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Abstract. A Hadoop MapReduce cluster is an environment where multi-users, multi-
jobs and multi-tasks share the same physical resources. Because of the competitive 
relationship among the jobs, we need to select the most suitable job to be sent to the 
cluster. In this paper we consider this problem as a two-level scheduling problem 
based on a detailed cost model. Then we abstract these scheduling problems into two 
games. And we solve these games in using some methods of game theory to achieve 
the solution. Our strategy perfect fit the multi-level nature of the scheduling; and in 
using game theory, we can improve the utilization efficiency of each type of resources 
of the cluster, and we can also avoid the unnecessary transmission of data, finally find 
a balance between transmission and waiting. 
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1  Introduction 

MapReduce [1] is a programming model designed by Google for processing large scale 
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data sets parallel and distributed. It provides a simple and powerful way to let the 
programs run in a distributed environment automatically. Apache Hadoop [3] is an 
open source implementation of MapReduce. It consists of a distributed file system 
named HDFS (Hadoop Distributed File System), and a MapReduce programming 
framework. Due to the simplicity of the programming model and its elastic scalability 
and fine-grained run-time fault tolerance [2], Hadoop is popular among the commercial 
enterprises, the financial institutions, the scientific laboratories and the government 
organizations. 

The Hadoop clusters take a master-slave design pattern. The Masters are NameNode 
(for HDFS) and JobTracker (for MapReduce). NameNode is in charge of maintaining 
the namespace of HDFS, managing the mapping relationship of filename and blocks, 
interacting information with DataNode, and so on. JobTracker is in charge of 
scheduling the tasks to the nodes, and monitoring them to see whether it is finished or 
not. The Slaves are DataNodes (for HDFS) and TaskTrackers (for MapReduce). 
DataNodes are the nodes which will store the data; and TaskTrackers are the nodes in 
which the data will run. Generally, a Hadoop job will be scheduled according to 3 steps: 
user level, job level and task level. And usually, in a Hadoop cluster 3 types of 
resources will be consumed, they are: CPU, Disk and Network. 

This paper analyses the advantages and the shortcomings of the existed Hadoop 
scheduling strategies, and designs a new scheduling algorithm. This algorithm firstly 
meets the multi-level nature of the Hadoop scheduling environment, to minimize the 
average waiting time per-user. Then it finds a balance point between “transfer data” and 
“wait” when running map tasks, to optimize the global cost of all the map tasks. 

2 Related Work 

2.1 The Analysis for the Existing Hadoop Scheduling Algorithms 

In order to providing convenience to the users, the scheduler is designed as a pluggable 
model, so that users can design their own scheduler under their needs. And at the same 
time, Hadoop framework also integrates 3 schedulers to be invoked by users. 

Firstly, the scheduler by default uses the FIFO (First In First Out) strategy. In this 
strategy, all the jobs will be submitted to a single job queue, and then JobTracker will 
select the first job sent to the queue to be executed in accordance with their priority. 
Capacity Scheduler [4] and Fair Scheduler [5] are also integrated in a Hadoop 
framework. Both of those support multi-queue scheduling policies. Capacity Scheduler 
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wants to limit the resources given to the jobs submitted by the same user, in order to 
prevent the resources being exclusive. Fair Scheduler’s purpose is to make sure that the 
resources will be allocated fairly to each job. 

At the same time, there also appear many schedulers proposed by the users aiming at 
different application scenarios. The most common schedulers are the following three 
types: 

1. The first type leads by [6] and [12] who want to ensure the data locality. Data 
locality means placing tasks on the nodes that contain their input data. [6] comes to a 
conclusion that there is a conflict between fairness and data locality. In order to solve 
this problem, [6] gives an algorithm called Delay Scheduling. Its mean idea is: instead 
of launching a job according to fairness whose tasks cannot be run locally, it chooses to 
let it wait for a small amount of time, and let other jobs launch their tasks locally. But 
this paper did not give a balance between “waiting” and “transmission” from the point 
of view of the global cluster. 

[7] also aims to avoid unnecessary data transmission. Its method is: to assign tasks to 
a node, local map tasks are always preferred over non-local map tasks, no matter which 
job the task belongs to. This method can guarantee the Data Locality in a certain extent, 
but it greatly impairs the levels of Hadoop scheduling.  

2. The second type is deadline scheduling as [8]. Its purpose is to allocate the 
appropriate amount of resources to the job so that it meets the required deadline. 
Usually, this kind of scheduling policy always applies to a cost model to estimate the 
complete time of the task. But they tend to use a simple model which cannot 
dynamically estimate the complete time of each task. That strongly affects the 
efficiency of the scheduling algorithm.  

3. The third type is called performance-driven scheduling. [9] wants to dynamically 
predict the performance of the tasks, and uses the prediction to adjust the allocation of 
resources for the jobs. This can help to allocate as needed and avoid wasting resources. 
But, this kind of scheduling relies on an important part ---- the cost model. However the 
cost model they used cannot exactly predict the performance of the tasks which reduces 
a lot of validity of the scheduling strategy. 

2.2 Cost Model 

The cost models are usually used in task assignment and resource allocation. There are 
3 common kinds of cost models. The first one doesn’t consider the steps within a task, 
they simply think that the complete time of a local task is 1, and that of a remote task is 
3. This kind of cost model is usually used in approximation algorithms, such as [13]. 
The second one is called a “non-accurate” model. This kind of model usually assumes 
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that the cluster is isomorphic, and the running times of the tasks are equal. They use the 
performance of an already run task or the history trace to predict the execution time of a 
new task. Deadline scheduling often uses this type of cost model. 

The third kind of model divides the cost as Disk IO, CPU and network transfer cost 
and so on. [10] gives a method to quantitatively describe each kind of cost of a task. We 
can use [10] to effectively and accurately predict the performance of a task. The 
scheduling algorithm in our paper is based on a prediction of the costs of the tasks 
according to [10]. 

2.3 Game Theory Used for Scheduling in Cloud 

Game Theory studies the balance when the decision-making bodies interact among 
each other under a related constraint. It solves an optimization problem of vectors 
which contains the target vector and the strategy vector. It can be divided into 
cooperative game and non-cooperative game based on the behavior of the decision 
makers. It is originally used in economics, but recently its approaches are always 
successfully used in resource allocations in cloud environment [14].  

The scheduling problems of a distributed environment involve complicated 
optimization requirements. In solving this kind of problems, traditional methods usually 
combine the individual optimizations as a solution. And it only cares about the 
individual rather than the entirety. 

For a scheduling system under a Hadoop environment, the multi-level nature as well 
as the diversity of the optimization objectives makes a game theory method obviously 
better to solve this problem. 

3 Problem Statement  

After researching, we found the Hadoop scheduling environment has two natures below: 
1. Multi-Level: We can schedule the Hadoop jobs by 3 levels: user level, job level 

and task level. 
2. Consuming of multi-resource: Running a Hadoop job will consume 3 kinds of 

resources: CPU, Disk IO and Network IO. Other scheduling strategies only consider the 
allocation of CPU resources. But through some benchmarks we found that sometimes 
the random Disk IO will give a greater impact for the completion time of a job. 

So we hope to design a scheduling algorithm, which can meet the following 
characteristics: 
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1. It can meet the needs of multi-level: a) take care of the fairness among each user. 
b) let the “short jobs” run earlier. c) avoid the jobs from waiting too long. b) and c) 
want to reduce the average waiting time of each jobs, especially the average waiting 
time per-user.  

2. It should improve the utilization of the multi type of resources. 
3. It has to find a balance point between “transfer” and “wait”.  
To fit the purpose above, we design a 2 level scheduling algorithm: Level 1 Jobs 

Scheduling (with the information of user) and Level 2 Tasks Scheduling. The 
scheduling schema is shown as Fig. 1. Then we will present these 2 level scheduling 
algorithms respectively. 

Fig. 1 Scheduling Schema 

3.1 Level 1: Jobs Scheduling (with the Information of User) 

To simplify the problem we choose to add the user information into the definition of a 
job, so that we do not have to consider about the user level scheduling separately. 

Definition 1: A MapReduce Job Queue (Q): 
A Q(j!, j!,… , j!) is a vector which represents the set of submitted jobs. j! means each 

job in Q. 
Let q=|Q|, which means the number of jobs in the current Q. 
Let j!_user be the user who submits  j!.  
Q dynamically changes when a job comes to Q or when a job leaves Q. 
Definition 2: 
Total User Time: the sum of the time of all the jobs submitted by this user. 
Wait Time: the time that the job has waited after it was submitted 
Estimate Exec Time: the execution time of the job estimated by the cost model 
Total User Time can represent the occupancy time of the cluster by a given user. 

Wait Time is used to reduce the waiting time of the jobs. Estimate Exec Time is 
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predicted by a cost model presented in [10].  
According to the analysis above, we can give the definition of the “bid” given by a 

job to represent its priority of being executed.  
Definition 3: Bid 

 bid =    !
!"#$%&'()!*+(

× !"#$%#&'
!"#$%&#'!(')*$%'

  
!

!"#$%&'()!*+(
 is designed for the fairness. And  !"#$%#&'

!"#$%&#'!(')*$%'
  is used to reduce the 

average waiting time of the jobs. 
Game 1: Hadoop Job Scheduling Game 
The target of this game is to choose a suitable job to be executed next.  
To achieve this target we choose the bidding model, which is a dynamic non-

cooperative game. There is a competitive relationship among the jobs. They compete 
for resources. Every job wants to be executed as soon as possible. The bid defined in 
definition 3 can reflect the trend of our scheduling purpose. So we let each job in Q 
submit a bid to JobTracker according to definition 3, then the job with the highest bid 
will be sent to the cluster and run. 

3.2 Level 2: Tasks Scheduling 

Tasks scheduling is a cooperative game because we want to make the execution cost of 
the job minimum which means we should take the tasks as an entirety. This doesn’t 
mean to make each task run as soon as they can. Our goal is to reduce the global 
complete cost of all the map tasks. This cost means the total cost this set of map tasks 
occupy the cluster. So to reduce this cost means to reduce the depletion of the resources 
of the cluster. 

To achieve this goal, we give some definitions below: 
Definition 4: A MapReduce Job (MR-Job) 
A MR-Job is a pair (T, N) where T is a set of tasks, and N is a set of nodes. 
Let m=|T|, and n=|N|, which means, m is the number of tasks in T, and n is the 

number of nodes in N. 
Definition 5: A tasks scheduling strategy (TSS) 
A TSS is a function X: T→N that assigns each task to a node n. 
We define also a x!", if X(j)=i, then x!"=1, if not, x!"=0. Which means, if assign task j 

to node i, then x!"=1, if not, x!"=0. 
Definition 6: A Cost Function C: 
Let C(i, j)=(C, D, N) be the cost vector of running task j on node i, with C, D, N 

represent the cost of CPU, Disk I/O, and Network I/O separately. 
Let c!" = c×C + d×D + n×N, where c, d, n are the weights of C, D, N. These 
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weights will vary because of the type of the jobs. If the job is compute-intensive, then c 
will be bigger. If it is a data parsing job, then d and n will be bigger. 

We define c!" the cost of running task j on node i, we call the matrix c!" a cost matrix. 
And the cost matrix c!" is called the parameter matrix for Hungarian Method. 

Definition 7: Total cost under a TSS: 
 Z = c!"×x!"!

!!!
!
!!!   

Game 2: Hadoop Tasks Scheduling Game 
In this game we have to find an assignment for map tasks to minimize the execution 

cost of the entire map tasks. This is an assignment problem, which is a static 
cooperative game. In an assignment problem, we have m tasks, and they will be 
completed by n nodes. And we have to find a task scheduling scheme that let the total 
cost be the least. If we transfer this target into mathematics, it means to find a X (t), that 
minimize Z, where X(t) can represent an assignment. 

We choose Hungarian Method [11] to solve this problem. And we translate this 
problem into mathematics: 

 min z = c!"x!"!
!!!

!
!!!                                     (1) 

 𝑠. 𝑡 = x!"!
!!! = 1            i = 1,2,… , n                               (2) 

 x!"!
!!! = 1            j = 1,2,… , n                       (3) 
  x!" = 0  or  1                                       (4) 

(2) means each task can only be executed by one node. And (3) means each node 
can only execute one task at one time. These 2 equations are the constraints for this 
assignment problem. 

Theorem 1: 
According to the nature of the matrix multiplication, z won't change if we plus or 

minus a constant to all the elements in a row or in a column of c!". Which means that 
there won't be any differences to the assignment if we plus or minus a same constant to 
a row or a column in c!". 

PROOF. 
Suppose c!"! = c!" ± (u! + v!), then,  

 Z! = c!"! x!"!
!!!

!
!!! = c!"x!"!

!!!
!
!!! ± u!x!" + v!x!"!

!!!
!
!!!

!
!!!

!
!!!  

x!" is a vector with the value of 0 or 1, so the above equation is equal to: 
 c!"x!"!

!!!
!
!!! ± u! +!

!!! v!!
!!! = c!"x!"!

!!!
!
!!! + K = Z + K  

K is a constant. So the x!" which makes Z reach the minimum will also makes Z! 
minimum.∎ 

The Hungarian Method depends on this theorem. So we can solve the problem as 
follows: 

Step 1: Input a cost matrix c!" 
Step 2: Find the smallest values in each column, for each element in this column, 
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minus this smallest value, repeat for each row. 
Step 3: Check in each column, mark the first 0 in this column, the other 0 will be 

deleted 
Step 4: Check whether the number of 0 is equal to that of tasks. If equal, break. If 

not, use the least lines to cover all the 0, then delete the elements being covered. 
Step 5: Find the minimum value in the elements non-deleted, and for all the rows 

which contains the elements non-deleted, minus this minimum. If there comes a 
negative element, plus this element with this minimum. A new matrix will be formed 
after doing this. Come to step 3 for this new matrix. 

4 Experiment Stuying 

We intend to use simulations to verify the effectiveness of our algorithm.  
Average Waiting Time per User: 
We generate a set of jobs, with the number from 30 to 200, and schedule them with 

both FIFO policy and BID policy proposed in our paper.  Then we record the average 
waiting time per job as Fig. 2:  

 
Fig. 2 compare the bid method with FIFO for 

the average waiting time per job 

 

Fig. 3 compare the bid method with FIFO for 
the average waiting time per user 

And the average waiting time per user is shown as Fig. 3: 
From these 2 figures we can see that both the average time per job and per use of 

Bid method given in this paper are shorter than those of FIFO. And with the increase in 
the numbers of jobs, this gap becomes more and more obvious. 

Data Locality Rate: 
We suppose that the number of tasks run locally is l, and the number of tasks run 

remotely is r. Then we can define a data locality rate as: DLR =    !
!
. This rate describes 

the degree of tasks’ localization. In this simulation we suppose there are 3 replicas for 
each input split, stored in 3 nodes separately. We execute 5 tasks and 10 tasks 
separately in the cluster with the number of nodes varies from 10 to 60. Compared with 
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the scheduling strategy in Hadoop by default, we can see the data locality rate as Fig. 4: 

 
Fig. 4 Data Locality Rate 

We can see the method we proposed is much better than that by default in Hadoop, 
especially when the number of nodes is much bigger than that of tasks. 

Global Tasks Complete Time: 
In this part, we want to measure the global complete time of all the tasks for a job 

which contains 5 map tasks (Fig. 5), and another job which contains 10 map tasks (Fig. 
6). 

 
Fig. 5 Global complete time for 5 tasks 

 
Fig. 6 Global complete time for 10 tasks 

From these 2 pictures we can tell that our method will take much less time for 
complete all the tasks than the scheduling strategy by default. 

5 Conclution 

Through analyzing the performance of the scheduler model of Hadoop, we find some 
problems and give a game theory based method to solve these problems. We divide a 
Hadoop scheduling problem into 2 steps----job level and task level. For the job level 
scheduling we choose to use a bid model, and we define this bid in order to guarantee 
the fairness and reduce the average waiting time. Then for tasks level, we change this 
problem into an assignment problem and use the Hungarian Method to optimize this 
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problem. At last we do some simulation experiences to prove the efficiency of our 
algorithm. 

For the further research, we want to improve the performance of our scheduling 
strategy in the following aspects: 1. Prove this algorithm in mathematics in using the 
methods of game theory. 2. Do experiences in a real cluster. 3. Automatically give the 
weights of the costs. Etc. 
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