) = E(s′) for s′ �= s. This construct is useful for signal scoping.
Notice that the status of s in E is lost in E ∗ sb if s ∈ S(E): although decla-
rations of local signals having the same name can be nested, as in (p\s)\s,
the event E does not need to be a stack since the outermost signal s is not
visible in p.

6.2 Program and Statement Transitions

The behavioral semantics formalize a reaction of a program P as a behavioral
transition of the form

P
O−→
I

P ′

where I and O are respectively an input event and an output event. The
resulting program P ′ is called the derivative of P by the reaction. It rep-
resents the new state reached by P after the reaction. Coding states by
program texts is standard in process calculi definitions based on Structural
Operational Semantic (SOS) rules [34, 31], which is the style we use here.

Reactions are computed using an auxiliary statement transition relation,
which has the following form:

p
E′, k−−−→

E
p′

Here, E is an event that defines the status of all signals declared in the scope
of p, i.e. an assumption in the sense of Chapter 4, E′ is an event composed of
all the signals emitted by p in the reaction, k is the completion code returned
by p, and the statement p′ is called the derivative of p by the reaction. The
statement transition relation is defined by structural induction on statements
according to the rules given below.

Given a program P of body p and an input event I, the program transi-
tion of P is defined in terms of the statement transition of p in the following
way:

P
O−→
I

P ′ iff p
O, k−−−→
I∪O

p′ for some k

This definition exactly expresses what we called the logical coherence of the
global event I ∪ O in Chapter 3.

Definition: The program P is logically reactive (resp. logically determinis-
tic) w.r.t. I if there exists at least (resp. at most) one program transition
P

O−→
I

P ′. It is logically correct if it is logically reactive and logically deter-
ministic.
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6.3 Trap Propagation and Completion Codes

To handle trap propagation, we introduce two operators on completion codes.
The ↓ k operator is used to compute the completion code of {p} from that
of p, while the ↑ k operator is used to compute the completion code of ↑ p
from that of p:

↓ k =

⎧⎪⎨
⎪⎩

0 if k = 0 or k = 2
1 if k = 1
k − 1 if k > 2

↑ k =

{
k if k = 0 or k = 1
k + 1 if k > 1

The most important rule is ↓ 2 = 0: it indicates that {p} terminates when p
exits the trap, i.e. returns code 2. If p exits an enclosing trap by returning a
code k > 2, the exit is propagated as k − 1 to the upper trap since one level
of trap has been traversed.

6.4 The Logical Behavioral Semantics Rules

The behavioral rules are as follows:

k
∅, k−−→
E

0 (compl)

!s
{s+}, 0−−−−→

E
0 (emit)

s+ ∈ E p
E′, k−−−→

E
p′

s ? p , q
E′, k−−−→

E
p′

(present + )
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s− ∈ E q
F ′, l−−→
E

q′

s ? p , q
F ′, l−−→
E

q′
(present − )

p
E′, k−−−→

E
p′ k �= 0

s⊃p
E′, k−−−→

E
s⊃· p′

(susp1)

p
E′, 0−−−→

E
p′

s⊃p
E′, 0−−−→
E

0
(susp2)

p
E′, k−−−→

E
p′ k �= 0

p ; q
E′, k−−−→

E
p′ ; q

(seq1)

p
E′, 0−−−→

E
p′ q

F ′, l−−→
E

q′

p ; q
E′∪F ′, l−−−−−→

E
q′

(seq2)

p
E′, k−−−→

E
p′ k �= 0

p ∗ E′, k−−−→
E

p′ ; p∗
(loop)

p
E′, k−−−→

E
p′ q

F ′, l−−→
E

q′

p | q E′∪F ′,max (k,l)−−−−−−−−−−→
E

p′ | q′
(parallel)
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p
E′, k−−−→

E
p′ k = 0 or k = 2

{p} E′, 0−−−→
E

0
(trap1)

p
E′, k−−−→

E
p′ k = 1 or k > 2

{p} E′, ↓k−−−−→
E

{p′}
(trap2)

p
E′, k−−−→

E
p′

↑ p
E′, ↑k−−−−→

E
↑ p′

(shift)

p
E′∗s+, k−−−−−→

E∗s+
p′ S(E′) = S(E)\s

p\s E′, k−−−→
E

p′\s
(sig + )

p
E′∗s−, k−−−−−→

E∗s−
p′ S(E′) = S(E)\s

p\s E′, k−−−→
E

p′\s
(sig − )

It is important to notice that all rules build a single statement transition,
possibly as a function of several simultaneous statement transitions. This is
how we handle synchrony.

If the return code k for a statement p is 0, i.e. if p terminates, then p′

will always behave as 0 (nothing) in further instants. If k encodes a trap
exit, i.e. if k > 1, the resulting statement p′ is immaterial since it will always
disappear by some application of rule (trap1). The rules exactly formalize
the intuitive semantics given in Chapter 2:

• The rules (compl), (emit), (present+), and (present-) are trivial.

• In the (susp1) rule, we transfer control to p and generate an immediate
suspension s⊃· p′ as the derivative for next instant if p does not termi-
nate; remember that s⊃· p is not a kernel statement but an abbreviation
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of {(s ? 1 , 2)∗} ; s⊃p, see Chapter 5, page 61. If p terminates, we use
rule (susp2) to explicitly return the 0 derivative: we cannot return s⊃· 0
as in rule (susp1), since this term would pause in the following instant
if s were present, preventing termination of a term such as (s⊃0) | 1.

• The (seq1) rule expresses that a sequence pauses if p pauses and that
the sequence propagates the traps exited by p. The (seq2) rule ex-
presses that control is instantaneously transferred to q if p terminates.

• The (loop) rule expands a loop once and requires the loop’s body not
to terminate instantaneously.

• The (parallel) rule performs the synchronization by using the max (k, l)
maximum operation, as we explained in Chapter 5.

• The (trap1) rule expresses that a trap terminates if its body terminates
or exits the trap. The (trap2) rule expresses that a trap pauses if its
body pauses (case k = 1) and that a trap propagates exits to outer
traps (case k > 2). In rule (trap1) with k = 2, we must explicitly
return 0 as a derivative instead of {p′}, otherwise the term {2 | 1} | 1
would not terminate in the second instant.

• The (shift) rule is trivial.

• The (sig+) and (sig-) rules formalize the signal logical coherence law.
In (sig+) and (sig-), the additional sort condition expresses that the
sort of E′ does not contain s, which is handled specifically by an E′ ∗sb

operation. This is necessary to avoid propagating the local status of s
outside the p\s statement.

6.5 Reactivity and Determinism

Here is the formal definition of reactivity and determinism:

Definition: A program P is reactive w.r.t. an input event I if there exists a
output event O and a program P ′ such that P

O−→
I

P ′. The program is deter-

ministic w.r.t. I if there exits at most one such output event and program.
The program is logically correct w.r.t. I if it is reactive and deterministic
w.r.t. I. The program is logically correct if it is logically correct for all input
events and if its derivatives are logically correct.
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Input-output determinism leaves some room for internal non-determinism.
For example, consider the program (s ? !s , 0)\s. This inputless and output-
less program is deterministic: it has no output and can only be rewritten
into 0\s. However, it is internally non-deterministic since the local signal s
can be either emitted or not emitted. In constructive semantics, we shall
forbid internal non-determinism, in the same way one forbids type-check
errors even in dead code in classical languages. For this, we define strong
determinism as follows:

Definition: A program P is strongly deterministic for an input event I if it
is reactive and deterministic for this event and if, furthermore, there exists
a unique proof of the unique transition P

O−→
I

P ′.

6.6 Loop-Safe Programs

In rule (loop), there is a side condition k �= 0 to prevent instantaneous
loops that would execute infinitely often their body in the instant. It is
often useful to put a static restriction on programs to make instantaneous
loops impossible and the side condition superfluous. For this, we define the
set K(p) of potential completion codes of p. First, we extend the max (k, l), ↓
k, and ↑ k operations to sets K, L of completion codes as follows:

Max (K,L) =

{
∅ if K = ∅ or L = ∅
{max (k, l) | k ∈ K, l ∈ L} if K,L �= ∅

↓ K = {↓ k | k ∈ K}

↑ K = {↑ k | k ∈ K}

(The cases K = ∅ and L = ∅ in the definition of Max are not needed here, but
they will be needed in Chapter 7.) Write K\0 for the set {k ∈ K | k �= 0}.
Then, K(p) is defined as follows:

K(k) = {k}
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K(!s) = {0}
K(s ? p , q) = K(p) ∪ K(q)

K(s⊃p) = K(p)

K(p ; q) =

{
(K(p)\0) ∪ K(q) if 0 ∈ K(p)
K(p) otherwise

K(p∗) = K(p)\0
K(p | q) = Max (K(p),K(q))

K({p}) = ↓ K(p)

K(↑ p) = ↑ K(p)

K(p\s) = K(p)

The next lemma shows that K(p) is a superset of the set of completion codes
a statement can return.

Lemma 1 If p
E′, k−−−→

E
p′, then k ∈ K(p).

We can now define loop-safe programs.

Definition: A program P of body p is loop-safe if, for each substatement q∗
of p, one has 0 �∈ K(q).

In practice, loop-safety is not a very restrictive condition and it makes
life easier. However, we know of one case where users find it a little annoying.
Assume that two input signals I and J are known to be incompatible, i.e.
never present in the same instant. In full Esterel, this is asserted by writing

relation I#J;

Then, the following loop-unsafe program is obviously correct because the
direct path from loop to “end loop” cannot be taken:



6.6. LOOP-SAFE PROGRAMS 71

loop
present I else

p % non instantaneous
end present;
present J else

q % non instantaneous
end present

end loop

The solution to make the program loop-safe is to add a pause statement
that will never be reached:

loop
present I else

p % non instantaneous
end present;
present J then

pause % unreachable
else

q % non instantaneous
end present

end loop
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Chapter 7

The Constructive Behavioral
Semantics

In the logical behavioral semantics, given a program P of body p and an
input event I, there are exactly two places where we must make signal status
assumptions: when searching for an output event O such that p

O, k−−−→
I∪O

p′,
and when handling the local signal declarations that occur in p. In the
constructive semantics presented in the sequel, we constructively enforce the
choice of determinate statuses at the same places, in a way that ensures
determinism by causal information propagation.

We shall present three different but equivalent views of the constructive
semantics.

• The constructive behavioral semantics presented in this chapter uses
the same semantic rules as the behavioral semantics, but it disam-
biguates the search for signal statuses by adding predicates telling
whether signals must or cannot be emitted. Signals are declared
present if they must be emitted, absent if they cannot be emitted.
The predicates are computed recursively in a way that forbids specu-
lative computation. Given an input event, if the calculation determines
a status for each signal, then the program is said to be constructive
w.r.t. the event. Then, reactivity holds by construction and determin-
ism follows from the disjointness of the Must and Cannot predicates.
If the calculation fails, the program is rejected as non-constructive.

• The constructive operational semantics presented in Chapter 9 is a
more conventional microstep semantics acting on states. However, this
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semantics is technically much more intricate since the microsteps are
relational and non-deterministic. A direct correctness proof would re-
quire proving very delicate confluence and strong normalization prop-
erties, such as the ones proved by Gonthier [18] for a former version of
the operational semantics. Here, we avoid these difficulties by proving
equivalence of the relational microstep semantics and of the functional
constructive behavioral semantics.

• In the constructive circuit semantics presented in Chapter 11 and Chap-
ter 13, we translate an Esterel program into a Boolean sequential cir-
cuit that we interpret in a constructive (i.e. electrical) way. We show
that propagation of 1’s and 0’s in the circuit’s wires exactly performs
the must and cannot computations and that program states are appro-
priately encoded into memory states. The circuit semantics avoids all
the computational redundancies of the constructive behavioral seman-
tics and yields very efficient hardware and software implementations
of Esterel, which will be discussed in Chapter ??.

7.1 The Must and Cannot Analysis

We start by an intuitive presentation of the analysis. We then define the
functions Must (p,E) and Cannotm(p,E), where p is a statement and E is
a (partial) event. We discuss other possible choices for Must and Cannot
and we explain why we discard them. We present the constructive behav-
ioral rules, which differ from the logical ones only by adding appropriate
predicates in three places. Finally, we show that constructive programs are
reactive and deterministic, i.e. that the constructive behavioral semantics is
logically correct.

7.1.1 Intuitive Presentation

Consider the following statement P15:

present I then
emit O1;

end
||

present J then
present O1 then emit O2 else emit O3 end

end
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GO

O2J

I

GO’

O1

O3

Figure 7.1: Circuit for P15

Assume first that the statement is a full program body with I and J in-
puts. Consider the case I and J present. Then, since we must execute
“present I”, we must execute “emit O1”, which implies that O1 must be
present. We must execute “present J”, “present O1”, and “emit O2”.
Therefore, O2 must be present. We cannot execute “emit O3”, which im-
plies that O3 must be absent since it cannot be emitted. All the signal
statuses are determined. In the case I absent, J present, O1 and O2 cannot
be emitted and are absent while O3 must be emitted and is present. The
other cases are similar.

Things become more complex if we consider the P15 statement as a
fragment of a larger program, in a context where I and J are not inputs
but local signals the statuses of which are also being computed (to avoid
interference, we assume that there is no other emitter of O1, O2, O3 in the
global program). In this case, we must also explain how we propagate must
and cannot information when the statuses of I and J are yet unknown. There
are two subcases, depending on whether we already know from the recursive
reasoning context whether we must execute the statement; the cases are yes
or unknown, since we shall never need to analyze statements known not to
be executed.

Assume first that we know that we must execute the statement. Assume
I present and J unknown. Then, “emit O1” must be executed and O1 must
be present. However, since J is unknown, there is nothing we must do in
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the second parallel branch, and, in particular, we cannot deduce any status
for O2. However, we have enough information to deduce that the “emit O3”
statement is on a false path since O1 is know to be present. Therefore, we
safely deduce that we cannot emit O3. The circuit equivalent of P15, shown
in Figure 7.1, gives another view of this reasoning. Saying that P15 must be
executed is saying GO = 1. Since I = 1, one has O1 = 1, which is just enough
to deduce O3 = 0, although GO′ remains unknown. No value propagates to
the O2 wire.

Assume now that we do not yet know whether P15 statement must be
executed. Then, there is nothing we must do since we may not compute
speculatively. However, we can still prune out false paths and compute
what we cannot do. If I is yet unknown, no information propagates. If I is
known absent, then we can constructively deduce that O1 cannot be emitted,
which in turn implies that O2 cannot be emitted. In the P15 circuit, I = 0
is enough to deduce O1 = O2 = 0, even when GO is unknown.

In the cannot analysis, knowing whether a statement must be executed
in fundamental. For example, in

emit S;
present S then emit O1 else emit O2 end

we can deduce that O2 cannot be emitted only if we know that the statement
must be executed. Deducing the same while not knowing whether the state-
ment must be executed would be speculatively reasoning about “emit S”.

So far, we have only reasoned about Must and Cannot . Technically, it is
often easier to reason about the complement Cannot of Cannot , which we
call simply Can . Therefore, we say “p can emit S” for “we cannot prove that
p cannot emit S”. Beware, this shortcut can sometimes be slightly misleading.
In case of doubt, always translate Can into the double negation Cannot .

7.1.2 The Must, Cannot, and Can Functions

The Must function determines what must be done in a reaction P
O−→
I

P ′,

abstracting away the derivative P ′ that will be recovered using the behavioral
semantics rewrite rules. The Must function has the following form:

Must (p,E) = 〈S , K 〉

where E is a partial event that associates a status in B⊥ = {+,−,⊥} with
each signal, where S is the set of signals that p must emit, and where K
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is the set of completion codes that p must return. For Must , the set K is
either empty, if we cannot derive any Must information, or a singleton {k},
if we can derive that p must return k. It is impossible that p must return
more than one completion code.

To distinguish between the elements of the result pair, we use s and k
subscripts:

Must (p,E) = 〈Musts(p,E) , Mustk(p,E) 〉
The inclusion predicate ⊆ and the union operator ∪ are extended compon-
entwise on pairs 〈S , K 〉.

The function Cannotm(p,E) is used to prune out false paths. Its type is
similar to that of Must , but with an extra argument m added in exponent:

Cannotm(p,E) = 〈Cannotm
s (p,E) , Cannotm

k (p,E) 〉 = 〈S , K 〉
Here, the results S and K are respectively the set of signals that p cannot
emit and the set of completion codes that p cannot exit when the input
event is E. The extra argument m ∈ {+,⊥} tells whether it is known that
the statement p must be executed in the event E, as explained before. It is
recursively provided by the context when a statement is analyzed. The case
m = − will never occur in the recursion since Cannot will only be called for
potentially executable statements.

Technically, it is simpler to define the set complement Canm(p,E) of
Cannotm(p,E). The complementation is done componentwise, w.r.t. the set
of visible signals for the signal part and w.r.t. the set of potential completion
codes for the completion part. The set Canm

k (p,E) may be any subset of
the potential completion set K(p) defined in Section 6.6. It can be strictly
smaller since we take signal information into account. In case of problems
about the intuition of Can , always remember it really means Cannot .

7.1.3 The Definition of Must and Can

The definitions are trivial and identical for completion codes and signal emis-
sions. The m argument is unused here.

Must (k,E) = Canm(k,E) = 〈 ∅ , {k} 〉
Must (!s,E) = Canm(!s,E) = 〈 {s} , {0} 〉

Consider now a signal test s ? p , q and a partial event E. First, for both Must
and Can , the definitions are easy if the status of s in E is either + or −:
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we recursively analyze the first branch if the status is + and the second
branch if the status is −, with the same m argument. If the status of s in E
is unknown, Must and Can behave very differently. For Must , we return
the empty signal set and the empty completion code set since none of the
branches must be taken. For Can , we return the union of the signals the
branches can emit and the union of the completion codes they can return,
computed with m′ = ⊥ since no branch must be taken.

Must
(
(s ? p , q), E

)
=

⎧⎪⎪⎨
⎪⎪⎩

Must (p,E) if s+ ∈ E

Must (q,E) if s− ∈ E

〈 ∅ , ∅ 〉 if s⊥ ∈ E

Canm
(
(s ? p , q), E

)
=

⎧⎪⎪⎨
⎪⎪⎩

Canm(p,E) if s+ ∈ E

Canm(q,E) if s− ∈ E

Can⊥(p,E) ∪Can⊥(q,E) if s⊥ ∈ E

Suspension is trivial, since, in an instant, a suspension acts as its body:

Must (s⊃p,E) = Must (p,E)

Canm(s⊃p,E) = Canm(p,E)

For a sequence p ; q, we analyze q only if p must (resp. can) terminate,
in which case the completion code 0 of p is discarded. For Can , we an-
alyze q with argument m′ = + if m = + and if p must terminate, with
argument m′ = ⊥ otherwise:

Must (p ; q,E) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Must (p,E)
if 0 �∈ Mustk(p,E)

〈Musts(p,E) ∪ Musts(q,E) , Mustk(q,E) 〉
if 0 ∈ Mustk(p,E)

Canm(p ; q,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Canm(p,E)
if 0 �∈ Canm

k (p,E)

〈 Canm
s (p,E) ∪ Canm′

s (q,E) ,

Canm
k (p,E)\0 ∪ Canm′

k (q,E) 〉
if 0 ∈ Canm

k (p,E)
with m′ = + if m = + and 0 ∈ Mustk(p,E)
or m′ = ⊥ otherwise
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In the definition of Must (p ; q,E), we could also write the predicates using set
comparisons, i.e. as Mustk(p,E) �= {0} and Mustk(p,E) = {0}. The result
would be equivalent because Mustk(p,E) is either empty or a singleton.

Notice that the set of signals that p must emit is not transmitted to q.
We could do it, but we obtain the same effect using the simple rule above
and a global iteration process: if p must emit s in a partial event E such
that s⊥ ∈ E, the analysis will call it again in the partial event E ∗ s+, in
which case s+ will effectively reach q. The same holds for propagating s−

to q if p cannot emit s. The iteration is performed by the signal and global
program rules described below.

For a loop, we analyze the body once. That the body cannot terminate
will be ensured by the constructive semantic inference rules.

Must (p∗, E) = Must (p,E)

Canm(p∗, E) = Canm(p,E)

For a parallel, we take the union of the signal sets and the extension of max
to sets of completion codes defined in Section 6.6:

Must (p | q,E) = 〈 Musts(p,E) ∪ Musts(q,E) ,

Max
(
Mustk(p,E),Mustk(q,E)

)
〉

Canm(p | q,E) = 〈 Canm
s (p,E) ∪ Canm

s (q,E) ,

Max
(
Canm

k (p,E),Canm
k (q,E)

)
〉

Notice that Mustk(p | q,E) is nonempty and is a singleton set if and only
if Mustk(p,E) and Mustk(q,E) are singleton sets. As far as completion
codes are concerned, one must be able to compute the codes that both
branches must return to compute the code that the parallel statement must
return. Using the Max set operation in the definition of Canm(p | q,E) is
fundamental for adequate control propagation. For example, this operation
ensures that a parallel cannot terminate if one of its branches cannot. This
property would be lost if Max were replaced by a simple union, and this
would lead to abnormally rejecting constructively correct programs such
as ((o ? 0 , 0) | 1) ; !o, where the first parallel statement always pauses in the
first instant because of its second 1 branch, breaking the potential cycle on
o.

For trap and a shift, we apply the appropriate operators to the comple-
tion codes returned by the body:

Must ({p}, E) = 〈Musts(p,E) , ↓ Mustk(p,E) 〉
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Canm({p}, E) = 〈Canm
s (p,E) , ↓ Canm

k (p,E) 〉
Must (↑ p,E) = 〈Musts(p,E) , ↑ Mustk(p,E) 〉
Canm(↑ p,E) = 〈Canm

s (p,E) , ↑ Canm
k (p,E) 〉

The rules for the local signal declaration operator p\s are deeply different
for Must and Can . For Must , because of the way the recursion works, the
rule is used only if we already know that p\s must be executed. Since we
have yet no information about the status of s, we first set this status to ⊥
and we compute what we must and cannot do. If we find that p must emit s,
we take that fact for granted, and we re-analyze p with status + for s. If
we find that p cannot emit s, we know that s must be absent and we re-
analyze p with status − for s. Otherwise, we cannot make progress. In each
case, we remove the status of the local s from the emitted signal set, using
the notation 〈S , K 〉\s for 〈S\s , K 〉:

Must (p\s,E) =

⎧⎪⎪⎨
⎪⎪⎩

Must (p,E ∗ s+)\s if s ∈ Musts(p,E ∗ s⊥)
Must (p,E ∗ s−)\s if s �∈ Can+

s (p,E ∗ s⊥)
Must (p,E ∗ s⊥)\s otherwise

For Can , we first analyze the body p with status ⊥ for s, with the same m
argument. If m = + and if we find that the signal must be emitted, we
re-analyze p with status + for s. For both m = + and m = ⊥, if the signal
cannot be emitted, we re-analyze p with status − and with the same m.
Otherwise, we return the result of the analysis of p with status ⊥ for s.

Canm(p\s,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Can+(p,E ∗ s+)\s
if m = + and s ∈ Musts(p,E ∗ s⊥)

Canm(p,E ∗ s−)\s
if s �∈ Canm

s (p,E ∗ s⊥)
Canm

s (p,E ∗ s⊥)\s
otherwise

In the Can analysis, notice that the signal status can be set to + only if
m = +. This is necessary to avoid speculative computation.

The constructively correct program P2, page 29, is a good example to
try these definitions.
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7.2 Possible Variants

There are two places where we made non-obvious choices: the Must rule for
signal presence test and the Can rule for local signal declaration. We now
discuss these choices in more details.

Consider first s ? p , q. The reader familiar with static analysis might find
the following Must rule less conservative than ours:

Must
(
(s ? p , q), E

)
=

⎧⎪⎪⎨
⎪⎪⎩

Must (p,E) if s+ ∈ E

Must (q,E) if s− ∈ E

Must (p,E) ∩ Must (q,E) if s⊥ ∈ E

We reject this intersection rule as performing speculative computation. The
rule would accept P12, page 41, “present O then emit O else emit O
end”. In this program, signal information flows backwards with respect to
control, the typical thing we want to forbid.

For p\s, one could think of making a perfect symmetry between Can
and Must , writing

Canm(p\s,E) =

⎧⎪⎪⎨
⎪⎪⎩

Canm(p,E ∗ s+)\s if s ∈ Musts(p,E ∗ s⊥)
Canm(p,E ∗ s−)\s if s �∈ Canm

s (p,E ∗ s⊥)
Canm(p,E ∗ s⊥)\s otherwise

Here again, we would perform speculative computation, since we would call
Must even when m = ⊥1. For instance, we would accept the program

present O then
signal S in

emit S
||

present S else emit O end
end

end

on the following grounds: since the body of the signal statement must emit
S, the output O cannot be emitted and can be set absent. This reasoning
speculatively executes the “emit S” statement.

1The first draft version of this book actually used this rule. This was a deep mistake,
sorry!
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Both variants above would ensure determinism. However, none of them
obeys our intuition about fact-to-fact propagation and none of them is
amenable to a natural operational and circuit semantics.

7.3 Elementary Properties of Must and Can

Remember that Can is an auxiliary tool to compute its complement Cannot ,
with

Cannotm(p,E) = Canm(p,E)

The interesting properties are best expressed using Cannot since their coun-
terpart with Can would be contravariant (antimonotonicity instead of mono-
tonicity, etc.). The first property implies that the Must and Cannot predi-
cates are disjoint:

Lemma 2 For any statement p and partial event E, one has Must (p,E) ∩
Cannotm(p,E) = 〈 ∅ , ∅ 〉, i.e. Must (p,E) ⊆ Canm(p,E).

The next property is that the Must and Cannot predicates are Scott-
monotonic; it is essential to define the input/output function of a program,
see Section 7.4.

Definition: The Scott ordering ≤ on statuses is defined by ⊥ ≤ + and ⊥ ≤
−. The Scott ordering is extended to partial events of the same sort by E1 ≤
E2 iff E1(s) ≤ E2(s) for each signal s in the sort.

Lemma 3 If E1 ≤ E2, then Must (p,E1) ⊆ Must (p,E2), and Cannotm(p,E1) ⊆
Cannotm(p,E2). Furthermore, for any partial event E, one has Cannot⊥(p,E) ⊆
Cannot+(p,E).

7.4 Definition of the Constructive Semantics

Given a program P of body p and an input event I, we compute the con-
structive behavioral semantics P ↪

O−→
I

P ′ of P for I in two steps. First, we

compute the output event O using the Must and Can functions; this can fail
if the status of some output or local signal cannot be determined to be ei-
ther + or −, in which case the program P is declared non-constructive for I.
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Then, if all signal statuses have been determined, we compute a behavioral
transition p ↪

O, k−−−→
I∪O

p′, which yields the next state p′; this can fail only if the

body of some loop is found to terminate instantaneously.
We begin by computing the output event. The idea is to iteratively

compute Must (p, I ∪ O) and Canm(p, I ∪ O), starting from an undefined O
where all output signal statuses are ⊥, and repeatedly enriching O using
the Must and Can information generated by a pass, this up to stabilization.
This is just what we did for local signals, extended to sets of signals. Because
of Lemma 3, stabilization is guaranteed by monotonicity. The simplest way
to formalize this process is to notice that it is the computation of the least
fixpoint of a monotonic function.

Definition: Given a program P and an input event I, we denote by [[P ]](I)
the function on partial output events defined by [[P ]](I)(O) = O′, where, for
each output signal o, one has

O′(o) =

⎧⎪⎨
⎪⎩

+ if o ∈ Musts(p, I ∪ O)
− if o ∈ Cannot+

s (p, I ∪ O)
⊥ otherwise

(The restriction that an input signal cannot be internally emitted is essential
here.)

Lemma 3 yields immediately monotonicity:

Lemma 4 Given P and I, the function [[P ]](I) is monotonic on output en-
vironments.

Definition: Given P and I, the output event O constructively computed
by P on I is the least fixpoint of the function [[P ]](I). We say that P is
constructive for I if O(o) �= ⊥ holds for any output signal o.

If P is constructive for I, we have determined the output event O, and
we are left with determining the new state P ′ such that P ↪

O−→
I

P ′. As in

the behavioral semantics, we use an inductive relation p ↪
E′, k−−−→

E
p′ and we

determine p′ by p ↪
O, k−−−→
I∪O

p′. The definition rules of the constructive relation
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are exactly those of p
E′, k−−−→

E
p′ in the logical behavioral semantics, except for

the local signal rules (sig+) and (sig-), which are made constructive:

s ∈ Musts(p,E ∗ s⊥) p ↪
E′∗s+, k−−−−−→

E∗s+
p′ S(E′) = S(E)\s

p\s ↪
E′, k−−−→

E
p′\s

(csig + )

s ∈ Cannot+
s (p,E ∗ s⊥) p ↪

E′∗s−, k−−−−−→
E∗s−

p′ S(E′) = S(E)\s

p\s ↪
E′, k−−−→

E
p′\s

(csig − )

Notice that the inference rules involve only total events since the status of
all signals is determined to be + or −, either by the above computation of
the output event or by the constructive local signal rules; this is why the
other behavioral rules can be left unchanged.

7.5 Correctness of the Constructive Semantics

The main result shows that the constructive behavioral semantics is logically
correct.

Theorem 1 Let P be a program and I be an input event for P . If P ↪
O−→
I

P ′

is provable in the constructive behavioral semantics, then P
O−→
I

P ′ is provable

in the logical behavioral semantics and it has a unique proof. The program P
is reactive and strongly deterministic w.r.t. I.



Chapter 8

The State Behavioral
Semantics

The logical and constructive behavioral semantics define the semantics of
Esterel with a minimal number of rules. However, there is a drawback: in a

reaction p
E′, k−−−→

E
p′, the resulting term p′ is obtained by a non-trivial rewriting

process. Furthermore, when chaining reactions, the rewritings pile up, which
makes it difficult to understand the structure of the resulting statement in
function of the initial one. This does not fit with elementary programming
intuition, where one prefers to deal with control points moving in a fixed
program text. The state semantics we describe in this chapter realizes this
goal, while computing reactions in the same way as the behavioral semantics.
The price to pay is an extension of the syntax and an increase in the number
of rules.

We first introduce the extended syntax used to denote the state of a
statement after a reaction. Next, we give the logical behavioral rules of the
extended language, and we extend the Must and Can predicates to define
the constructive behavioral semantics. Finally, we show the correctness of
the logical and constructive state semantics w.r.t. the original semantics.

85
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8.1 The Extended Syntax

8.1.1 States as Decorated Terms

Consider the simple inputless term p = 1 ; 1 ; !s. In the behavioral semantics,
the sequence of reactions is:

1 ; 1 ; !s ∅, 1−−→
∅

0 ; 1 ; !s ∅, 1−−→
∅

0 ; !s
{s}, 0−−−→

∅
0 ∅, 0−−→

∅
0 · · ·

In the state semantics, the idea is to keep the shape of the statement constant
and to decorate it to indicate where control is pausing between reactions.
Only occurrences of 1 are decorated1: we write 1̂ instead of 1 to indicate
that execution has paused there and will resume from there in the following
instant. The other statements need not be decorated since they are purely
instantaneous. Using decoration, the above execution sequence becomes:

1 ; 1 ; !s ∅, 1−−→
∅

1̂ ; 1 ; !s ∅, 1−−→
∅

1 ; 1̂ ; !s
{s}, 0−−−→

∅
1 ; 1 ; !s ∅, 0−−→

∅
· · ·

The intuition is clear, but there is a slight difficulty. In the above example,
the fourth statement is p3 = 1 ; 1 ; !s, which is just the same as the initial
statement p0 from which execution starts. However, p3 should be consid-
ered as being terminated, unlike p0. To resolve this ambiguity, we replace
the initial statement p0 by the decorated term 1̂ ; p0. Then, control initially
resumes from the auxiliary head 1̂ statement, which is called the boot state-
ment. Any standard undecorated program body such as p3 is considered to
be terminated.

With the boot 1̂ statement added, the execution sequence becomes:

1̂ ; 1 ; 1 ; !s ∅, 1−−→
∅

1 ; 1̂ ; 1 ; !s ∅, 1−−→
∅

1 ; 1 ; 1̂ ; !s
{s}, 0−−−→

∅
1 ; 1 ; 1 ; !s ∅, 0−−→

∅
1 ; 1 ; 1 ; !s

Instead of the boot 1̂ statement, we could have used a termination marker.
Using a boot statement is more natural in the circuit translation and avoids
introducing a new end marker symbol in the language.

1In the full user-level language, other statements can be decorated, for example await,
every, and loop-each. The expansion of each of these user-level statements involves
exactly one 1 statement, which makes decoration unambiguous (see [19]).
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8.1.2 State Syntax

We call standard statements the basic kernel statements introduced in Chap-
ter 5. We define a state p̂, q̂, etc., as a kernel statement where some part is
decorated or selected for execution. Finally, we say that a term p, q, etc., is
either a standard statement or a state. The grammar of states and terms is
as follows:

p̂ ::= 1̂
| s ? p̂ , q
| s ? p , q̂
| s⊃ p̂
| p̂ ; q
| p ; q̂
| p̂∗
| p | q
| {p̂}
| ↑ p̂
| p̂\s

p ::= p
| p̂

Notice that a subterm is selected if and only if it contains a selected pause
statement 1̂. In a state such as s ? p̂ , q, the only selected subterm is p̂. Such a
state occurs if the test has taken its left branch in some previous instant and
if the execution of this branch is not yet terminated. A parallel branch can
be either a standard statement or a state. In p̂ | q̂, both p̂ and q̂ are selected:
the parallel has been started in some past instant and both branches are still
active. A state of the form p̂ | q corresponds to the case where the second
branch of the parallel is already terminated while the first one is still active.
For example, the state (1̂ ; 1) | 1̂ becomes (1 ; 1̂) | 1 in the following instant.
There is no state of the form s ? p̂ , q̂ or of the form p̂ ; q̂, since one cannot be
pausing simultaneously in both arms of a test or of a sequence.

We now define the base statement B(p) of a term p. For a standard
statement p, we set B(p) = p. For a state p̂, we strip the decoration, i.e. we
recursively replace the selected parts of p̂ by their base statement, ending
with B(1̂) = 1 (formal definition left to the reader). To make the notation
lighter, given terms p and q, we simply abbreviate B(p) and B(q) into p and q,
always assuming that p̂, p̂′, p, p′, etc., are extended statements having p as
base statement.



88 CHAPTER 8. THE STATE BEHAVIORAL SEMANTICS

8.2 State Expansion

States encode derivatives of a program by decorating the program’s body,
which implies that understanding the state semantics essentially amounts to
understanding how the decoration encoding works. Given a starting term p,
a derivative p′ obtained after the reaction to some input sequence, and a reac-

tion p′ E′, k−−−→
E

p′′, our goal is to obtain an equivalent state reaction p′ E′, k−−−→
E

p′′

where p′ encodes p′ and p′′ encodes p′′ with the same base statement p. For
this, we define the expansion function E(p) from terms to standard state-
ments. One more example will be helpful. Consider the following statement
reaction sequence:

(!s | (s ? (1 ; !o) , 1))\s ∅, 1−−→
∅

(0 | (0 ; !o))\s

{o}, 0−−−→
∅

(0 | 0)\s

The corresponding state reaction sequence is:

1̂ ; (!s | (s ? (1 ; !o) , 1))\s ∅, 1−−→
∅

1 ; (!s | (s ? (1̂ ; !o) , 1))\s

{o}, 0−−−→
∅

1 ; (!s | (s ? (1 ; !o) , 1))\s

For the first expansion, we use the rules E(1̂) = 0 and E(p̂ ; q) = E(p̂) ; q.
This yields the expanded statement 0 ; (!s | (s ? (1 ; !o) , 1))\s which is not
quite the original initial statement but is clearly equivalent since the initial 0
disappears in any reaction. For the second expansion, we use the following
rules:

• E(p ; q̂) = E(q̂), which expresses that p is already terminated and must
be discarded if control is currently in q;

• E(p̂\s) = E(p̂)\s, which is trivial;

• E(p | q̂) = 0 | E(q̂): the first branch is a standard statement, which
means that it is already terminated and that it must be expanded
into 0 in the current instant.
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• E(s ? p̂ , q) = E(p̂), since the test for s has already been performed and
should not be performed again when executing the then branch.

This time, the expansion yields the exact second statement. For the third
expansion, we use the rule E(p) = 0 that turns any standard statement
into 0. As for the first reaction, we do not exactly obtain the original third
term (0 | 0)\s, but the simpler term 0 has the same behavior in all reactions.
Altogether, the expansion E(p) is identical to the corresponding original
derivative up to some trivial arrangements of 0’s.

Technically, the expansion function E(p) is defined as follows:

E(p) = 0

E(1̂) = 0

E(s ? p̂ , q) = E(p̂)

E(s ? p , q̂) = E(q̂)

E(s⊃ p̂) = s⊃· E(p̂)

E(p̂ ; q) = E(p̂) ; q

E(p ; q̂) = E(q̂)

E(p̂∗) = E(p̂) ; (p∗)
E(p | q) = E(p) | E(q)

E({p̂}) = {E(p̂)}
E(↑ p̂) = ↑ E(p̂)

E(p̂\s) = E(p̂)\s

Notice that a selected suspension statement s⊃ p̂ is expanded into an imme-
diate suspension s⊃· E(p̂) as required by the behavioral semantics.

8.3 The State Behavioral Semantics

In this section, we directly define the logical behavioral semantics of the
extended language. Then, we define the Must and Can predicates and the
constructive behavioral semantics.
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8.3.1 The Logical State Behavioral Semantics

The definition of the state behavioral semantics follows the same pattern as
in Chapter 6. Let P be a program of body q, and let p = 1 ; q. An extended
program P of base P has body an extended statement p of base p. The
behavioral semantics formalize a reaction of an extended program P as a
behavioral transition of the form

P
O−→
I

P
′

If the body of P is the standard statement p, then P is considered to be
terminated and it reacts to any input by producing no output. If the body
of P is a proper state p̂, the reaction is computed using an auxiliary inductive
relation

p̂
E′, k−−−→

E
p′

where the base statement p is left unchanged according to our convention.
As in Section 6.2, we set

P̂
O−→
I

P
′ iff p̂

O, k−−−→
I∪O

p′

The logical behavioral rules immediately follow from the definitions of the
statement behavioral semantics and of the expansion function: to find what
a proper state p̂ can do, just inspect what E(p̂) can do.

The rules are split into two categories: s-rules start execution of a fresh
statement p, while r-rules resume execution from a proper state p̂. When
two similar rules apply to both a state p̂ and a standard statement p, we
group them into a single sr-rule acting on a term p, see for example rules
(sr-seq1) and (sr-seq2) below.

k �= 1

k
∅, k−−→
E

k
(s-term-exit)

1 ∅, 1−−→
E

1̂ (s-pause)

1̂ ∅, 0−−→
E

1 (r-pause)
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!s
{s+}, 0−−−−→

E
!s (s-emit)

s+ ∈ E p
E′, k−−−→

E
p′

s ? p , q
E′, k−−−→

E
s ? p′ , q

(s-present + )

s− ∈ E q
F ′, l−−→
E

q′

s ? p , q
F ′, l−−→
E

s ? p , q′
(s-present − )

p̂
E′, k−−−→

E
p′

s ? p̂ , q
E′, k−−−→

E
s ? p′ , q

(r-then)

q̂
F ′, l−−→
E

q′

s ? p , q̂
F ′, l−−→
E

s ? p , q′
(r-else)

p
E′, k−−−→

E
p′

s⊃p
E′, k−−−→

E
s⊃p′

(s-suspend)

s+ ∈ E

s⊃ p̂
∅, 1−−→
E

s⊃ p̂
(r-suspend + )

s− ∈ E p̂
E′, k−−−→

E
p′

s⊃ p̂
E′, k−−−→

E
s⊃p′

(r-suspend − )
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p
E′, k−−−→

E
p′ k �= 0

p ; q
E′, k−−−→

E
p′ ; q

(sr-seq1)

p
E′, 0−−−→
E

p q
F ′, l−−→
E

q′

p ; q
E′∪F ′, l−−−−−→

E
p ; q′

(sr-seq2)

q̂
F ′, l−−→
E

q′

p ; q̂
F ′, l−−→
E

p ; q′
(r-seq3)

p
E′, k−−−→

E
p′ k �= 0

p ∗ E′, k−−−→
E

p′∗
(sr-loop)

p̂
E′, 0−−−→
E

p p
E′′, k−−−→

E
p′ k �= 0

p̂ ∗ E′∪E′′, k−−−−−−→
E

p′∗
(r-do-loop)

p
E′, k−−−→

E
p′ q

F ′, l−−→
E

q′

p | q E′∪F ′, max(k,l)−−−−−−−−−−→
E

p′ | q′
(s-both)

p̂
E′, k−−−→

E
p′ q̂

F ′, l−−→
E

q′

p̂ | q̂ E′∪F ′, max(k,l)−−−−−−−−−−→
E

p′ | q′
(r-both)
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p̂
E′, k−−−→

E
p′

p̂ | q E′, k−−−→
E

p′ | q
(r-left)

q̂
F ′, l−−→
E

q′

p | q̂ F ′, l−−→
E

p | q′
(r-right)

p
E′, k−−−→

E
p′ k = 0 or k = 2

{p} E′, 0−−−→
E

{p}
(sr-term-trap)

p
E′, k−−−→

E
p′ k �= 0 and k �= 2

{p} E′, ↓k−−−−→
E

{p′}
(sr-prop-trap)

p
E′, k−−−→

E
p′

↑ p
E′, ↑k−−−−→

E
↑ p′

(sr-shift)

p
E′∗s+, k−−−−−→

E∗s+
p′ S(E′) = S(E)\s

p\s E′, k−−−→
E

p′\s
(sr-sig+)

p
E′∗s−, k−−−−−→

E∗s−
p′ S(E′) = S(E)\s

p\s E′, k−−−→
E

p′\s
(sr-sig−)
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8.3.2 The Constructive State Behavioral Semantics

To define the constructive behavioral semantics of the extended language,
we add the Must and Can predicates to the local signal rules as before:

s ∈ Musts(p,E ∗ s⊥) p ↪
E′∗s+, k−−−−−→

E∗s+
p′ S(E′) = S(E)\s

p\s ↪
E′, k−−−→

E
p′\s

(sr-csig+)

s �∈ Can+
s (p,E ∗ s⊥) p ↪

E′∗s−, k−−−−−→
E∗s−

p′ S(E′) = S(E)\s

p\s ↪
E′, k−−−→

E
p′\s

(sr-csig−)

the other rules of p ↪
E′, k−−−→

E
p′ being those of p

E′, k−−−→
E

p′.

We extend the definition of Must and Can in such a way that Must (p̂, E) =
Must (E(p̂), E) and Canm(p̂, E) = Canm(E(p̂), E), retaining the basic defi-
nitions of Must and Can for standard statements as they were given in
Chapter 7. The additional definitions are:

Must (1̂, E) = Canm(1̂, E) = 〈 ∅ , {0} 〉
Must

(
(s ? p̂ , q), E

)
= Must (p̂, E)

Canm
(
(s ? p̂ , q), E

)
= Canm(p̂, E)

Must
(
(s ? p , q̂), E

)
= Must (q̂, E)

Canm
(
(s ? p , q̂), E

)
= Canm(q̂, E)

Must (s⊃ p̂, E) =

⎧⎪⎪⎨
⎪⎪⎩

〈 ∅ , {1} 〉 if s+ ∈ E

Must (p̂, E) if s− ∈ E

〈 ∅ , ∅ 〉 if s⊥ ∈ E
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Canm(s⊃ p̂, E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 ∅ , {1} 〉
if s+ ∈ E

Canm(p̂, E)
if s− ∈ E

〈 ∅ , {1} 〉 ∪ Canm
s (p̂, E)

if s⊥ ∈ E

Must (p̂ ; q,E) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Must (p̂, E)
if 0 �∈ Mustk(p̂, E)

〈 Musts(p̂, E) ∪ Musts(q,E) ,
Mustk(q,E) 〉

if 0 ∈ Mustk(p̂, E)

Canm(p̂ ; q,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Canm(p̂, E)
if 0 �∈ Canm

k (p̂, E)

〈 Canm
s (p̂, E) ∪ Canm′

s (q,E) ,

Canm
k (p̂, E)\0 ∪ Canm′

k (q,E) 〉
if 0 ∈ Canm

k (p̂, E)
with m′ = +

if m = + and 0 ∈ Mustk(p,E)
or m′ = ⊥ otherwise

Must (p ; q̂, E) = Must (q̂, E)

Canm(p ; q̂, E) = Canm(q̂, E)

Must (p̂∗, E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Must (p̂, E)
if 0 �∈ Mustk(p̂, E)

〈Musts(p̂, E) ∪ Musts(p,E) , Mustk(p,E) 〉
if 0 ∈ Mustk(p̂, E)

Canm(p̂∗, E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Canm(p̂, E)
if 0 �∈ Canm

k (p̂, E)

〈 Canm
s (p̂, E) ∪ Canm′

s (p,E) ,

Canm
k (p̂, E)\0 ∪ Canm′

k (p,E) 〉
if 0 ∈ Canm

k (p̂, E)
with m′ = +

if m = + and 0 ∈ Mustk(p̂, E)
or m′ = ⊥ otherwise
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Must (p̂ | q̂, E) = 〈 Musts(p̂, E) ∪ Musts(q̂, E) ,

Max
(
Mustk(p̂, E),Mustk(q̂, E)

)
〉

Canm(p̂ | q̂, E) = 〈 Canm
s (p̂, E) ∪Canm

s (q̂, E) ,

Max
(
Canm

k (p̂, E),Canm
k (q̂, E)

)
〉

Must (p̂ | q,E) = Must (p̂, E)

Canm(p̂ | q,E) = Canm(p̂, E)

Must (p | q̂, E) = Must (q̂, E)

Canm(p | q̂, E) = Canm(q̂, E)

Must ({p̂}, E) = 〈Musts(p̂, E) , ↓ Mustk(p̂, E) 〉
Canm({p̂}, E) = 〈Canm

s (p̂, E) , ↓ Canm
k (p̂, E) 〉

Must (↑ p̂, E) = 〈Musts(p̂, E) , ↑ Mustk(p̂, E) 〉
Canm(↑ p̂, E) = 〈Canm

s (p̂, E) , ↑ Canm
k (p̂, E) 〉

Must (p̂\s,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Must (p̂, E ∗ s+)\s
if s ∈ Musts(p̂, E ∗ s⊥)

Must (p̂, E ∗ s−)\s
if s �∈ Can+

s (p̂, E ∗ s⊥)
Must (p̂, E ∗ s⊥)\s

otherwise

Canm(p̂\s,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Can+(p̂, E ∗ s+)\s
if m = +and s ∈ Musts(p,E ∗ s⊥)

Canm(p̂, E ∗ s−)\s
if s �∈ Canm

s (p̂, E ∗ s⊥)
Canm

s (p̂, E ∗ s⊥)\s
otherwise

8.4 Equivalence to the Standard Semantics

As expected, the main result is that the standard semantics of a program P of
body p and the state semantics of the program of initial state 1̂ ; p determine
the same transition sequences and the same causality, in the sense that
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corresponding derivatives react logically or constructively to the same inputs
by producing the same outputs and corresponding derivatives. However, the
standard and state transition systems are not exactly isomorphic because of
the fact that a standard term reduction can leave some innocuous terminated
terms that do not appear in the state semantics: consider for example the

reduction 1 ; 0 ∅, 0−−→
∅

0 ; 0 ∅, 0−−→
∅

0, which yields a proper 0 only in two steps.

Technically, the right notion is that of (strong) bisimilarity well-known in
process calculi [31] and not recalled in this draft.

Before stating the main result, we need a tool to relate standard terms
that differ only by terminated initial subterms, such as 0 ; 0 and 0. This is
immediate equivalence defined below:

Definition: We say that two standard statements p and q of the same
sort S are immediately equivalent, and we write p ≡ q, if, for all E,E′, k, one

has p
E′, k−−−→

E
p′ if and only if q

E′, k−−−→
E

p′. Similarly, we say that p and q are

constructively immediately equivalent, and we write p ≡c q, if, for all E,E′, k,

one has p ↪
E′, k−−−→

E
p′ if and only if q ↪

E′, k−−−→
E

p′.

Lemma 5 Let p̂ be a state. One has p̂
E′, k−−−→

E
p′ if and only if one has E(p̂)

E′, k−−−→
E

q

for some q such that E(p′) ≡ q. One has p̂ ↪
E′, k−−−→

E
p′ if and only if one

has E(p̂) ↪
E′, k−−−→

E
q for some q such that E(p′) ≡c q.

Lemma 6 Let p be a standard statement. Then one has E(1̂ ; p) ≡ p
and E(1̂ ; p) ≡c p.

Theorem 2 For any standard statement p, the transition systems deter-
mined by p in the logical (resp. constructive) behavioral semantics and by 1̂ ; p
in the logical (resp. constructive) state behavioral semantics are bisimilar.

The next result expresses that any Pure Esterel program is finite state. It
directly follows from the fact that a program body can be decorated only in
finitely many ways.

Theorem 3 In the state semantics, any program has only finitely many
iterated derivatives.
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The Esterel v5 compiler can translate an Esterel program into a deterministic
finite automaton by exhaustively computing all iterated derivatives of the
initial state. In practice, a derivative is represented by the set of all selected
occurrences of 1 in the current state, which can be efficiently implemented
by a bitset.



Chapter 9

The Constructive
Operational Semantics

This part of the book is currently being rewritten. It is not necessary to
understand what follows.
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Part III

Circuit Translation
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Chapter 10

Constructive Circuits

This chapter presents constructive (sequential) Boolean circuits. Circuits
react to inputs by producing outputs and changing state, as do Esterel pro-
grams. Circuits are physical objects, with much simpler semantics as Es-
terel’s. This is why we choose them as implementation targets. Producing a
circuit out of a program does not imply a hardware implementation, since it
is easy to simulate circuit execution in software. This is what the Esterel v5
compiler to C does.

Below, we shall use two equivalent presentations of Boolean circuits. In
Chapter 11, we use circuits diagrams. In Chapter 13, we use systems of
Boolean equations. Both presentations have been informally used in Sec-
tion 4 and will be defined here.

10.1 Boolean Circuits

10.1.1 Textual Definition

A Boolean circuit C is defined by a set W of variables or wires and a set of
wire definitions. The set W is partitioned into a set I of input wires, a set O
of output wires, and a set L of local wires.

Boolean expressions e, e′ . . . are composed of wires w, constants 0 and 1,
and connectives ¬, ∨, and ∧. Each output or local wire must be defined by
exactly one wire definition. There are two kinds of wire definitions.

• An equality definition w = e defines the value of w to be that of e in
each instant.

103



104 CHAPTER 10. CONSTRUCTIVE CIRCUITS

Z = not (X or Y)

Z = X and not Y

Z = r eg(X)

Z = X and Y

Z = X or Y

Z = X

X

XX

X

XX

Y

YY

Y Z

ZZ

Z

ZZ

Figure 10.1: Gate Symbols

• A register definition w := e defines the value of w to be initially 0;
subsequently, it is the value of e in the previous instant.

The expression that appears in the right-hand side of the definition of wire w
is called C(w). A wire defined by an equality definition is called a standard or
combinational wire, and S denotes the set of standard wires. A wire defined
by a register definition is called a register, and R denotes the set of registers.
An output wire may be either a standard wire or a register wire. Therefore,
one has S ⊂ L∪O, R ⊂ L∪O, S∩R = ∅, S∪R = L∪O, and I∪S∪R = W.

An input event I (resp. output event O) is an assignment of Boolean
values to the input (resp. output) wires. A state R is an assignment of
Boolean values to the register wires. The initial state assigns 0 to all registers.

10.1.2 Definition by Diagrams

In diagrams, a circuit is a graph of gates that represent Boolean operators
linked by wires. Each gate may have several inputs and has only one out-
put, which is the wire it defines. The conventional gates are pictured in
Figure 10.1. The identity function is represented by the conventional buffer
gate1; we could also use a unary and or or gate. Negation gates are pictured

1In hardware terminology, there is no memory in a buffer.
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I O

O = I ∧ ¬R

R := O

Figure 10.2: Diagrams vs. Definitions

by a little circle and placed either on an input or on the output of a gate.
The wires in a circuit must be either primary inputs or driven by a single

gate. However, for convenience, we allow an output to have no defining gate,
in which case it is assumed to always have value 0.

To translate a system of definitions into a circuit diagram, one simply
creates as many gates as there are Boolean operators in expressions and one
register gate per register definition. To translate diagrams into equations,
one introduces one wire name for each unnamed gate output and one writes
the corresponding equations. An example of a diagram and its equational
form is given in Figure 10.2.

10.2 The Logical Semantics

In the logical semantics, we are interested in the solutions of the system of
equations that defines the standard wires. Given an input I and a state R,
a logical solution is a set S of assignments of values 0 or 1 to the standard
wires such that all standard wire equations are valid when interpreted with
wire values given by I, R, and S. We say that a wire is set in a logical
solution if it has value 1 and that it is unset if it has value 0.

Reactivity and determinism w.r.t. I and R are defined as existence and
uniqueness of a logical solution, just as in Chapter 3, and logical correctness
is the conjunction of reactivity and determinism. If a circuit is logically
correct, then the output O is defined by the value of the output wires and
the new state R′ is defined by the values of the right-hand-side expressions



106 CHAPTER 10. CONSTRUCTIVE CIRCUITS

of the register definitions. We then write R
O−→
I

R′.

10.3 The Constructive Semantics

As we mentioned in Section 4.4, not all circuits are logically correct (see
circuit C2, page 47), and not all logically correct circuits should be accepted
(see circuits C9, page 48 and Figure 4.1, and C12, page 48 and Figure 4.2).
We now define the constructive semantics in three different ways: a proof-
theoretic way, by defining constructive information propagation, a denota-
tional way, by considering least fixpoints of Scott-monotonic functions, and
an electrical way, by delay-independent electrical stabilization. These three
definitions turn out to be equivalent, which shows that constructiveness is a
very robust notion.

10.3.1 Constructive Value Propagation

Given an input I, a state R, a wire expression e, and a Boolean value b, we
define the constructive evaluation relation I,R � e ↪→ b, read “for input I
and state R, the expression e constructively evaluates to b”. The definition
is:

I,R � b ↪→ b
for w ∈ I I,R � w ↪→ b if I(w) = b
for w ∈ R I,R � w ↪→ b if R(w) = b
for w ∈ S I,R � w ↪→ b if C(w) = e and I,R � e ↪→ b

I,R � ¬e ↪→ b if I,R � e ↪→ ¬b
I,R � e ∨ e′ ↪→ 1 if I,R � e ↪→ 1 or I,R � e′ ↪→ 1
I,R � e ∨ e′ ↪→ 0 if I,R � e ↪→ 0 and I,R � e′ ↪→ 0
I,R � e ∧ e′ ↪→ 1 if I,R � e ↪→ 1 and I,R � e′ ↪→ 1
I,R � e ∧ e′ ↪→ 0 if I,R � e ↪→ 0 or I,R � e′ ↪→ 0

In the evaluation, the current value of a register w is determined by R and
not by its definition expression C(w), which is only used to determine the
next value of the register. Notice that the value of a standard wire can be
determined only by determining the value of its definition expression; this
is the essence of fact-to-fact propagation. The following lemma shows that
evaluation is deterministic.

Lemma 7 For any wire w, if I,R � w ↪→ b and I,R � w ↪→ b′, then b = b′.
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We say that C is constructive w.r.t. I and R if, for any wire w, there
exists a Boolean value b such that I,R � w ↪→ b. As in the logical semantics,
the output O is such that the value of any output wire w is b if I,R � w ↪→ b
and the new state R′ is such that the new value of any register w is b

if I,R � C(w) ↪→ b. We then write R ↪
O−→
I

R′.
By the lemmas, if C is constructive w.r.t. I and R, it is logically correct

w.r.t. I, and R ↪
O−→
I

R′ implies R
O−→
I

R′.
Registers do not interfere with instantaneous constructiveness analysis,

but they are important for global constructiveness. We say that a circuit
is constructive if it is constructive w.r.t. each input I and each reachable
state R, where a reachable state is a state that can be reached from the
initial state 0 by some input sequence.

See Section 4.4 for examples of constructive and non-constructive cir-
cuits.

10.3.2 Three-Valued Denotational Semantics

In the denotational semantics, we interpret wires in the three-valued Scott
Boolean domain B⊥ = {⊥, 0, 1}, partially ordered by ⊥ ≤ 0 and ⊥ ≤ 1.
The values 0 and 1 are called defined values, while ⊥ is called the undefined
value. The or and and operators are interpreted by the least monotonic
functions that respect their pure Boolean outputs, which are classically called
parallel or and parallel and , see [33]. Therefore, one has ⊥ ∨ 1 = 1 ∨ ⊥ = 1
and ⊥ ∧ 0 = 0 ∧ ⊥ = 0.

Consider a circuit C with n standard wires, and number these wires from 1
to n. Let S ∈ Bn

⊥. Given an input I and a state R, the circuit C defines
a monotonic function C(I,R) : Bn

⊥ �→ Bn
⊥. For any assignment S of values

in B⊥ to standard wires, this function defines another assignment S′, where
the value of each standard wire w is that of its definition expression C(w)
computed in the environment I,R, S. Let Y (I,R) ∈ Bn

⊥ be the least fixpoint
of C(I,R).

Theorem 4 Let C be a circuit, let I be an input, and let R be a state. Then,
for any standard wire wi, one has I,R � wi ↪→ b if and only if Y (I,R)i = b.

It follows that a circuit is constructive w.r.t. I and R if and only if all
components of the least fixpoint Y (I,R) are defined. Then, the new state is
computed as usual as the value of the register definition expressions, which
are all defined.
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10.3.3 The Electrical Semantics

The electrical semantics deals with temporal propagations of idealized volt-
ages through electrical gates that have delays. It is easier to explain with
gates and wires, i.e. with diagrams. We use the up-bounded inertial de-
lay model of [15]. We consider only the combinational part and ignore the
registers, which play no role in the instantaneous analysis.

Wires are interpreted as functions from the positive reals (time) to {0, 1}.
With any gate that drives a wire w, we associate a positive real number δ(w)
called the delay of the gate. The following property must hold for the gate:

(i) If, at time t, the value of w changes from 0 to 1 or from 1 to 0, then
the value of some input wire of the gate must have changed at some
time t′ such that t − δ ≤ t′ ≤ t

(ii) If the values of the gate inputs are stable between time t− δ(w) and t
included, then the value of w at time t is the Boolean value determined
by the gate logical function and the input values.

We also allow for arbitrary wire delays by making it possible to insert delayed
buffers anywhere on wires.

Notice that the delay model yields lots of freedom. For example, transient
pulses shorter than δ(w) may or may not show up on the output. The only
things that are required are that the output changes only because of inputs
and that the output must receive its logical value if the inputs are kept stable
long enough.

Given a circuit C, a delay assignment to gates, and an input I kept stable
from time 0 on, we say that the circuit electrically stabilizes in time t if all
the wires keep a stable Boolean value after time t.

Theorem 5 Let C be a circuit, let I be an input and R be a state. Then C if
constructive if and only if, for any delay assignment, all wires stabilize after
some time t. The stable electrical values of the wires are those determined
by constructive Boolean propagation.

Since the number of inputs and states is finite, there is a maximum stabi-
lization time valid for all inputs and all states. This time is called the clock
period. After it has elapsed, one can set the new values of the registers and
process new inputs2.

2Our model is not fully respective of electrical phenomena. One should wait for a setup



10.4. SYNTACTIC EXTENSIONS 109

Therefore, the constructive semantics abstracts away gate delays. Cyclic
constructive circuits behave synchronously, as do acyclic circuits.

10.4 Syntactic Extensions

We now discuss the two syntactic extensions we shall need for the formal
translation from Esterel to circuits.

10.4.1 Hierarchical Circuits

In the translation of Esterel programs into circuits, we shall define circuits
by structural induction over statements. For this, we shall include already
defined circuits in the new circuits we build and connect them using appro-
priate wires and gates.

In diagrams, we simply represent an included subcircuit as a rectangle
with inputs on the left-hand side and outputs on the right-hand side and
consider it as a new kind of gate.

In equational definitions, we use the same technique as for submodule
inclusion in the full Esterel language. To include a subcircuit C ′ in a circuit C,
we simply write the name C′ in place of a definition in C. This amounts to
renaming the local and register wires of C by new names unknown in C to
avoid name clashes and copying the renamed definitions of C′ into C. The
input and output variables of C′ are captured by the variables of C that have
the same name. An input variable of C′ can be captured by any variable
of C. Since it has a definition in C′, an output variable of C′ cannot be
defined elsewhere in C.

We can also rename input or output variables of C′ before copying it,
using the notation C′[w1/w

′
1, w2/w

′
2, . . .]. Then the input or output names

w′
1, w

′
2, . . . of C′ are captured by the names w1, w2, . . . of C. The formal

definition is trivial and boring.

10.4.2 Definitions by Implications

The Esterel circuits will contain many or -gates used to gather signal emis-
sions and completion codes. Instead of making these gates explicit in the
equations, we shall leave them implicit and define the output of an or -gate

time when setting the new register values. Furthermore, we assume that standard wires
are recomputed only from new inputs and that their old value has disappeared. See [39]
for a more accurate discussion of the electrical model.
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as being separately implied by each input. This will greatly shorten our
formal translation in Chapter 13.

Syntactically, we use implication definitions of the form w ⇐ e, which
are read “e implies w”. There can be several implications w ⇐ ei per wire,
and the value of w is then defined by the equality w =

∨
i ei. This way, an

equation
w = e ∨ e′

can be replaced by two implications

w ⇐ e
w ⇐ e′

which do not need to be syntactically related to each other. In hierarchical
circuits, the implication definitions of a wire will actually be scattered in
several subcircuits. This is the main advantage of the extension, which has
some object-oriented flavor: w ⇐ e can be read “send e to w as an input”.

If a wire has one implication definition, it can only have other implication
definitions; it is not allowed to mix the different definition forms. A local or
output wire that has no definition in a circuit is assumed to be defined by
an empty implication and to have value 0. This exactly corresponds to our
previous graphical convention that an undriven output is implicitly unset.



Chapter 11

The Basic Circuit
Translation

In this informal (but precise) chapter, we explain the basic principles of
the translation of Esterel kernel programs into circuits. The translation
we present is essentially that of [4], with a modification in the handling of
the parallel statement w.r.t. constructiveness. The basic translation is only
partially correct because of the schizophrenia problem already mentioned
in [4]. This problem will be solved later on in Chapter 12.

11.1 Structure of the Esterel Circuit

The basic translation is purely structural, and it closely follows the state
semantics rules. The substatements of a statement are first translated, and
the obtained circuits are then combined using appropriate auxiliary gates
and wiring.

Since only ‘1’ (pause) statements are decorated in the state semantics,
we associate a register with each ‘1’ statement, all the other statements only
generating combinational logic. Selected ‘1̂’ statements correspond to regis-
ters set in the current circuit state. An additional boot register is introduced
to implement the added initial ‘1̂’ state. The reactions exactly correspond
to clock cycles.
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GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

E E'

Figure 11.1: Circuit associated with a statement

11.2 The subcircuit generated by a statement

We now describe the interface of the circuit generated by a statement and
the way in which the circuit should behave.

11.2.1 Subcircuit Interface

The interface is pictured in Figure 11.1. The left pins and the leftmost top
pin E are input ones, while the right pins and the rightmost top pin E′ are
output ones. The meaning of the pins is as follows:

• The GO input pin is used to start the statement afresh, i.e. to execute
an s-rule in the state semantics. This occurs when GO is set.

• The RES input pin is used to resume the execution of a selected state-
ment, i.e. to execute an r-rule in the state semantics. This occurs
when RES is set.

• The SUSP input pin is used to suspend the execution of the statement,
according to the state semantics rule (r-suspend+). Suspension occurs
when SUSP is set. Then, the registers keep their current value unless
killed because of the KILL input below.

• The KILL input pin is used to unset the registers of the statement in
case of a trap exit. This occurs when KILL is set by the translation
of a trap statement {p}, as specified by rule (sr-term-trap). The KILL
signal is propagated by all statements towards the pause registers.
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• The SEL selection output pin indicates that the statement is a state
currently selected for resumption, i.e. that some internal pause register
is set. The SEL signal is simply the disjunction of the internal registers.

• The output pins K0, K1, etc. correspond to completion codes. There
are n + 2 such pins if n is the number of traps in which the statement
is enclosed. When the statement is either started or selected and re-
sumed, the pin that corresponds to the completion code returned by
the statement is set. If the statement is not executed, i.e. if it is not
started, not selected, or not resumed if selected, then the statement
circuit explicitly unsets all K pins. Notice that completion codes are
unary encoded (one-hot in hardware terminology).

• The pins E and E′ correspond to the signal interface. They are not
simple pins but compound pins or buses, containing one elementary
pin per signal visible in the scope of the current statement. The E
input bus is for input to the statement, corresponding to the input
event E in the semantics. The E′ output bus pin is for output from
the statement, corresponding to the output event E′. We shall freely
extract specific signals s or s′ out of E or E′. As for the K pins,
the E′ pins are explicitly unset when the statement is not executed,
i.e. when ¬( GO ∨ ( RES ∧ SEL)).

11.2.2 Execution Scheme

The basic execution scheme consists in first setting GO to start execution, and
then setting RES at each clock cycle. At each cycle, control propagates com-
binationally within the statement circuit; the completion wire corresponding
to the returned completion code is set, and the registers corresponding to
the reached pause statements are set to resume execution from the right
state in the next cycle. The visible Esterel signals are received and emitted
through E and E′.

To suspend the statement for the cycle, we set SUSP instead of RES (RES
and SUSP are never set at the same time). If the statement is preempted
by some internal or concurrent trap exit, we set KILL to unset the pause
registers.

The selection wire SEL is propagated upwards in compound statements.
It remains set as long as some pause registers are set, i.e. as long as the
statement is selected. It becomes unset at the cycle that follows termination
or trap exit, unless the statement has been immediately restarted by some
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loop. The SEL wire is necessary since RES may also be sent to currently un-
selected statements. When RES is set, unselected statements should remain
silent, i.e. should unset all output signal and completion wires. This is done
by internally anding RES and SEL.

Since it is possible to instantaneously loop back into a statement, sev-
eral elementary behaviors of a subcircuit can be superimposed in the same
instant. This will be neglected for the moment and fully analyzed in Chap-
ter 12.

11.2.3 Constructive Semantics of the Program and Circuit

The circuit of a statement is carefully designed to achieve full correspondence
between the constructive information propagation in the circuit and the
constructive semantics of the source Esterel statements. The propagation
of 1’s implements the Must calculation and state change as specified by
the semantic rules. The propagation of 0’s exactly implements the Cannot
calculation. The partial statuses {+,−,⊥} of a signal s are encoded as
follows: status is s+ if the s wire has been proved to have value 1, status
is s− if the s wire has been proved to have value 0, and status is s⊥ if nothing
has been proved for s. See Section 11.5 for a concrete example.

11.3 Translating the Kernel Esterel Statements

We now show by pictures how each Esterel kernel statement is translated
into a circuit. To make the pictures simpler, we use two conventions:

• Unused inputs are not pictured.

• Not all outputs are pictured. An omitted output is assumed to be
explicitly unset, i.e. to be driven by a 0 constant (see Section 10.1.2).

11.3.1 Translation of Completion Codes

The translation of a completion code k �= 1 (termination or trap exit) is
obvious: the GO input is connected to the corresponding completion output,
as shown in Figure 11.2. This implements rule (s-term-exit), as well as Must
and Can rules.

The translation of the pause statement, i.e. completion code 1, is pictured
in Figure 11.3. The pause register drives the SEL selection wire. The register
is potentially set in two cases:
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code 2code 0

K0 GOGO K2

Figure 11.2: Circuit for a completion code k �= 1

GO K1

SUSP

RES

SEL

K0

KILL

Figure 11.3: Circuit for pause, i.e. completion code 1
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K0GO

s'

Figure 11.4: Circuit for !s

• when GO is set, i.e. when the pause statement starts, according to rule
(s-pause);

• when SUSP and SEL set are set, i.e. when the pause statement is se-
lected, according to rules (r-suspend+).

According to rules (sr-term-trap) and (sr-prop-trap), actual setting of the
register occurs only if KILL is unset, i.e. only if the pause statement is not
preempted by some trap exit.

Termination wire K1 is set when GO is set, according to rule (s-pause).
Termination wire K0 is set when the pause statement terminates, i.e. when
both SEL and RES are set, according to rule (r-pause). The Must and Can
rules are also correctly implemented.

11.3.2 Translation of the Emit Statement

As shown in Figure 11.4, to translate !s, we just connect the input GO wire
to the K0 termination output pin and to the s′ signal emission output pin.
This implements rule (s-emit).

11.3.3 Translation of the Present Statement

The translation of a present statement s ? p , q is shown in Figure 11.5. We
put the circuits of p and q in parallel, we build a switch for the GO wire ac-
cording to the value of the s input that we extract from E, we send RES, SUSP,
and KILL to both subcircuits, and we join their outputs using or gates.

Since the switch on GO makes the respective GO inputs of the subcircuits
incompatible, only one of them can be started at a time. Therefore, in each
following instant, only one of the subcircuits can be selected, as in the state
semantics. Constructive information propagation works as follows:

• When GO is set, i.e. when the circuit is started, there are three cases.
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Figure 11.5: Circuit for s ? p , q
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– The s wire is set, i.e. s is known to be present. The GO input of p
is set, which implements rule (s-present+). The GO input of q is
unset, and the circuit of q unsets all its output pins. Since 0 is
neutral for an or gate, the 1’s and 0’s generated by p propagate
to the E′ and Ki outputs, exactly as required by the definition of
Must and Can.

– The situation is symmetrical if s is unset, i.e. if s is known to be
absent.

– If s is yet unknown, then the GO inputs of the subcircuit are also
unknown. No 1 propagates to outputs, yielding the 〈 ∅ , ∅ 〉 result
required by the Must formula. As far as 0’s are concerned, we
must calculate

Can⊥(p,E) ∪ Can⊥(q,E) = Can⊥(p,E) ∩ Can⊥(q,E)

This is indeed what the output or gates implement, since 0 propa-
gates through an or gate if and only if both inputs are 0. Correct
computation of Can is propagated by induction from p and q
to s ? p , q.

• Assume RES is set. It is then broadcast to the circuits of p and q.
There are two subcases:

– If SEL is unset, the circuit is not currently selected. This is also
true for the subcircuits of p and q, which unset all their outputs.
The output or gates adequately unset the outputs.

– If SEL is set, then only one of the subcircuits is selected. Assume
it is that of p. Then, p is executed as required by rule (r-then),
and q unsets all its outputs, which ensures correct propagation
of p’s results and Can values by the output or gates.

11.3.4 Translation of suspension and strong preemption

The translation of the suspension statement s⊃ p is shown in Figure 11.6.
Since suspension does not occur in the first instant, the GO wire is directly
connected to the subcircuit’s GO input pin. The resumption wire RES is and-
ed with the selection wire SEL to avoid resuming an unselected subcircuit,
and this conjunction drives a switch on the s signal, which is extracted
from E. If s is absent, the RES input pin of the subcircuit is set for normal
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Figure 11.6: Circuit for s⊃p

resumption. If s is present, the SUSP suspension pin of the subcircuit is
set for suspension, and K1 is set since we must return completion code 1.
Suspension of the subcircuit also occurs if the input SUSP wire is 1. The KILL
wire is directly fed into the subcircuit.

Although it is not a kernel statement, it is practically useful to directly
implement the strong abortion statement s>>p or “do p watching s”, since
its kernel expression given in Chapter 2.4 is quite heavy. The implementa-
tion is shown in Figure 11.7. Since preemption does not occur in the first
instant, the GO wire is directly connected to the subcircuit’s GO input pin.
The SUSP and KILL wires are also directly connected. Once and-ed with SEL,
the RES wire drives a switch on s. If s is absent, resumption is passed to
the subcircuit. If s is present, the subcircuit RES pin receives 0 and the K0
termination pin receives 1 to indicate termination.

11.3.5 Translation of Sequencing

The translation of a sequence p ; q is easy and shown in Figure 11.8. The
input GO wire is sent to the GO pin of p, and the termination wire K0 of p
is sent to the GO input of q to ensure immediate sequencing. All the other
input wires are broadcast, and the output wires are or-ed. Correctness of
the translation relies on the fact that the subcircuits of p and q cannot be
both simultaneously selected.

Constructive propagation of 1’s and 0’s calculates Must and Can in the
same way as for s ? p , q. This is left to the reader.
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Figure 11.7: Circuit for s>>p
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Figure 11.9: Circuit for p∗

11.3.6 Translation of Loop

As shown in Figure 11.9, to translate a loop p∗, we simply feedback the K0
termination wire into the GO input. Of course, this can create combinational
cycles. A cycle occurs if there is a direct path from GO to K0. Requiring a
program to be loop-safe is enough to make this problem harmless. Nastier
cycles may appear through signal wires; their analysis deferred to Chap-
ter 12. Since a loop cannot terminate, the output termination wire K0 has
value 0, which is made explicit here for clarity.

11.3.7 Translation of Parallel

The circuit of a parallel statement p |q is pictured in Figure 11.10. It is built
by putting the circuits of p and q in parallel and synchronizing their outputs
using a synchronizer subcircuit to achieve the required semantical effect, i.e.
the Max computation of completion codes.

The GO, RES, SUSP, KILL and E wires are broadcast to the subcircuits of p
and q. The global SEL output is the disjunction of the SEL output of the
components, and the output signal wires are or-ed according to the semantic
rules.

The heart of the synchronizer is the constructive Max circuit pictured in
Figure 11.11. Given two sets of completion codes L and R, the Max circuit
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Figure 11.10: Circuit for p | q
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Figure 11.11: The constructive Max circuit
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computes Max (L,R) using the following formula1.

Max (L,R) = {max (l, r) | l ∈ L, r ∈ R}

= {i ∈ N | i ≥ min(L)} ∩ (L ∪ R) ∩ {j ∈ N | j ≥ min(R)}

Each of the three components of the intersection is computed by a row of or
gates in the Max circuit. The auxiliary LEM and REM inputs are used to control
the cases where the left or right set is empty. Assume for example L = ∅.
In the circuit, this is represented by LEM = 1 and L0 = L1 = ... = 0. In
this case, the upper part of the circuit is innocuous and the result is R as
required by the formula Max (∅, R) = R.

In the parallel circuit, LEM and REM are controlled according to rules
(r-both), (s-both), (r-left), and (r-right).

• When resuming p̂ | q̂ according to rule (r-both) or when starting p | q
according to rule (s-both), we know that each branch will return a
termination code and we unset LEM and REM. Given the left and right
completion codes l and r, represented by Ll = 1 and Rr = 1, the Max
circuits compute the maximum k = max (l, r), represented by Kk = 1.
In addition, the Max circuits propagate 0’s as required by the compu-
tation of Can . For example, from L0 = L1 = 0 we deduce K0 = K1 = 0
without any knowledge of R0 and R1. (In [4], we used a simpler
circuit to compute max (k, l); it turns out that this circuit did not
propagate 0’s in the same way and did not implement the constructive
semantics.)

• When resuming p̂|q according to rule (r-left), REM is set by the nor-gate
in the parallel circuit, and the 0’s and 1’s of p̂ are directly propagated
to the outputs of the parallel circuit.

• When resuming p|q̂ according to rule (r-right), LEM is set symmetrically.

11.3.8 Translation of Trap and Shift

The circuit for {p} is shown in Figure 11.12. As required by the definition of
the ↓ k operator on completion codes, we or the termination wires of code 0

1The reader familiar with the application of 2-adic number theory to circuits‘ [42]
might prefer a beautiful arithmetico-logical formula due to G. Gonthier, where ‘−’ denotes
arithmetic opposite: Max (L, R) = (L ∨ −L) ∧ (L ∨ R) ∧ (R ∨ −R).
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Figure 11.12: Circuit for {p}

(termination) and 2 (exit of current trap), to build the new termination
wire K0. The wire K1 is left unchanged, and the other termination wires are
shifted downwards.

In the translation of ↑ p, shown in Figure 11.13, the completion codes
are simply shifted according to the definition of the ↑ k operator.

11.3.9 Translation of local signal declaration

To translate a local signal declaration p\s, we simply close the signal s by
equating the s and s′ wires. This is pictured in Figure 11.14. The closure can
create combinational loops to be handled by the constructiveness analysis of
the circuit, see Chapter 4.

Constructive information is correctly propagated according to the recur-
sive definitions of Chapter 7. If s is emitted by p, then p sets s′, a fact that is
fedback into s as in the recursive definition of Must . If s cannot be emitted,
then p unsets s′, which is fed back into s.

11.4 The Global Environment

To translate a full program of body p into a circuit, we must place the cir-
cuit of p in a suitable environment pictured in Figure 11.15. The GO wire is



11.4. THE GLOBAL ENVIRONMENT 125

GO

RES

SUSP

KILL

SEL

K0

K1

K2

E E'

K3

... 

P

0 K2

GO

RES

SUSP

KILL

SEL

K0

K1

K3

E E'

K4

Figure 11.13: Circuit for ↑ p
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Figure 11.15: The global environment

initially set and then unset at all following cycles by the boot register, which
corresponds to the added initial 1̂ in the state semantics. Notice that a reg-
ister with a negation added on each side acts as a register initialized to 1.
The RES wire is permanently set; the initial value 1 is harmless since no sub-
circuit is initially selected. The global SUSP and KILL wires are permanently
unset. The K0 output is renamed into DONE to indicate that the body has
terminated, an information that is not part of the semantics but convenient
in practice. The global SEL and K1 wires are useless. Finally, the input and
output wires are respectively connected to the I and O signal buses.

11.5 A Constructive Execution Example

Using example P2, page 29, we now show how the constructive evaluation of
an Esterel program is adequately performed by the constructive evaluation
of its circuit. We recall the code of P2:

module P2:
signal S in

emit S;
present O then

present S then
pause

end;
emit O

end
end signal
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Figure 11.16: Circuit for program P2

The circuit obtained from P2 is pictured in Figure 11.16. To make the
drawing simpler, we simplified the translation of pause, using the global
environment definitions RES = 1 and SUSP = KILL = 0: in this environment,
a pause statement boils down to a register.

In the first instant, the boot register sends a 1 to the S′ wire, thus ex-
ecuting “emit S”, and a 1 to the test for O, which is represented by the
leftmost and gates. Since O’s status is yet unknown, control cannot prop-
agate further, neither to the O+ wire, which triggers the then case, nor to
the O- wire, which triggers the else case. However, the information S′ = 1
feeds back into the test for S, which is represented by the two middle and
gates. From S = 1, we deduce S− = 0. Since the pause register is ini-
tially 0, we deduce O′ = 0, i.e. that we cannot emit O. From O = 0, we now
deduce O+ = 0 and O− = 1, which determines all the other wires.
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Chapter 12

Schizophrenia

The relatively simple translation of a loop-safe Esterel program P into a
hardware circuit C we have given in Chapter 11 is essentially linear in size:
the size of C measured in number of gates is linearly bigger than the size of P
measured in number of kernel statements. If the circuit C is constructive,
then it can be shown that the program P is also constructive and that the
behavior of C coincides with that of P . However, the basic translation
is only partially correct: there exist constructive programs that yield non-
constructive cyclic circuits, because of the schizophrenia problem we study
in this section.

The problem is related to combinational feedback. In the circuit con-
struction, there are exactly three places where an output of a subcircuit is
combinationally fed back into the same subcircuit:

• The translation of a loop p∗. This is the source of the schizophrenia
problem.

• The translation of a trap statement {p}, where the K2 output is fed
back into the KILL input. This feedback is harmless since the KILL wire
is propagated straight to the registers by all statement translations. No
combinational loop can be created.

• The translation of a local signal statement p\s. Creating combinational
loops involving signals is normal, there as in Esterel proper. The whole
point of constructive analysis is to determine whether signal loops are
sensible.

129
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Figure 12.1: Circuit for sustain s = (!s ; 1)∗

12.1 A Correctly Translated Loop

Consider the statement “sustain S”, i.e. (!s ; 1)∗. The circuit translation
is pictured in Figure 12.1. The K0 output of the pause subcircuit feeds back
to the GO input, but no combinational cycle is created and the translation is
correct. Of course, the circuit almost vanishes by constant propagation.

In the second instant, the (r-pause) and (s-pause) behaviors are harm-
lessly superimposed in the pause subcircuit: both RES and GO inputs of the
subcircuit are set, and the subcircuit sets both its K0 and K1 completion
outputs.

12.2 Schizophrenic Parallel Synchronizers

Consider now the following apparently trivial variant of “sustain S”:

module P16:
loop

emit S;
[ nothing || pause ]

end loop

written (!s ; (0 | 1))∗ in terse syntax.
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Figure 12.2: Incorrect basic circuit for (!s ; (0 | 1))∗

Semantically speaking, the added nothing statement is completely in-
nocuous. However, the basic translation builds the non-constructive circuit
pictured in Figure 12.2. The FORK label shows where the parallel statement
starts. The loop feeds back the K0 termination output to FORK. The unstable
combinational loop is drawn in dotted lines. In the first instant, the circuit is
constructive: S is emitted, the boot register is unset, and the pause register
is set. In the second instant, the pause register sets the two lower inputs
of the K0 completion gate. Therefore, to compute the value of this gate, we
need to compute the dotted top input. For this, we have to compute the
value of the FORK wire, which itself requires computing the value of K0, hence
the non-constructiveness.

Consider now the state semantics. Omitting the auxiliary boot state-
ment, the state of interest is (!s ; (0 | 1̂))∗. The constructive state transition
is

(!s ; (0 | 1̂))∗ ↪
s+, 1−−−→
s+

(!s ; (0 | 1̂))∗

This transition is proved using rule (r-do-loop) in the following way:

!s ; (0 | 1̂) ↪
∅, 0−−→
s+

!s ; (0 | 1) !s ; (0 | 1) ↪
s+, 1−−−→
s+

!s ; (0 | 1̂)

(!s ; (0 | 1̂))∗ ↪
s+, 1−−−→
s+

(!s ; (0 | 1̂))∗

The first premise is proved using rules (r-seq3), (r-right), and (r-pause),
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while the second premise is proved using rules (s-seq2), (s-emit), (s-both),
(s-term-exit) for 0, and (s-pause) for 1.

The key point is that the parallel statement is instantaneously reincar-
nated by the loop: when resumption of state 0 | 1̂ terminates, the parallel is
reincarnated as 0 | 1. Each incarnation performs a separate transition:

1̂ ↪
∅, 0−−→
s+

1

0 | 1̂ ↪
∅, 0−−→
s+

0 | 1
(r-right)

0 ↪
∅, 0−−→
s+

0 1 ↪
∅, 1−−→
s+

1̂

0 | 1 ↪
∅, 1−−→
s+

0 | 1̂
(s-both)

In the basic circuit of Figure 12.2, there is a single parallel synchronizer
whose wires cannot be reincarnated dynamically. We ask the synchronizer
to perform two distinct synchronizations at a time, which is impossible. This
is what we call schizophrenia. Clearly, some logic duplication is necessary
to get rid of schizophrenia.

12.3 Schizophrenic Signals

Local signals are also subject to instantaneous reincarnation. Consider the
following statement:

module P17:
loop

signal S in
present S then emit O else nothing end;
pause;
emit S

end signal
end loop

written (((s ? !o , 0) ; 1 ; !s)\s)∗ in terse syntax. In the first instant, S is ab-
sent, O is not emitted, and we reach the state (((s ? !o , 0) ; 1̂ ; !s)\s)∗, omit-
ting the dead boot statement. In the second instant, execution resumes
from 1̂, the signal S is emitted, and the loop loops. Since the declaration
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Figure 12.3: Incorrect basic circuit for (((s ? !o , 0) ; 1 ; !s)\s)∗

of S is re-entered, the body is executed with a fresh incarnation of S, which
is not emitted. Therefore, the test takes its else branch, O is not emitted,
and we are back to the same state.

The (simplified) basic circuit translation is pictured in Figure 12.3. The
circuit is constructive, but it behaves incorrectly in the second instant.
The S′ wire is set by the pause register, and it is directly fed back into
the presence test. The test takes its then branch and provokes emission of O
instead of taking its else branch as in the semantics.

The key point is that the basic translation does not take into account the
scope of S. The statement is translated as if it were ((s ? !o , 0) ; 1̂ ; !s)∗\s,
which indeed emits o in the second instant since s does not reincarnate any
more. A finer translation is clearly needed to correctly handle the instanta-
neous reincarnation of S induced by scoping.

12.4 An Easy Solution

An easy solution is to duplicate the body of each loop, transforming p∗
into (p ; p)∗, which is semantically equivalent. The parallel example becomes
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loop
emit S;
[ nothing || pause ];
emit S;
[ nothing || pause ]

end loop

and the basic circuit now has two distinct synchronizers able to perform the
two simultaneous synchronizations. The signal example becomes

loop
signal S in

present S then emit O end;
pause;
emit S

end signal;
signal S in

present S then emit O end;
pause;
emit S

end signal
end loop

and the basic translation now allocates two distinct wires for the two syn-
tactically distinct local signals.

To correctly handle nested loops, duplication must be done in a recursive
way: inner loops must be first expanded before duplicating a loop body.
The circuit can become exponential in the size of the program, which is
not practical. Furthermore, registers get duplicated, which is very bad for
optimization and verification purposes. We need a better solution, which we
shall find by analyzing more carefully the structure of proofs in the state
semantics.

12.5 The Surface and Depth of a Statement

Schizophrenic conflicts are always created by rule (r-do-loop). In this rule,
the subjects of the premises are respectively a proper state p̂ and the base
standard statement p. Therefore, conflict occurs only between the surface
and the depth of the circuit, which are defined as follows:
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Figure 12.4: Correct circuit for (!s ; (0 | 1))∗

• The surface is the part that is driven by the GO input. The surface
acts when the statement is started.

• The depth is the part of the circuit that is driven by the RES input
and the pause registers at resumption time. The depth acts when the
statement is selected and resumed.

In the basic translation, the surface and depth need not be disjoint. In
“sustain S”, Figure 12.1, the !s statement is both in the surface and in
the depth. In this case, everything works fine since it is harmless to emit a
signal twice. In Figure 12.2, there is a single synchronizer for the surface and
the depth. Since the surface and depth must simultaneously perform incom-
patible synchronization, the synchronizer is schizophrenic. In Figure 12.3,
schizophrenia comes from the fact that there is a single signal buffer for the
depth and surface signals, which should have distinct statuses at the same
time.

The solution to avoid schizophrenia is to always keep the surface and
depth entirely disjoint. This can be done without duplicating the registers,
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Figure 12.5: Correct circuit for (((s ? !o , 0) ; 1 ; !s)\s)∗

using a reasonable amount of logic duplication.
A correct translation of P16 is pictured in Figure 12.4. It uses separate

synchronizers for the surface and the depth. The top surface synchronizer
is called SYN[0], and the bottom depth synchronizer is called SYN[1]. The
parallel statement is initially started using the surface synchronizer, which
detects pausing and sets K1[0]. In the next instants, the selected pause
register sets the termination input R0[1] of the depth synchronizer SYN[1],
which reports immediate termination of the parallel statement by setting the
output K0[1]. The parallel is immediately restarted and the inputs L0[0]
and R1[0] of the surface synchronizer SYN[0] are set. The surface synchro-
nizer reports pausing by setting K1[0].

At first glance, the new circuit looks much bigger than the old one.
However, when constants are propagated, almost nothing is left of the circuit,
and there is no practical penalty to the duplication. The LEM and REM inputs
are also handled in a simpler way:

• In the surface synchronizer, we set LEM = REM = 0 since we know that
each branch will act and return a termination code when the parallel
is started by setting GO.

• In the depth synchronizer, a branch will return a termination code if
and only if it is selected. The negation of the branch selection wire is
connected to the auxiliary input.
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A correct translation of P17 is pictured in Figure 12.5. It uses two wires
for S. The surface signal wire S[0] has input 0 since the surface incarnation
of S has no emitter, and the depth signal wire S[1] is not connected to any
gate since the depth incarnation is not tested for presence, as in the state
semantics.

12.6 Multiple Reincarnation

So far, we have seen cases where a statement has two simultaneous incarna-
tions. Nesting loops, traps, and parallel statements can lead to more complex
situations with multiple reincarnation of parallels and signals. Consider pro-
gram P18 in Figure 12.6. In the first instant, the three pause statements are
selected, S1 and S2 are not emitted, and not S1 and not S2 is emitted. In
the second instant, the constructive behavior is as follows:

• The three pause statements terminate, S1 and S2 are emitted, and
S1 and S2 is emitted by the present statement.

• The trap T2 is exited by the “exit T2” statement, the inner loop
loops, and a new signal S2 is declared. This new signal is absent since
it cannot be emitted, while the current S1 is still present. The present
statement is instantaneously re-executed with S1 present and S2 ab-
sent, and it emits S1 and not S2.

• The trap T1 is exited by the “exit T1” statement and the outer loop
loops. A new S1 and a new S2 are declared. Since none of these
new signals can be emitted, the present statement is executed again
with S1 and S2 absent, and not S1 and not S1 is emitted.

In this constructive behavior, S1 has two simultaneous incarnations, a present
depth incarnation and an absent surface incarnation, while S2 has three in-
carnations, one present and two absent. In terms of depth and surface1,
the first one in constructive execution order can be called a depth-depth in-
carnation since it is both in the depth of “signal S1” and in the depth of
“signal S2”, the second one can be called a depth-surface incarnation since
it is in the depth of “signal S1” and in the surface of “signal S2”, and
the third one can be called a surface-surface incarnation since it is in the
surface of both signal declarations. Accordingly, the present statement has
three different active incarnations with three different behaviors.

1Here, we ignore the parallel statements. See Section 12.7.4 for the accurate naming.
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program P18 :
output S1_and_S2,

S1_and_not_S2,
not_S1_and_S2,
not_S1_and_not_S2;

loop
trap T1 in

signal S1 in
pause;
emit S1;
exit T1

||
loop

trap T2 in
signal S2 in

pause;
emit S2;
exit T2

||
loop

present S1 then
present S2 then

emit S1_and_S2
else

emit S1_and_not_S2
end present

else
present S2 then

emit not_S1_and_S2
else

emit not_S1_and_not_S2
end

end present;
pause

end loop
end signal

end trap
end loop

end signal
end trap

end loop

Figure 12.6: Multiple incarnations: program P18
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The example can be extended to n signals, in which case the innermost
signal has n + 1 incarnations. Although such programs rarely occur in prac-
tice and can even look pathological, they are constructively correct and they
must be correctly translated2.

12.7 Curing Schizophrenia

To correctly translate examples such as P18, we must duplicate logic as many
times as required by the number of possible incarnations. The solution we
present here is based on the idea of always keeping the surface(s) and depth
disjoint to be able to correctly translate loops by straightforward feedback.
It has the drawback that logic is duplicated even if there are no loops, but
it is semantically very clear. (A different solution based on duplicating logic
only when translating loops is presented in [30].) In the worst case, the size
of the logic will be square of the size of the source program. However, the
squaring factor only shows up for artificial programs such as P18, and it is
not a problem in practice. To minimize logic, the Esterel v5 compiler uses
static analysis techniques to avoid duplication for non-schizophrenic parallels
or local signals. We shall not present this optimization here.

12.7.1 Incarnation Indices

The key ingredient of our solution is the use of integer indices to name
incarnations. In P16, page 130, and P17, page 132, we used indices 0 for
the surface wires and 1 for the depth wires. We extend this numbering
scheme to more complex examples such as P18, page 138. In the analysis
of P18, we informally named the three incarnations of S2 “depth–depth”,
“depth–surface”, and “surface–surface”, in the constructive order in which
they appeared. We can abbreviate these names into words dd, ds, and ss. In
this naming, we neglected the parallel statement that encloses “signal S2”;
when taking this parallel into account, we get the exact naming ddd, dds,
and sss. Notice that there can be no name such as sds where a d follows
an s: by definition, the depth of a statement is included in the depth of all
statements that enclose it. Therefore, we can further simplify the names and
replace them by integer incarnation indices 2, 1, and 0, simply counting the
number of occurrences of d in the name.

2The reader may question this point and wonder whether reincarnation is of any prac-
tical interest. The answer is yes, although we shall not try to prove this statement here.
For an example, see [16] where reincarnation is nicely used to handle menus in a menubar.
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In the final translation, we create separate logic for each incarnation
index. The reason why this way of duplicating logic works is easy to explain:
if a program P is constructive, then, for any substatement p, each indexed
incarnation of p can be executed only once in a reaction. Intuitively, given a
constructive proof of a reaction of P to an input, one can label each transition
in the proof by the index at which the transition occurs. The only way to
have two transitions of a substatement p at the same index would be to start
a loop at this index and to loop the loop. This would imply that the body
of the loop terminates instantaneously when started, which is forbidden by
the semantics (see rules (loop) in the behavioral semantics and (r-do-loop) in
the state semantics). Technically, this property is not trivial to prove, and
the proof is deferred to Chapter 13. In P18, one notices that looping a loop
always strictly decreases the incarnation level, as we shall explain in greater
detail in Section 12.7.4.

12.7.2 Translation Sketch

Before giving the final translation in Chapter 13, let us explain it intuitively
and revisit examples. Let P be a program and p be a substatement of P .
We translate p as in the basic translation, except that we replace the orig-
inal GO, KILL, K, S, and S′ wires by arrays of wires indexed by incarnation
indices. The RES, SUSP, and SEL wires need not be indexed since they concern
only the depth of statements and are not reincarnated. For GO[i], KILL[i],
and Kk[i] completion wires, the incarnation index i ranges from 0 to l, where
the level l of p is the number of parallel statements and local signal decla-
rations of P in which p is contained (the other statements cannot provoke
schizophrenia and do not trigger logic duplication). For local signal input
and output wires S[i] and S′[i], the index i ranges from 0 to l′ if l′ is the level
of the body of the declaration of S, i.e. the level of the declaration plus one.
Gates that receive wire arrays are replicated for each index. The wire driven
by a pause register of level l is indexed by l since it is a typical depth wire.

Consider a parallel statement p |q of level l. Then p and q are at level l′ =
l + 1. A surface of the parallel statement is characterized by an index i such
that 0 ≤ i ≤ l, and it is made of a pair of surfaces of p and q synchronized by
a specific synchronizer SYN[i]. It is started by the wire GO[i], which is passed
to p and q as in Figure 11.10. No surface is generated at index l′. The depth
of the parallel statement is made of all the wires driven by the pause registers
of p and p′, which have index l′, and of a depth synchronizer SYN[l′]. The
surfaces and depth are kept disjoint as requested. Finally, we set KILL[l′] =
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KILL[l] to propagate trap exits to the depth, and we union the completion
wires of level l and l′ to correctly propagate depth completion to the enclosing
statement at level l.

For a local signal declaration of level l, the construction is similar. A
surface has an index i such that 0 ≤ i ≤ l and uses a pair S[i], S′[i] of
signal wires, while the depth has index l′ = l + 1 and uses a distinct pair of
wires S[l′], S′[l′].

12.7.3 Simple Examples

In P16, all wires in the top surface synchronizer have index 0, and all wires in
the bottom depth synchronizer have index 1. Consider the following slightly
more elaborate example P19.

module P19:
input I;
output O;
signal S in

present I then emit O else pause end;
[

emit S
||

pause; emit S
]

end signal

Let us first analyze control propagation. The “signal S” statement
opens one level, and the parallel statement opens another level. The present
statement is translated at indices 0 and 1. Here, the depth incarnation of
index 1 is useless since there is no way to start the present statement at
resumption time: since GO[1] = 0, the incarnation of index 1 disappears
by constant propagation3. The “emit O” statement in the then branch
is translated with index 0 and its termination wire has the form K0[0].
The pause statement in the else branch generates two completion wires:
the K1[0] wire, which reports pausing at start time, and the K0[1] wire,
which reports termination at resumption time. The termination wire index

3In the Esterel v5 compiler, instead of generating and simplifying the depth incarnation,
we do not generate it at all.
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is 1 since the pause statement is at level 1. The parallel statement has three
incarnations 0, 1, and 2, with two surface synchronizers SYN[0] and SYN[1]
and one depth synchronizer SYN[2].

• Incarnation 0 is of type surface-surface. It is active when both the
signal and parallel statements are started. In our example, this hap-
pens at boot time if I is present. The GO[0] start wire of the parallel
statement is the K0[0] termination wire of “emit O”. The GO[0] wire
is connected to the L0[0] entry of the SYN[0] synchronizer through
the first “emit S” statement and to the R1[0] entry of SYN[0] through
the K1[0] completion wire of the second pause statement, which in-
dicates pausing. If GO[0] is set, SYN[0] reports pausing by setting its
own completion wire K1[0].

• Incarnation 1 is of type depth-surface. It is active when the “signal S”
statement is resumed and the parallel statement is started. This hap-
pens when the first pause statement is selected and resumed, i.e. in
the second instant if I was absent in the first instant. The GO[1] start
wire is the termination wire K0[1] of the first pause statement. As
before, the GO[1] wire is connected to the L0[1] and R1[1] entries
of SYN[1], which reports pausing by setting K1[1].

• The SYN[2] synchronizer is of type depth-depth. It is active when the
parallel statement is resumed, which can occur only when the signal
statement is resumed. In our example, this happens in the second
instant if I was present in the first instant, and in the third instant
otherwise. There is no GO wire at index 2 since the depth is solely driven
by the RES resumption wire. The termination wire of the second pause
statement is K0[2] since this statement is at level 2. It is connected to
the R0[2] entry of SYN[2]. The first branch is not connected to SYN[2]
since its depth is empty.

The Kk[1] and Kk[2] completion wires of SYN[1] and SYN[2] are or -ed at
level 1, since they are all in the depth of the enclosing signal statement.
This way, the parallel statement reports pausing and termination as if it was
not internally split.

Let us now analyze signals. The toplevel I and O signals have only one
incarnation indexed by 0. The input wire I[0] is connected to the present
statement and gates. The output wire O′[0] is equal to the GO[0] input of
“emit O”, i.e. to the output of the first and gate of the present statement.
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The S local signal has two incarnations 0 and 1. The surface “emit S” in
the first parallel branch is translated at indices 0 and 1. Its GO[0] and GO[1]
start wires respectively reach the or -gates of S′[0] and S′[1]. The depth
“emit S” in the second branch acts only at index 2 since it follows a pause
statement of level 2. Its GO[2] wire is connected to the S′[1] or -gate: the
index 2 is transformed into 1 = min(1, 2) since the level of S is 1.

12.7.4 Correct Translation of P18

Consider now the program P18, page 138. The maximum level is 4 since
new levels are opened by the nested “signal S1”, “||”, “signal S2”, and
“||” statements. The first pause statement has level 2 since it is enclosed in
the first signal declaration and the first parallel statement, while the second
and third ones have level 4. The S1 signal has two incarnations, the first
parallel statement has three, the S2 signal has four, and the second parallel
statement has five.

The “signal S1” declaration generates two input-output wire pairs:
S1[0] and S1′[0] for surface incarnation, and S1[1] and S1′[1] for depth
incarnation. At boot time, no “emit S1” statement is executed, which im-
plies that S1′[0] and S1[0] have constant value 0. Being driven by the first
pause statement of level 2, the “emit S1” statement connects its GO[2] in-
put to S′[1], which is itself connected to S[1] by a buffer. Notice that the
index 2 of the GO wire is decreased to 1, which is the maximal index for S1.

The first parallel statement has three synchronizers, only SYN[0] and
SYN[2] being of interest. The surface-surface SYN[0] synchronizer is used
when entering the parallel statement at boot time or when looping the outer-
most loop. It then reports pausing. The depth-depth SYN[2] synchronizer is
used in all instants except boot to synchronize the termination of the branch
resumptions. It then reports exiting trap T1 by setting K2[2]. Since there is
no possibility to start the parallel from a pause statement of level 1, all in-
puts to the depth-surface SYN[1] synchronizer are 0, and SYN[1] disappears
by constant propagation.

The “signal S2” declaration generates four pairs of wires correspond-
ing to indices 0 to 3. No “emit S2” statement can be executed at in-
dices 0, 1, and 2, which implies that S2′[0], S2[0], S2′[1], S2[1], S2′[2],
and S2[2] have constant value 0. The “emit S2” statement is started by a
pause statement of level 4. It connects its GO[4] input to S2′[3], and one
has S2[3] = S2′[3] = GO[4].

The innermost parallel statement has five synchronizers ranging from SYN[0]



144 CHAPTER 12. SCHIZOPHRENIA

to SYN[4], two of them being useless. The surface-surface SYN[0] synchro-
nizer is used when entering the parallel statement at boot time or when
looping the outermost loop. It then reports pausing by setting K1[0].
The SYN[2] synchronizer is used when the second loop loops. It then reports
pausing by setting K1[2]. The SYN[4] synchronizer is used for proper re-
sumption of the parallel depth. It then reports exiting T2 by setting K2[4].
The SYN[1] and SYN[3] synchronizers are useless and disappear by constant
propagation.

The present statement also has also five incarnations, the ones indexed
by 1 and 3 being useless since GO[1] = GO[3] = 0.

At boot time, the SYN[0] synchronizers all report pausing by setting
their K1[0] outputs. No local signal is emitted, and the surface 0 incarna-
tion of the present statement executes “emit not S1 and not S2”, which
sets not S1 and not S2′[0]. In the next instants, execution is as follows.

• The three pause registers set their respective termination outputs
K0[2], K0[4], and K0[4], which provokes setting S1′[1] and S2′[3]
and executing the present statement at index 4. The present state-
ment tests for the depth S1[1] and S2[3] incarnations, which are
set. Therefore, “emit S1 and S2” is executed and S1 and S2′[0] is
set. The first branch of the innermost parallel executes “exit T2”
and sets the L2[4] input of SYN[4], while the second branch executes
pause and sets the R1[4] input of SYN[4]. Therefore, SYN[4] prop-
agates the exit by setting its K2[4] output wire. This wire reaches
the “trap T2” statement output or -gate, which sets the termination
wire K0[2] of the trap statement, which has depth 2.

• The surrounding loop sets GO[2] that traverses the “signal S2” decla-
ration and starts the incarnation 2 of the innermost parallel. The first
branch reports pausing to SYN[2] by setting L1[2]. The second branch
executes the present test at index 2. This time, the signals tested for
are S1[1] = 1 and S2[2] = 0, and S1 and not S2′[0] is set. The sec-
ond branch reports pausing to SYN[2] by setting the R1[2] input,
and SYN[2] sets its K1[2] output. Pausing is reported to the R1[2]
input of the depth SYN[2] synchronizer of the first parallel.

• In parallel, the first branch of the outermost parallel asks for ex-
iting T1 by setting the L2[2] input of the SYN[2] depth synchro-
nizer. Since L2[2] and R1[2] are set, the SYN[2] synchronizer sets
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its completion wire K2[2], which sets the termination wire K0[0] of
the “trap T1” statement.

• The outermost loop sets GO[0] and starts the surface incarnations.
All pause statements report pausing to SYN[0] synchronizers. The
incarnation 0 of the present statement is executed. It tests for S1[0]
and S2[0], which are both unset. The “emit not S1 and not S2”
circuit is executed and sets not S1 and not S2[0].

This all happens in one instant.



146 CHAPTER 12. SCHIZOPHRENIA



Chapter 13

The Formal Translation to
Hardware

We now formally present the final correct translation of Esterel programs
into circuits, using the textual presentation of circuits as sets of definitions
and making heavy use of the syntactic extensions described in Section 10.4.

13.1 Translation Environments

For simplicity, we assume that all local signals have distinct names in the
Esterel source program. This can be achieved by a suitable renaming.

The translation function takes as argument an environment ρ composed
of several constants and wires. The environment is used to determine the
input and output wires of the current statement and some numerical auxil-
iaries. It contains the following fields:

• An integer κ that denotes the maximal completion code available when
translating the current statement, i.e. the number of traps in which
the statement is included plus one.

• An integer l that denotes the level of the current statement, i.e. the
number of local signal and parallel statements in which the statement
is enclosed.

• A vector GO of start wires GO[i], indexed by incarnation indices i such
that 0 ≤ i ≤ l.

• A resumption wire RES.

147
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• A suspension wire SUS.

• A vector KILL of kill wires KILL[i], indexed by incarnation indices i
such that 0 ≤ i ≤ l.

• A selection wire SEL.

• A matrix K of completion wires K[k, i], indexed by completion codes k
such that 0 ≤ k ≤ κ and by incarnation indices i such that 0 ≤ i ≤
l. In the formal translation, we write K[3, 2] instead of the K3[2] of
Chapter 12.

• A set E of input signal vectors S[i] and a set E′ of output signal vec-
tors S′[i], each set containing one vector for each signal s visible in the
current scope. For a vector S[i] or S′[i], the index i is an incarnation
index such that 0 ≤ i ≤ l(s), where the level l(s) of a signal s declared
by p\s is the level of p, i.e. the level of p\s plus one.

We use the classical record field notation to retrieve environment compo-
nents. For instance, ρ.GO[i] denotes an incoming control wire. Unless confu-
sion is possible, we simply abbreviate ρ.GO[i] by GO[i].

Given an environment ρ, we shall often need to consider another environ-
ment ρ′ that differs from ρ by the value of one field, say by changing ρ.GO[i]
into some wire w. We then write ρ′ = ρ[w/GO[i]]. The notation extends
naturally when changing several fields.

13.1.1 The Global Environment

To translate a program, we first allocate the following global wires:

• A global selection wire GSEL to be defined by the circuit.

• A global resumption wire GRES defined by GRES = 1.

• A global suspension wire GSUS defined by GSUS = 0.

• A global kill wire GKILL defined by GKILL = 0.

• A global start GGO wire defined by GGO = ¬BOOTREG, where the auxil-
iary boot register BOOTREG is defined by BOOTREG := 1.

• A matrix GK made of two global continuation wires GK[0, 0] and GK[1, 0],
which respectively correspond to global termination and pause.
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• A set I of input signal wires, and a set O of output signal wires. For
each input signal i, there is an input wire I, and for each signal o there
is an output wire O. Being an input, I has no definition. Since the
body of a program is at level 0, we use I[0] and O[0] as synonyms for I
and O.

We translate the module body in the global environment

gρ = (1, 0, GGO, GRES, GSUS, GKILL, GSEL, GK,I,O)

13.2 Translation Rules

For a completion code different from 1, we replicate the design of Figure 11.2
at all incarnation indices.

for k �= 1, C(k, ρ) = K[k, i] ⇐=
0≤i≤l

GO[i]

In the translation of a pause statement, we replicate the surface part of
Figure 11.3, and the register drives the K[0, l] depth termination output.

C(1, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local REG
REG := (SUS ∧ REG ∧ ¬KILL[l])

∨ ∨
0≤i≤l

(GO[i] ∧ ¬KILL[i])

SEL ⇐ REG

K[1, i] ⇐=
0≤i≤l

GO[i]

K[0, l] ⇐ REG ∧ RES

For a signal emission, we replicate Figure 11.4 at all indices. If i > l(s), we
are in the depth of the definition of s, and the wire to be set is S′[l(s)]. We
use the notation m↓n as a short-hand for min(m,n).

C(!s, ρ) =

⎧⎪⎨
⎪⎩

K[0, i] ⇐=
0≤i≤l

GO[i]

S′[i↓ l(s)] ⇐=
0≤i≤l

GO[i]
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For a signal presence test, we replicate Figure 11.5 at all indices. If i > l(s),
we are in the depth of the definition of s, and the wire to be tested for
is S[l(s)]. All the or -gates that gather the outputs of the subcircuits in
Figure 11.5 are implicitly created, since the subcircuits are instantiated in
the same output environment and since the output wires are locally defined
by implications in the subcircuits.

C((s ? p , q), ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local GO1[0..l], GO2[0..l]
C(p, ρ [GO1 / GO])
C(q, ρ [GO2 / GO])
GO1[i] =

0≤i≤l
GO[i] ∧ S[i↓ l(s)]

GO2[i] =
0≤i≤l

GO[i] ∧ ¬S[i↓ l(s)]

The translations of a suspension or of a watchdog are trivial since only the
depth is of interest.

C(s⊃p, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

local NRES, NSUS
C(p, ρ [NRES / RES, NSUS / SUS])
NRES = RES ∧ ¬S[l(s)]
NSUS = SUS ∨ (RES ∧ SEL ∧ S[l(s)])
K[1, l] ⇐ RES ∧ SEL ∧ S[l(s)]

C(s>>p, ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

local NRES
C(p, ρ [NRES / RES])
NRES = RES ∧ ¬S[l(s)]
K[0, l] ⇐ RES ∧ S[l(s)]

In the translation of a sequence p ; q, we chain p and q at all incarnation
indices, as in Figure 11.8. The output or -gates are implicitly generated by
implications, as for s ? p , q.

C(p ; q, ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

local SEQ[0..l]
C(p, ρ [SEQ[i] / K[0, i]])

0≤i≤l

C(q, ρ [SEQ / GO])
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For a loop, we feedback the depth termination wire to the depth GO[l] start
wire.

C(p∗, ρ) =

⎧⎪⎪⎨
⎪⎪⎩

local INLOOP, OUTLOOP
C(p, ρ [INLOOP / GO[l], OUTLOOP/ K[0, l]])
INLOOP = GO[l] ∨ OUTLOOP

Notice that the wires K[0, i] are left pending for i �= l. This works only for
loop-safe programs defined in Section 6.6, for which these wires are guar-
anteed to always have value 0. A translation that also handles loop-unsafe
programs will be presented in Section 13.4.

We now translate the parallel statement. We increment the level and
declare the selection, left and right completion, and synchronizer wires. We
translate the left and right substatements in the appropriate environments,
and we build the selection wire and the synchronizers, as in Figures 11.10
and 11.11. The output or -gates are created implicitly by implications.
To translate the substatements, we use an auxiliary environment ρ′ such
that l′ = l+1, ρ.GO[l′] = 0, since there should be no surface at depth level l′,
and ρ′.KILL[l′] = ρ.KILL[l] since the input depth kill wire must be propa-
gated to the new depth to handle exceptions. Given an array A of size n,
call A ·v the array of size n + 1 obtained by adding v to A at position n.
Then ρ′ = ρ [l′ / l, GO·0 / GO, KILL·KILL[l] / KILL]. The formal translation is
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C(p | q, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local l′ = l + 1
LSEL, RSEL,
L[0..κ, 0..l′], R[0..κ, 0..l′],
LMIN[0..κ, 0..l′], RMIN[0..κ, 0..l′], UNION[0..κ, 0..l′]

C(p, ρ′ [LSEL / SEL, L / K])
C(q, ρ′ [RSEL / SEL, R / K])

SEL ⇐ LSEL

SEL ⇐ RSEL

UNION[k, i] =
0≤k≤κ

0≤i≤l′

L[k, i] ∨ R[k, i]

LMIN[0, l′] ⇐ ¬LSEL
LMIN[0, i] ⇐=

0≤i≤l′
L[0, i]

LMIN[k + 1, i] =
0≤k<κ

0≤i≤l′

LMIN[k, i] ∨ L[k + 1, i]

RMIN[0, l′] ⇐ ¬RSEL
RMIN[0, i] ⇐=

0≤i≤l′
R[0, i]

RMIN[k + 1, i] =
0≤k<κ

0≤i≤l′

RMIN[k, i] ∨ R[k + 1, i]

K[k, l↓ i] ⇐=
1≤k≤κ

0≤i≤l′

LMIN[k, i] ∧ UNION[k, i] ∧ RMIN[k, i]

Notice that the last implication implicitly performs the union of K[k, l] and K[k, l + 1],
which is necessary to report depth completion at the level at which the par-
allel is translated. Such a completion is either the completion of the surface
of index l or a completion of the parallel depth proper.
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Trap and shift are translated as in Figures 11.12 and 11.13 at all indices.

C({p}, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local κ′ = κ + 1
NKILL[0..l]
NK[0..κ′, 0..l]

C(p, ρ [κ′ /κ, NKILL / KILL, NK / K])
NKILL[i] =

0≤i≤l
KILL[i] ∨ NK[2, i]

K[0, i] ⇐=
0≤i≤l

NK[0, i] ∨ NK[2, i]

K[1, i] ⇐=
0≤i≤l

NK[1, i]

K[k, i] ⇐=
2≤k≤κ

0≤i≤l

NK[k + 1, i]

C(↑ p, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local κ′ = κ − 1
NK[0..κ′, 0..l]

C(p, ρ [κ′ /κ, NK / K])
K[↑ k, i] ⇐=

0≤k<κ

0≤i≤l

NK[k, i]

To translate a p\s statement, we increment l and feed back the signal
wires at all incarnation indices. As for the parallel statement, we use the
environment ρ′ = ρ [l′ / l, GO·0 / GO, KILL·KILL[l] / KILL]. The translation is:

C(p\s, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local l′ = l + 1
S[0..l′], S′[0..l′]
NK[0..κ, 0..l′]

C(p, ρ [E·S / E, E′ ·S′ / E′, NK / K])
S[i] =

0≤i≤l′
S′[i]

K[k, l↓ i] =
0≤i≤l′

NK[k, i]
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13.3 Correctness of the Translation

Let P be a program of body q, let p = 1 ; q be the base statement of the
states of P , and let C = C(P ) be the generated circuit. Registers in C
are in bijection with pause statements in p. With each state p̂ of P we
associate a state R(p̂) of C. In R(p̂), a register has value 1 if and only
if the corresponding pause statement is selected in p̂, except for the boot
register, which is inverted and has value 0 if the auxiliary boot statement
is selected; this inversion is needed since all registers are assumed to have
initial value 0 while the boot statement is originally selected. Note that the
terminated extended statement p corresponds to the circuit state where the
boot register has value 1 and all other pause registers have value 0, which
is characterized by GSEL = 0 in C.

The main equivalence theorem shows that our circuit translation exactly
implements the constructive behavioral semantics for loop-safe programs.

Theorem 6 For any state p̂ of a loop-safe program P and for any input
event I, one has p̂ ↪

O−→
I

p̂′ in the state constructive semantics if and only if

one has R(p̂) ↪
O−→
I

R(p̂′) in the constructive circuit semantics.

13.4 Extension to Loop-Unsafe Programs

We briefly indicate how to extend the translation to all programs, including
loop-unsafe ones.

Consider a loop q∗ of level l in a program P . For i < l, the termination
wire K[0, i] of q is generated by the surface of q, which cannot terminate
instantaneously if P is loop-safe. In this case, K[0, i] always has value 0
and can be ignored. For loop-unsafe programs, we must dynamically check
for K[0, i] = 0. One way to do this is to introduce an artificial combinational
loop using an auxiliary wire INSTLOOP[i] defined by

INSTLOOP[i] = INSTLOOP[i] ∧ K[0, i] (13.1)

Then, the value of INSTLOOP[i] can be constructively computed to be 0 if
and only if K[0, i] = 0. If K[0, i] = 1, we get INSTLOOP[i] = INSTLOOP[i] and
the circuit is not constructive, which is detected by the Esterel compiler.
This is fine for i < l since K[0, i] is a surface wire, and the extension of the
translation is trivial. However, at level l, K[0, l] handles both the surface of
index l and the depth of q. To use the same trick, we have to distinguish
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between surface and depth completion wires and to use only the surface
completion wire in the definition of INSTLOOP[l]. This requires an easy but
tedious modification of the translation, which we leave to the reader.
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Chapter 14

Conclusion

We have presented the new constructive semantics of Pure Esterel and we
have shown the equivalence between three styles of semantics: the construc-
tive behavioral semantics, where reactions are defined by single synchronous
transitions, the constructive operational semantics, where reactions are de-
fined by sequences of elementary microsteps, and the electrical semantics
that uses a translation into constructive digital circuits.

On the theoretical side, the main result is the equivalence of construc-
tiveness of a program and electrical stabilization of its circuit. This result
is important since it relates a logical notion to a truly physical one. It gives
us additional confidence in the relevance of the constructive semantics. On
the practical side, the constructive semantics is implemented in the Esterel
v5 compiler to software or hardware, and it is also used in other tools such
as symbolic debuggers, see the Esterel v5 manual [12].

There are many more things to be studied. In this book, we have not
studied compositionality issues. It turns out that the logical semantics has
a weird behavior w.r.t. program composition, while the constructive seman-
tics is compositional by nature, being a least fixpoint semantics (neverthe-
less, compositionality issues are never trivial in synchronous languages). We
have also not discuss optimization issues. The interested reader can refer
to [36, 37]. We are also lacking an axiomatic semantics, which should be
useful for studying program equivalence. Finally, we are looking for very
efficient algorithms to show constructiveness for all possible inputs. The
ones we presently use are not that bad, but they can surely be dramatically
improved.

157



158 CHAPTER 14. CONCLUSION



Bibliography
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recherche 08/91, Centre de Mathématiques Appliquées, Ecole des Mines
de Paris, Sophia-Antipolis, 1991.

[4] G. Berry. Esterel on hardware. Philosophical Transactions Royal Society
of London A, 339:87–104, 1992.

[5] G. Berry. Preemption and concurrency. In Proc. FSTTCS 93, Lecture
Notes in Computer Science 761, pages 72–93. Springer-Verlag, 1993.

[6] G. Berry. The semantics of pure Esterel. In M. Broy, editor, Program
Design Calculi, volume 118 of Series F: Computer and System Sciences,
pages 361–409. NATO ASI Series, 1993.

[7] G. Berry. The Esterel Primer. http://wwww.inria.fr/meije/esterel,
1998.

[8] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language, and Interaction: Essays in Honour
of Robin Milner. MIT Press, to appear.

[9] G. Berry and L. Cosserat. The synchronous programming languages
Esterel and its mathematical semantics. In S. Brookes and G. Winskel,
editors, Seminar on Concurrency, pages 389–448. Springer Verlag Lec-
ture Notes in Computer Science 197, 1984.

159



160 BIBLIOGRAPHY

[10] G. Berry and G. Gonthier. Incremental development of an hdlc entity
in Esterel. Comp. Networks and ISDN Systems, 22:35–49, 1991.

[11] G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science Of Computer Pro-
gramming, 19(2):87–152, 1992.

[12] G. Berry and the Esterel Team. The Esterel v5 System Manual.
http://wwww.inria.fr/meije/esterel, 1998.

[13] F. Boussinot. Programming a reflex game in Esterel v3 2. Rapport de
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