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Motivations

−div(α∇u) = f

We want a computational effort as small as possible.
Related to the discrete system size, i.e. the number of degrees of
freedom:

- Reduce the number of operations per degree of freedom: FMG,
- Reduce the number of degrees of freedom: mesh adaptation.
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Talk contents
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Applications with adaptive FMG
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I. Hessian-based mesh adaptation

Mesh parameterization

Metric M: M(x) = Rt(x , y)

(
1

∆ξ2(x ,y)
0

0 1
∆η2(x ,y)

)
R(x , y)

with:
∆ξ(x , y) = mesh size in the first characteristic direction
∆η(x , y) = mesh size in the second characteristic direction
R(x , y) = matrix of eigenvectors.

Number of vertices: C(M) =

∫
Ω

√
det(M(x)) dx

Riemannian distance between two points:

dist(a,b) = lengthM(ab) =

∫ 1

0

√
tabM(a + θab)ab dθ

Which mesh?

HM =unit mesh for M ⇔ ∀ edge e ∈ HM, lengthM(e) ≈ 1
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Hessian-based mesh adaptation

Minimize the interpolation error:

εM = ||u − ΠMu|| ≈ trace(M−
1
2 (x) |Hu(x)|M−

1
2 (x))

under the constraint: C(M) =
∫

Ω

√
det(ML1(x)) dx = N.

The optimal metric field ML1(x) is given by:

ML1,opt(x) = K1(1, uM)

K1(k , uM) = DL1det(|kHuM(x)|)
−1
5 |kHuM(x)|

DL1 = N
2
3 (

∫
Ω

det(|kHuM(x)|)
2
5 dx)

−2
3 .

The Hessian based method doesn’t take into account the
PDE.

G. Brèthes, O. Allain, and A. Dervieux. A mesh-adaptative metric-based
Full-Multigrid for the Poisson problem. to appear in I.J. Numer. Meth.
Fluids, 2015. pre-print:
http://www-sop.inria.fr/members/Gautier.Brethes/article-ADA-MG.pdf
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II.Goal-Oriented mesh adaptation

The goal-oriented formulation is probably the first formulation in
which the mesh adaptation problem is completely set on a
mathematical form:
Find the mesh which minimizes the error committed on a specified
scalar output:

min
M

δjgoal(M) = |(g ,ΠMu − uM)| , C(M) = N.

A. LOSEILLE, A. DERVIEUX and F. ALAUZET, Fully anisotropic

goal-oriented mesh adaptation for 3D steady Euler equations, Journal of

Computational Physics, Vol. 229, Issue 8, pp. 2866-2897, 2010.
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Goal-Oriented mesh adaptation

δjgoal(M) = |(g ,ΠMu − uM)|.

After introduction of an adjoint

δjgoal(M) ≈ a(ΠMu − uM, u
∗
g ,M)

with a(., .) = (α∇.,∇.)
Expression ΠMu − uM needs be replaced by an estimate:

a(ΠMu − uM, ϕ) � K

∫
Ω
|ρ(H(ϕ)| |u − ΠMu|dx

|δjgoal(M)| � K

∫
Ω
|ρ(H(u∗g ,M)| |u − ΠMu|dx

by freezing ρ(H(u∗g ,M) with respect to M. Then:

Mopt,goal = K1(|ρ(H(u∗g ,M))|, uM).
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Goal-Oriented mesh adaptation

Step 1:

a(ψ, u∗g ,M) = |(g , ψ)|

Step 2:
Mopt,goal = K1(|ρ(H(u∗g ,M))|, uM)

But:
- only features influencing the functional will be refined,
- then we have lost the convergence to the PDE solution!
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III. Norm-Oriented mesh adaptation

Minimize:
j(M) = ||ΠMu − uM||2L2(Ω)

Term ΠMu − uM is approximated by a corrector u′DeC obtained by
coarse-fine Defect Correction:

uh = A−1
h fh , uh/2 = A−1

h/2fh/2 ⇒ uh/2 − uh ≈
3

4
(u − uh)

Computing A−1
h/2fh/2 is expensive, define instead:

u′DeC = A−1
h

4

3
Rh/2→h(Ah/2Ph→h/2uh − fh/2)

where the residual transfer Rh/2→h accumulates on coarse grid
vertices the values at fine vertices in neighboring coarse elements
multiplied with barycentric weights and Ph→h/2 linearly
interpolates coarse values on fine mesh.
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Norm-Oriented Adaptation

Functional:

j(M) ≈ |u′DeC |2 ≈ (u′DeC ,ΠMu − uM)

We freeze g = u′DeC and get a goal-oriented formulation.
Adjoint:

a(ψ, u∗DeC ) = (u′DeC , ψ)

Like with the goal-oriented:

Mopt,norm = K1(|ρ(H(u∗DeC ))|, uM)
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Norm-Oriented Adaptation

Step 1:

u′DeC = A−1
h

4

3
Rh/2→h(Ah/2Ph→h/2uh − fh/2)

Step 2:

a(ψ, u∗DeC ) = (ψ, u′DeC )

Step 3:
Mopt,norm = K1(|ρ(H(u∗DeC ))|, uM)

Convergence to the PDE solution
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Three metrics

K1(k , uM) = DL1det(|kHuM(x)|)
−1
5 |kHuM(x)|

DL1 = N
2
3 (

∫
Ω

det(|kHuM(x)|)
2
5 dx)

−2
3 .

Hessian-based adaptation

ML1,opt(x) = K1(1, uM)

Goal-Oriented adaptation

Mopt,goal = K1(|ρ(H(u∗g ,M))|, uM).

Norm-Oriented adaptation

Mopt,norm = K1(|ρ(H(u∗DeC ))|, uM)
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IV. Applications : Adaptive FMG

The mesh adaptation loop is
applied as an
intermediate loop
between:

- the FMG phases loop and
- the MG cycling.
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Numerical examples: test case 1

Boundary layer

−∆u = rhs with rhs(x , y) = 1
α2(exp(1/α)−1)

exp(x/α) ; α = 0.03.

Uniform Hessian-based Norm-oriented
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Numerical examples: test case 1

Boundary layer
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Numerical examples: test case 2

One circle-shaped quasi-discontinuity

We solve −∆u = rhs where u(x , y) = 1
2 [1 + 2ψ

ε + 1
Π sin( 2Πψ

ε )]

with ψ = R −
√

(xC − x)2 + (yC − y)2 and ε = 0.02.

Uniform Norm-oriented
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Numerical examples: test case 2

One circle-shaped quasi-discontinuity
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Numerical examples: test case 3

Three circle-shaped quasi-discontinuities

We solve −∆u = rhs where ui (x , y) = 1
2 [1 + 2ψi

ε + 1
Π sin( 2Πψi

ε )]

with ψi = R −
√

(xCi
− x)2 + (yCi

− y)2 and ε = 0.02.

Uniform Norm-oriented
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Numerical examples: test case 3

Three circle-shaped quasi-discontinuities
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Extension to the Euler system of CFD

We consider the steady Euler system
F (W )x + G (W )y + H(W )z = 0 with W = (ρ, ρU, ρE )
Approximated with an upwing finite-volume on unstructured mesh.

The corrector is obtained by Defect Correction.

A detailed a priori analysis combined with corrector and adjoint is
used for norm-oriented mesh adaptation.
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A test case: high-lift geometry

First AIAA CFD High Lift Prediction Workshop (Configuration 1).

Three adaptation strategies are compared:
- the first one controls the interpolation error on the density,
velocity and pressure in L1 norm,
- the second controls the interpolation error on the Mach number
while
- the third one is based on the norm-oriented approach and
controls the norm of the approximation error ||W −Wh||L2 .

For each case, five adaptations at fixed complexity are performed
for a total of 20 adaptations with the following complexities:
160 000, 320 000, 640 000, 1 000 000.
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L1p Hessian-based adaptation for minimizing the L1 norm of the
L1p interpolation error on the density, velocity and pressure.

There is not much mesh concentration on the body in the wake of
wing. The wake after the body is refined.
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L1p Hessian-based adaptation for minimizing the interpolation
L1p error on Mach number.

There is a better mesh concentration on the body in the wake of
wing. The wake after the body is further refined.
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L1p Adaptation for minimizing the norm ||W −Wh||L2 with the
L1p novel norm oriented approach.

Near-body mesh is finer and show much more details on the
aircraft body.
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Conclusions

Hessian-based adaptation

Goal-Oriented adaptation

Norm-Oriented adaptation

Combination of FMG and anisotropic mesh adaptation.

Novel Norm-Oriented adaptation more robust than
Hessian-based adaptation.
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