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1 Introduction

The aim of WP6 in Exciting is to assemble an isogeometric toolbox to support isogeometric
analysis and shape optimization. This report corresponds to the second software delivery
of the toolbox, which is named the first version of an isogeometric analysis framework
library.

In isogeometric analysis the spline space is used as the function space in numerical
analysis. Thus, the toolbox needs to support functionality to exploit the spline space.
This was already the case for the first software delivery.

The second delivery is more demanding with respect to functionality. It is, however, not
obvious how to define a general Isogeometric Programming Interface (that is a toolbox)
up front or at an early stage of our development. We are not sure about the spline spaces
to use etc. So this is a challenging task and we need to define a toolbox that fits our
current needs without, hopefully, not closing the future. There are also two very different
approaches to solving PDEs in the Exciting project; boundary and volume methods.

In Exciting we are considering Isogeometric models, that is, the same functions used
in geometry is used in the approximation of the solution fields of the PDE. This is at the
patch level. Further, the global solution field has to be associated with an appropriate
function space, which is one with sufficient regularity. This is especially important for
multi-patch models which are probably the rule rather than the exception. In many (our)
cases the regularity of the solution space can be inherited from the geometry space. Thus
the definition of a global model is crucial.

The toolbox contains structure and functionality for representation and creation of iso-
geometric models. An isogeometric model consists of one or more NURBS surfaces in
the 2D case and NURBS volumes in 3D. In the previous delivery, the focus was models
with only one surface or volume, i.e. a single block model. This delivery concentrates on
multiblock models. A number of different model views and representations are extensively
discussed in the report thus providing the global model view. Block structured meshes are
described in section 2. In order to represent multiblock models topological information is
required. An overview of the various realizations of multiblock models described in this
document is given in section 3. Topology structures for surface models and volume models
are described in section 4 while a data structure tailored towards isogeometric models is
the topic of section 5.

Section 6 gives an overview of non-topological extensions to the toolbox which is related
to GoTools. Section 7 presents some parameterization tools for the computational domain,
section 8 focuses on the use of simplex splines for isogeometric analysis, and a tool for local
refinement of spline patches is presented in section 9. Tools for visualization of the model
and simulation results are presented in section 10.

An overview of the structure of current version of the toolbox is given in section 11. In
section 12 a summary of the current toolbox and some plans for the further development
are presented. Finally, a number of applications of the isogeometric toolbox are presented
to show that Milestone 6.1 is reached.
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2 Block structured meshes in an isogeometric context

A structured mesh has regular connectivity, that is each point in the mesh has the same
number of neighbours. In an unstructured mesh the points have different numbers of
neighbours. A spline surface or volume is structured. However, a complex geometrical
shape in 2D or 3D is not necessarily easily mapped to a rectangular shape. If the physical
region is broken into pieces, each piece can have a relatively simple mapping into a regular
grid. These pieces can then be fitted with some degree of continuity in to the physical
domain. Each piece of the domain is named a block and the total domain is described by
a multiblock mesh.

In an isogeometric context each block is represented by a NURBS surface or volume
depending on the spatial dimension. Adjacent blocks meet with C0 continuity. The blocks
meet in a corner-to-corner configuration, i.e. T-joints are not allowed. This configuration is
not required in order to construct a watertight model with spline blocks since the requested
continuity can be achieved with more topological flexibility. However, in order to maintain
the same continuity for the corresponding solution field, additional constraints must be
added in order to solve the differential equation. Thus, the increased modelling flexibility
are easily outweighed by the increased solver complexity.

Adjacent NURBS blocks are expected to have corresponding coefficients. As for the
corner-to-corner condition, this is not due to spline constraints, but to simplicity for the
solver. This constraint may be loosened in later versions of the toolbox as it can lead to
high data size for complex models.

The NURBS surfaces and volumes in an isogeometric model are non-trimmed, but
may have degeneracies. This facilitates the representation of domains without corners, or
domains with less than 4 or 8 corners for surfaces or volumes, respectively. In a degenerate
block corner, the Jacobian corresponding to the problem at hand, becomes zero. Thus,
isogeometric analysis must be prepared for such configurations.

A block structured isogeometric model may be constructed using toolbox functionality.
The toolbox contains some facilities for multiblock construction, and single blocks can with
care be constructed in such a manner that they fit into a multiblock setting. Examples of
construction methods are:

• Sweep a multiblock surface model to create a multiblock volume model.

• Mirror a multiblock surface model with respect to a given plane, and create a multi-
block volume model by lofting.

• Fill a hole in a multiblock model by a Coons patch construction. The method ap-
plies both to surfaces and volumes. An entity created as a Coons patch may be
preprocessed by a smoothing step where the boundary is kept fixed. This will lead
to a better distribution of coefficients internal in the object. Section 6.2 gives some
details on this topic.

• Fetch one boundary curve or surface from an already constructed block and use this
boundary entity in the construction of a new block by for instance lofting or sweep.

• Split a trimmed surface into a number of 4-sided trimmed surfaces and approximate
each such surface by a spline surface maintaining the C0 or G1 continuity between the
surfaces. In Figure 8 the first part of this process is illustrated, see also section 6.1.
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Figure 1: A non-manifold face set

More detailed descriptions of the construction methods in the toolbox can be found in the
toolbox repository.

3 Model overview

In the following sections, the realization of a multiblock model in the GoTools environment
is explained. We describe three model implementations:

1. A CAD type boundary representation model for face sets and solids, this model is
described in section 4.1.

2. Trivariate composite models where each entity is a volume with a geometric descrip-
tion, this model is described in section 4.2.

3. A representation of a multiblock model where each block is a bivariate or trivariate
NURBS object. This representation is tailored towards isogeometric use and the
model also contains information about solution fields corresponding to the geometry
entity. The model is described in section 5.

The two first models are general in respect to the geometry entities not being restricted to
be of a particular type, and the purpose of the model is not defined. In an isogeometric
setting, a geometry model should be created within the framework of model 1 and 2. Then
the user should ensure that the objects in the model satisfy the requirements for a block
structured isogeometric model as described in section 2. Functionality exist to perform
these checks. Finally, the initial model is used as input to the isogeometric model (item 3
listed above).

4 Topology

Topological structures stores adjacency between geometric entities and provide the possi-
bility to achieve a united treatment of composite entities.

5



1:n

1:n

1:n

1:n

Manifold Brep Solid

Shell

Face Surface

Loop

Edge

Vertex

Curve

(Body)

(ftEdge)

(ParamSurface)

(ParamCurve)

(ftSurface)

(SurfaceModel)

(Loop)

(Vertex)
Point

(Point)

2

0:1

Figure 2: Topology structures for a boundary represented solid, corresponding GoTools
names are shown in brackets

Topological structures may be manifold or non-manifold. A manifold is a topological
space where at each point there is a neighbourhood that is topologically the same as
the open unit ball in the relevant dimension. This implies that the configuration shown in
Figure 1 cannot occur in a manifold face set. Only two faces can meet in an edge, otherwise
the model is not homeomorphic to a disc along the edge. The collection of all boundary
surfaces to all blocks in a multiblock volume model will give rise to a non-manifold model,
while the outer boundary of the volume model normally will be manifold.

4.1 Face sets

Block structured isogeometric models in 2D, face sets in 3D and boundary represented
solids in 3D may all be represented using the topology structures in Figure 2. A solid
is surrounded by a set of faces collected in a shell. Normally, the solid has only an outer
boundary, but it may also have voids. Thus, the solid may point to more than one shell. The
solid is implicitly represented by its boundaries, and thus have no geometric description.
A face set or an isogeometric model in 2D is represented by one shell. The solid entity is
not used. In GoTools the shell is represented by the class SurfaceModel and the solid by
the class Body.

A shell consist of a number of faces, in GoTools represented by the class ftSurface. The
prefix ft has historical reasons. The face has a geometrical description represented by a
parametric surface. The GoTools class is called ParamSurface and it may be a NURBS
surface, an elementary surface or a trimmed version thereof.

A face is limited by one or more loops. The first loop corresponds to the boundary
of the parametric surface or the outer trimming loop. Subsequent loops represent inner
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Figure 3: A boundary represented solid

trimming curves. A non-trimmed NURBS surface has only one loop.
A loop is described by a closed sequence of edges. In GoTools, the edge is represented

by the class ftEdge. ftEdge is a half edge. An edge can be seen to represent a boundary
between two faces and should thus contain information about the spacial representation
of this boundary, the two faces involved and often the parameter representation of the
boundary in these faces. A half edge contains information related only to one face. It
holds a face pointer, the parameter curve corresponding to this face and a spatial curve.
It also has information about the other half edge representing the boundary. The other
half edge may or may not point to the same representation of the spatial curve. Different
representations of the same spatial curves may lead to gaps between surfaces. The two
half edges meeting in an edge have opposite orientation. A half edge structure can only
represent manifold models as no more than two faces can meet in an edge.

Figure 3 shows a boundary represented solid. The faces are light blue, the edges are
blue and the vertices are red. Each edge is represented by two half edges, i.e. ftEdge. The
half edges join into loops, and the arrows indicate the orientation of the half edges for two
adjacent faces.

The edge has a geometric representation as the boundary curve or trimming curve corre-
sponding to a surface. This curve will, in GoTools, often be of type CurveOnSurface which
has information about the boundary curve, the corresponding surface and the parameter
representation of this curve in the surface. Thus, the relation between an edge and a face
is repeated for the geometric entities.

While GoTools expects a one-to-one match between a face and the corresponding surface,
several edges may correspond to one geometric curve. This is represented by letting the
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edge be limited by curve parameters.
GoTools is to some extent parameter space based. The parameter curve corresponding

to an edge is used for tessellation, point-in-face queries and several other operations. Thus,
if the parameter representation of an edge is not given initially, which is often the case
for analytic geometries, it will at some stage be computed. An approximation to the true
curve will be found.

An edge is limited by to vertices described by points in the geometry space. The vertices
should be the spatial representations of the curve parameters limiting the edge. The two
half edges representing one edge is limited by the same vertex entities, and the vertex has
information about the relation between half edges. A number of edges meet in a vertex.

The data structure is equipped with a number of back pointers not shown in Figure 2.
The face points to the solid, the loop and half edges point to the corresponding face and
the vertex points to adjacent edges. The half edges have double pointers around the loop
which correspond to the information given in the loop. Furthermore, there is a certain
duplication in topology and geometry information. Thus, fetching information is fast and
easy due to information redundancy, but changes in the structure must be done carefully
to maintain information consistency.

SurfaceModel is a topological shell, but also an entity that allows a unified treatment of
a face set. As such, the class belongs to a hierarchy called composite model. It is possible to
compute for instance a bounding box, a closest point, the tessellation or some intersections
for a SurfaceModel as one operation. More information about the SurfaceModel operations
can be found in the documentation in the toolbox repository.

4.2 Volume models

The topology structures required to describe a block structured mesh in 3D where each
block is a NURBS volume, is different from the ones described in the previous section. The
boundary surfaces of a volume model do not define a manifold surface model, and going
from a boundary represented solid to sets of trivariate solids requires some extensions to
the data structures.

A multiblock trivariate model is represented as a VolumeModel. The class VolumeModel
is, like SurfaceModel, a composite model. The model consists of a number of ftVolumes.
An ftVolume is a solid with geometry description. The geometry is represented as a
ParamVolume. Currently this means a NURBS volume, but the data structure does also
allow other volume types.

An ftVolume is surrounded by a number of shells just like Body in section 4.1. In fact,
ftVolume inherits Body. Currently, a volume will have only an outer boundary, but the
implementation allows also inner trimming.

The shells are represented as SurfaceModel as before, and each shell is a collection
of faces. Now, there is more than one solid, and the boundary faces of one solid will
normally coincide with boundary faces of other solids. Thus, adjacency information must
be represented at the face level. The solution is to extend ftSurface to become a half face
in the same manner as ftEdge is a half edge.

An ftSurface is equipped with a back pointer to the Body and a pointer to the cor-
responding half face (ftSurface) on the adjacent Body. This provides a representation
of adjacency. Unlike ftEdge, no dedicated parameter information for the half face exists
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Figure 4: Topology structures for a volume model

in ftSurface. However, the geometry representation of the face will normally hold this
information.

The volume model is not a manifold model. More than two half edges meet in common
boundaries. This is represented by introducing the concept of a radial edge. The radial
edge does not keep any edge information. It is simply a collection of coincident ftEdges.
In GoTools the radial edge class is named EdgeVertex. The name indicates that the object
is an edge that in some sense behaves like a vertex.

In Figure 5, two simple blocks lie adjacent and the half faces related to the common
boundary is shown in red and blue. They coincide, but are shown with some distance for
visualization purposes. Pointers are set between these faces to represent the adjacency.
At the boundary curves of the common face, two pairs of half edges, one for each block,
coincides. This pairs are collected in an EdgeVertex entity.

The radial edge is added to the structure in addition to the manifold half edge. The
half edge is used in the topology structures of the shells which are assumed to be manifold.
In addition, the half edge is extended with a pointer to a radial edge. If the shell is a
part of a volume model where adjacency between volumes are found, information about all
coincident edges is stored in the radial edge instance while the half edge stores connectivity
related to the boundary faces of one single volume.

A restriction to the current structure is that the object in Figure 6 cannot be represented
as shown in the picture. The boundary surfaces corresponding to one volume are expected
to be represented in the half edge based topology structure. However, along the seem of
the rotational volume elements, there are two adjacent boundary surfaces. This implies
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Figure 5: A volume model with two blocks and common boundary surfaces emphasized

Figure 6: A volume model, the emphasized curves show boundaries

that 4 edges meet at two of the boundaries of the seem surface. This is not a manifold
construction. Thus, the boundary surface corresponding to the rotational volumes cannot
be represented in the half edge structure. The current solution is to split the rotational
entities into two. A more long term solution would be to extend the data structure and
use the radial edge entity also for the topology of the shells surrounding volume elements.

4.3 Shell models and mixed descriptions

Thin plate objects are often described as shell models. This enables lower computation
times for numerical analysis even though extra degrees of freedom lead to additional com-
plexity. Models combining volumetric entities with shells are also used to improve the
analysis performance. In both cases, non-manifold surface models appear. Also for isoge-
ometric analysis, such models can be relevant, but they are currently not handled by the
topology structures in GoTools.
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5 Isogeometric block structured models

A block structured model contains information about each block and the relation between
adjacent blocks. This can be modelled using a SurfaceModel or a VolumeModel depending
on the spatial dimension. In an isogeometric context, these concepts have, however, two
drawbacks:

• An isogeometric model is a collection of isogometric blocks where each block consists
of a NURBS surface or volume. A surface or volume model, as described in section 4,
is a collection of surfaces or volumes. Currently the volume is a NURBS volume, but
the possible volume types will be extended in the future. The surface can be an
elementary surface or a NURBS surface. It can be trimmed or not. Moreover, it is
no restriction on these models with respect to the object configuration. A corner-to-
corner configuration may be represented, but more general configurations may also be
represented. The SurfaceModel and VolumeModel concepts are, in fact, too flexible
for being ideal for an isogeometric block structured model.

• Isogeometric analysis is concerned with a partial differential equation solved by finite
element analysis, a physical domain represented by a geometric model and a solution
to the equation. Both the domain and the solution field is represented in the same
function space, namely the spline space. Moreover, the spline spaces of the geometry
entity and one or more solutions related to that entity is the same up to a possible
varying degree of refinement. Thus, a data structure that is able to combine a geom-
etry entity and one or more corresponding solutions including boundary conditions,
seems preferable.

The SurfaceModel and VolumeModel classes are not obsolete. They are valuable during
model build where an extended flexibility with regard to geometry types and topological
configuration is needed, but a more tailor-made data structure is feasible for the analysis
phase.

The isogeometric model module is designed to host a data structure for isogeometric
block structured surface- and volume models. The physical domain is modelled using the
functionality related to SurfaceModel and VolumeModel and the domain is represented
using these classes. At the finishing stage of the modelling phase it is ensured that all geo-
metric entities are described as NURBS entities and that the corner-to-corner configuration
condition is satisfied. Then the model is ready for being translated into an isogeometric
model.

Figure 7 illustrates the data structure of the isogeometric model. A model can be
of either surface or volume type, i.e. an IsogeometricSfModel entity or an Isogeomet-
ricVolModel entity. A model entity points to at least one block being represented by the
classes IsogeometricSfBlock and IsogeometricVolBloc. The module takes a SurfaceModel
or a VolumeModel entity as input, respectively, and distributes the content to a number
of IsogeometricSfBlock or IsogeometricVolBlock entities. The blocks knows about their
neighbours, at most 4 for surfaces and at most 6 for volumes. A block contains infor-
mation about a number of solution entities related to the part of the physical domain
represented in the block. Normally, there is one solution associated with a block, but
it may be more. A solution has knowledge about boundary conditions and point wise
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boundary conditions. These conditions are assigned to the models, and they are further
distributed to the appropriate block and solution.

The various classes belonging to the isogeometric model module provide an interface to
the spline objects that is convenient when used in the setting of isogeometric analysis. It
is for instance possible to:

• Refine a solution space or perform degree elevation on it

• Fetch information about neighbouring blocks given one block

• Ensure that all adjacent solution spaces share the same spline space to get corre-
spondence of coefficients at the boundary

• Fetch information about coefficient correspondence at block boundaries, using the
local enumeration of coefficients within a block

• Fetch information about coefficients belonging to the model boundaries, again using
local enumeration

• Store boundary conditions along with the corresponding geometry model for easy
access to the condition

• Assign Dirichlet boundary conditions to the model boundary representing the bound-
ary condition in the spline space of the corresponding blocks

• Perform pre evaluation, store the result and return the information as appropriate in
order to utilize the tensor product structure of spline surfaces and volumes

• Update the description of the physical domain when appropriate in for instance fluid
structure interaction

Further some support functions may be beneficial; we need to build a global system
of equations. We need to iterate over the model to enable this. We need to be able to
map local variables to global variables in the algebraic system of equations. Numerical
quadrature is at the core of this assembly process. The isogometric model keeps track of
correspondence of local variables, i.e. spline coefficients, but do not perform any global
enumeration. Numerical quadrature is supported by pre evaluation.

The isogeometric model structure is relatively static. Limited geometric updates can be
performed from the application. No topological changes are allowed. The solutions fields
are refined whenever the geometry entities are refined, but the geometry entities are refined
with respect to the solution entities only when this is issued from the application.

The isogeometric model module was intended to be a part of the current deliverable,
but this part of the deliverable has to be postponed slightly. The module will be added to
the toolbox as soon as it is completed.

6 Extensions to the geometry tools

One emphasis of this delivery is multiblock models. This extensions mainly involves topol-
ogy structures. However, also the geometry tools are extended. The remainder of this
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Figure 8: Replacing a surface with outer and inner trimming with a number of four-sided
surfaces

section focus on extensions related to GoTools while the sections 7 to 10 focus on exten-
sions to other parts of the isogeometric toolbox.

The previous version of the toolbox contained functionality to approximate an evaluator
based curve or set of curves by one or more C1 continuous spline curves. This functionality
has been extended with two new evaluator based curves

• An intersection curve represented as two corresponding curve-on-surface curves

• The projection of a 3D curve onto a 3D surface

The class AdaptCurve represents an alternative method to approximate an evaluator based
curve. While the previous method uses an Hermite approach, this class performs least
squares approximation with smoothing. This method allows for higher order continuity in
the resulting curve.

A method for smoothing of a set of curves is included. Each curve may interpolate
or approximate a number of points and derivatives in addition to smoothing. Moreover,
constraints can be set to ensure equality of crossing curves in certain curve parameters.
This functionality is implemented in the class SmoothCurveSet.

The class ApproxSurf aims at approximating a set of scattered points with a spline
surface. In this delivery, the class has been extended with the possibility to refine the
spline space if this is required to meet a given approximation accuracy.

6.1 Translating a trimmed face into a number of 4-sided surfaces

A multiblock isogeometric model consists of non-trimmed NURBS blocks. A CAD model
is to a large extent a collection of trimmed surfaces. Moreover, trimming is a convenient
tool in the design process. Thus, a tool that can translate trimmed surfaces into a set of
non-trimmed NURBS surfaces is highly convenient. Moreover, a multiblock surface model
may be used as a building block in the process of creating a multiblock volume model.

Figure 8 shows a trimmed surface being translated into a set of 4-sided surfaces. The
procedure is as follows:

• Identify all holes
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• Sort the holes. In this case the midpoint of the large hole is taken as midpoint of the
model and the other holes are sorted radially around this midpoint

• Isolate the smaller holes by intersecting the face with planes through the midpoint of
the large hole, and reorganize the initial trimming curve and the intersection curves
to create new trimming loops. The position of the planes are set in order to split
between the holes, but also to place the hole in the vicinity of midpoint of a sub
surface.

• Split sub surfaces with holes by intersecting with planes from corner vertices to the
mid point of the current hole.

Throughout the process, the topology information of the face set is maintained in order
to avoid creating T-junctions when surfaces are divided. Whenever possible, we choose to
split through existing vertices.

Given a set of 4-sided trimmed surface, each surface may be replaced by a non-trimmed
spline surface. The boundaries are interpolated using a Coons patch approach and the
inner of the surfaces are approximated by adapting the new surfaces to a dense point set
sampled from the original surface. In this context least squares approximation with a
smoothing term is applied. Parameter iteration with respect to the point set is performed.
C0 continuity of the resulting surface set is guaranteed by this approach.

6.2 Volume fairing

Volume fairing is an extension to surface fairing which already is a part of GoTools and
thereby the isogeometric toolbox, see [13]. The idea is to minimize a functional consisting
of a number of terms, in the volume case:

• Least squares approximation

• A smoothing term

• Periodicity in one or two parameter directions

Let the NURBS volume be

V (u, v, w) =
∑

i,j,k

Vi,j,kci,j,k

where ci,j,k are the volume coefficients and

Vi,j,k =
Bi,d1,u(u)Bj,d2,v(v)Bk,d3,w(w)

∑

i′,j′,k′ hi′,j′,k′Bi′,d1,u(u)Bj′,d2,v(v)Bk′,d3,w(w)

is the rational basis functions corresponding to the coefficients. Here B denote the B-
spline basis functions in each parameter direction, dr is the polynomial degree in the three
parameter directions and h are the rational weights. In the polynomial case all weights are
equal to 1.
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Figure 9: Directions of differentiation in the domain and NURBS volume

Figure 9 illustrates the mapping from the trivariate parameter domain to the volume.
At each point in the volume, the volume is differentiated in all directions on the unit sphere.

δnV

(δs)n
=

dn

(dt)n
(t→ V ((u, v, w) + ts))t=0

=
∑

n1+n2+n3=n

(

n

n1, n2, n3

)

δnV

(δu)n1(δv)n2(δwn3)
(u, v, w)

n1 > 0, n2 > 0, n3 > 0. These derivatives are then integrated around the unit sphere and
over the domain of the current volume:

En =

∫

u

∫

v

∫

w

∫∫

s∈S2

(

δnV

(δs)n
(u, v, w)

)2

ds du dv dw

The final smoothing term becomes

E =

3
∑

n=1

ωnEn

where ωn, n = 1, 2, 3 are weights associated to the smoothing of the expression in the
corresponding derivative.

The smoothing term may be added a least squares term and a periodicity term to define
the final fairness functional. The periodicity term minimizes discontinuities of derivaties
up to second order across the seem. A number of coefficients at the boundary are normally
kept fixed while the coefficients in the inner of the volume are modified to improve the
parameterization of the volume.

Figure 10 shows the mean curvature of an iso surface in a spline volume before and after
smoothing.
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Figure 10: Volume smoothing

7 Parameterization tools for computational domain

In finite element analysis (FEA), mesh generation, which generates discrete geometry as
computational domain from given CAD object, is a key and the most time-consuming
step. In IGA framework, parameterization of computational domain, which corresponds
to the mesh generation in FEA, also has some impact on analysis result and efficiency.
Moreover, in FEA, one can perform arbitrary refinements on the computational mesh, but
in IGA using tensor product B-splines, the refinement is not arbitrary, we can only perform
refinement operations in u direction and v direction by knot insertion or degree evaluation.
Hence, parameterization of computational domain is more important in IGA.

The parameterization of a computational domain in IGA is determined by control points,
knot vectors and the degrees of B-spline objects. For IGA problem of two dimension, the
knot vectors and the degree of computational domain are determined by the given boundary
curves. Hence, finding the optimal placement of inner control points for a specified physical
problem, is a key issue in IGA. A basic requirement of resulting parameterization for IGA
is that it doesn’t have self-intersections. In this section, we first propose a linear and
easy-to-test sufficient condition for injectivity of planar B-spline parameterization. Then
we show that different parameterization of computational domain has different impact on
the simulation results in IGA. For problems with exact solutions, a shape optimization
method is proposed to obtain an optimal parameterization of computational domain. For
problems with unknown exact solutions, we proposed a harmonic parameterization method
to construct the inner control points. Some examples and comparisons are presented based
on the heat conduction problem to show the effectiveness of the proposed method.

7.1 Easy-to-check tools for injectivity parameterization

The main idea of the isogeometric approach is to use the same representation for the
geometry and the physical solutions we are interested in. Schematically, the geometry Ω
involved in the physical problem can be a surface or a volume in a three-dimensional space
R

3. Let us call x = (x, y, z) the coordinates associated to this space. In our case, this
geometry will be represented by a parameterization σ for a domain P of the parameter
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space. Let us call u the coordinates of this parameter domain, which could be of dimension
2 for a surface or 3 for a volume. This parameterization will be given by B-spline functions
with knots in P and control points in R

3.
The concept of isogeometry consists in representing the physical quantities Φ ∈ R

p on
the geometry Ω using the same type of B-spline representation as for the geometry Ω. In
other words, given a point x = σ(u) ∈ Ω with u ∈ P, we associate to it the physical
quantities Φ(u) where Φ(u) is a B-spline function with nodes in P and control points in
R

p. This means that the map x ∈ Ω 7→ Φ ∈ R
p is defined implicitly as x 7→ Φ ◦ σ−1(x).

Consequently, the framework of isogeometry is thus valid when the parameterization σ
of the geometry is injective (or bijective on its image). We are going to describe sufficient
and easy-to-check conditions for the injectivity of σ. We will consider this problem in
the context of finding a “good” parameterization of a domain when its boundary is given.
In [4], a general sufficient condition is proposed for injective parameterization.
Proposition.1 Suppose that σ is a C1 parameterization from a compact domain P ⊂ R

n

with a connected boundary to a geometry Ω ⊂ R
n. If σ is injective on the boundary ∂P

of P and its Jacobian Jσ does not vanish on P, then σ is injective.
For a parameterization σ from [a, b] × [c, d] to Ω ⊂ R

2, we define the boundary curves
as the image of {a} × [c, d], {b}× [c, d], [a, b]×{c}, [a, b]× {b} by σ. We say that σ defines
a regular boundary if these curves do not intersect pairwise, except at their end points and
if they have no self-intersection.

As a consequence of the previous proposition, we get the following injectivity test for
standard B-spline tensor product parameterization of a planar domain.
Proposition.2 Let σ be a C1 parameterization from [a, b]× [c, d] to Ω ⊂ R

2 which defines
a regular boundary. If its Jacobian Jσ does not vanish on [a, b] × [c, d], then σ is injective.

These tests involve injectivity conditions on the boundary, which can be checked recur-
sively using the same techniques, non-intersection tests for boundary curves and surfaces
which are provided for instance by geometric (subdivision) algorithms and the local injec-
tivity condition corresponding to the non-vanishing of the Jacobian. This last condition
requires to test on all the domain Ω that the Jacobian does not vanish. Hereafter we
propose a sufficient and easy-to-test condition to ensure the local injectivity condition.

We consider first the case of a planar parameterization

σ : u ∈ P := [a, b] × [c, d] 7→ σ(u) :=
∑

0≤i≤l1,0≤j≤l2

ci,jNi,j(u),

where ci,j ∈ R
2 are the control points and Ni,j(u) are the B-spline basis functions. The

derivative of σ(u) with respect to u1 can be expressed in terms of the differences ∆1
i,j :=

ci+1,j − ci,j:

∂u1
σ(u) :=

∑

0≤i≤l1−1,0≤j≤l2

ω1
i,j∆

1
i,jN

1
i,j(u),

where N1
i,j is the B-spline basis function with one degree less in u1, ω

1
i,j is a positive factor.

We denote by C1(c) the convex cone of R
2 generated by the half rays R+ · ∆1

i,j.
Similarly, the derivative of σ(u) with respect to u2 can be expressed in terms of the

differences ∆2
i,j := ci,j+1 − ci,j:

∂u2
σ(u) :=

∑

0≤i≤l1−1,0≤j≤l2−1

ω2
i,j∆

2
i,jN

2
i,j(u),
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(a) transverse cone (b) non-transverse cone

Figure 11: Injectivity test by cones.

where N2
i,j is the B-spline basis with one degree less in u2, ω

2
i,j is a positive factor. We

denote by C2(c) the convex cone of R
2 generated by the half rays R+ · ∆2

i,j . If there exist
two opposite vectors, which are on a straight line, we define Ci(c) as a half-plane.

We say that two cones C1, C2 are transverse if R · C1 and R · C2 intersect only at {0}.
Theorem 1. Let σ be a B-spline parametrisation, which is at least C1 from P := [a, b] ×
[c, d] to Ω ⊂ R

2 given by the control points c. If the boundary curves do not intersect and
have no self-intersection point and the cones C1(c), C2(c) are transverse, then σ is injective
on P.
Proof. We check first that the transversality of the cones C1(c), C2(c) implies that the
Jacobian of σ is not vanishing. This Jacobian Jσ(u) is obtained by taking the determinant
|∂u1

σ, ∂u2
σ| which expands as

∑

0≤i≤l1−1,0≤j≤l2

∑

0≤i′≤l1−1,0≤j′≤l2−1

|∆1
i,j,∆

2
i′,j′|ω

1
i,jω

2
i′,j′N

1
i,j(u)N2

i′,j′(u).

Since the cone C1(c) and C2(c) are transverse, the determinants |∆1
i,j ,∆

2
i′,j′| have a constant

sign for ∆1
i,j ∈ C1(c), ∆2

i′,j′ ∈ C2(c). As the basis functions and the factors are positive, the
Jacobian Jσ(u) cannot vanish at u ∈ G, except if all the N1

i,j(u)N2
i′,j′(u) vanish, which is

not possible.
The map σ is locally injective on P. By Proposition 7.1, we deduce that σ is globally

injective on P. �

Figure 11 shows two examples of the injectivity testing method. In Figure 11 (a),
it satisfies the sufficient condition in our method, but it does not satisfy the sufficient
condition of the method proposed in [8]. Hence, our method is an improved version of the
method presented in [8].

7.1.1 Linear constraint for injectivity.

This condition can be used to devise an algorithm which constructs an injective pa-
rameterization for given boundary control points. We first consider the planar case.
Given four planar boundary curves described by the controls points ci,0, ci,l2, c0,j, cl1,j,

with 0 ≤ i ≤ l1, 0 ≤ j ≤ l2, we define the boundary cone C0
1(c) (resp. C0

2(c)) as the cone
generated by the vectors ∆1

i,0(c), ∆1
i,l2

(c) for 0 ≤ i ≤ l1 − 1 (resp. ∆2
0,j(c), ∆2

l2,j(c) for
0 ≤ j ≤ l2 − 1). We assume that these boundary curves form a regular boundary and
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that the two boundary cones C0
1(c), C0

2(c) are transverse. R · C0
1(c) is the cone defined by

F+
1 (C0

1(c)) ≤ 0, F−
1 (C0

1(c)) ≤ 0, where F+
1 and F−

1 are the linear equations defining the
boundary of R · C0

1(c). We defined similarly F+
2 , F

−
2 for C0

2(c).
To apply Proposition 7.1, the inner control points ci,j should satisfy the following linear

constraints for injective parameterization:

{

F+
1 (ci+1,j − ci,j) ≤ 0, F−

1 (ci+1,j − ci,j) ≤ 0, 0 ≤ i < l1, 0 < j < l2
F+

2 (ci,j+1 − ci,j) ≤ 0, F−
2 (ci,j+1 − ci,j) ≤ 0, 0 < i < l1, 0 ≤ j < l2.

(1)

The linear condition in (1) is a rather restrictive condition, and it is sufficient to require
that the two cones constructed from the first derivative vectors are separated. Inspired
from [9], the following constraints are proposed as alternative condition

{

F+
2 (ci+1,j − ci,j) + F−

1 (ci+1,j − ci,j) ≤ 0, F−
2 (ci+1,j − ci,j) + F+

1 (ci+1,j − ci,j) ≤ 0,
F+

2 (ci,j+1 − ci,j) + F−
1 (ci,j+1 − ci,j) ≤ 0, F−

2 (ci,j+1 − ci,j) + F+
1 (ci,j+1 − ci,j) ≤ 0,

where 0 < i < l1, 0 ≤ j < l2.
Remarks 1. For 3D case, the 3D convex cones can be also constructed from the derivative
vectors in three parametric directions. The difference is that the cross product condition
should be considered in the injectivity condition as in [8]. These conditions provide an
easy-to-check method for the injectivity of a parameterization.

7.2 Optimal analysis-ware parameterization of computational do-

main

7.2.1 Problem statement

The problem studied in this section can be stated as follows: given four coplanar boundary
B-spline curves, find the inner control points such that the parameterization of a compu-
tational domain is optimal for an IGA problem with known exact solution. The extension
of the proposed method to isogeometric problems without known exact solution is one of
our ongoing work.

7.2.2 Shape optimization method

The shape optimization problem consists in finding the shape which is optimal in that it
minimizes a certain cost function while satisfying given constraints. The purpose of shape
optimization in CAE is to optimize the CAD object for some physical problem, and the
design variables are the control points of the CAD object. For 2D isogeometric shape
optimization problem, the design variables are the control points of boundary B-spline
curves.

Inspired from the idea of shape optimization, in order to obtain optimal parameteriza-
tion of computational domain, we should let the inner control points, rather than boundary
control points, be the design variables for the shape optimization, and find the best place-
ment of inner control points to make the value of a cost function as small as possible.
Initial construction of inner control points.

As the shape optimization problem, we need to construct an initial placement of inner
control points as starting point in the iteration process. We rely on the discrete Coons
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method presented in [7] to generate inner control points as initial value from boundary
control points.

Given the boundary control points P 0,j,Pn,j,P i,0,P i,m, i = 0, . . . , n, j = 0, . . . , m, the
inner control points P i,j (i = 1, . . . , n − 1, j = 1, . . . , m − 1) can be constructed by the
discrete Coons method as follows:

P i,j = (1 −
i

n
)P0,j +

i

n
Pn,j + (1 −

j

m
)P i,0 +

j

m
P i,m

−[1 −
i

n

i

n
]

(

P0,0 P0,m

Pn,0 Pn,m

) (

1 − j

m
j

m

)

Remarks 1. Since the sum of the coefficients equals 1, the resulting inner control points lie
in the convex hull of the boundary control points.
Remarks 2. For some given boundary curves, this construction may cause some self-
intersections, and lead to an improper parameterization for IGA. We use the linear injectiv-
ity condition proposed in Section 7.1.1 to check the injectivity of initial parameterization.
If it does not satisfy the condition, the linear programming method is used to produce
another initial parameterization.
Optimization method. In the proposed approach, we minimize the error computed from
the IGA solution and the exact solution, by moving inner control points of the computa-
tional domain. Therefore, we consider as optimization variables the coordinates of the
inner control points and as cost function the error of the IGA solution. The optimiza-
tion algorithm used for this study is a classical steepest-descent method in conjunction
with a back-tracking line-search. For this exercise, the gradient of the cost function is
approximated using a centered finite-differencing scheme.

Each iteration k of the optimization algorithm can be summarized as follows, starting
from a point xk in the variable space:

1. Evaluation of perturbed points xk + ǫek

2. Estimation of the gradient ∇f(xk) by finite-difference

3. Define search direction dk = −∇f(xk)

4. Line search : find ρ such as f(xk + ρdk) < f(xk)

These steps are carried out until a stopping criterion is satisfied.

7.2.3 Examples and comparison

In this section, we will present some parameterization results and compare them with the
initial solution with respect to the following heat conduction problem :

Given a domain Ω with Γ = ∂ΩD ∪ ∂ΩN , we consider the following thermal conduction
problem:

∇(κ(x)∇T (x)) = f(x) in Ω

T (x) = T0(x) on ∂ΩD

κ(x)
∂T

∂n
(x) = Φ0(x) on ∂ΩN ,

(2)
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where x are the Cartesian coordinates, T represents the temperature field and κ the thermal
conductivity. Dirichlet and Neumann boundary conditions are applied on ∂ΩD and ∂ΩN

respectively, T0 and Φ0 being the imposed temperature and thermal flux (n unit vector
normal to the boundary). f is a user-defined function that allows to generate problems with
an analytical solution, by adding a source term to the classical heat conduction equation.
Example I . The fist example is for the parameterization of the domain

Ω(x, y) = {(x, y)| − 1 ≤ y ≤ x2, 0 ≤ x ≤ 1}

by Bézier surface with degree 3×6. The parabola is represented by degenerate cubic Bézier
curve. For the problem with boundary condition T 0(x ) = 0 and Φ0(x ) = 0 in (2), we can
construct an exact solution T (x, y) as follows

T (x, y) = sin(π(y − x2)) sin(πx) sin(πy)

The initial placement of inner control points is produced by the discrete Coons method
as shown in Figure 12 (a). The final parameterization results and some comparisons are
also shown in Figure 12. We can find that there are some self-intersections on the control
mesh in Figure 12 (b). However, there is no self-intersection on the final parameterization
as shown in Figure 12 (c). During the optimization, the initial error is reduced by 14.65%
as shown in Figure 12 (g). The error history during refinement operation is presented in
Figure 12 (h).
Example II. The second example is for the parameterization of the domain Ω = [0, 3] ×
[0, 6] by cubic B-spline surface with knot vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} in the u direction
and knot vector {0, 0, 0, 0, 1, 1, 1, 1} in the v direction. We test these two parameterizations
on the heat conduction problem (2) with source term

f (x, y) = −
4

9
π2 sin(

πx

3
) sin(

πy

3
).

For this problem with boundary condition T 0(x ) = 0 and Φ0(x ) = 0, the exact solution
over the computational domain [0, 6] × [0, 6] is

T (x, y) = 2 sin(
πx

3
) sin(

πy

3
).

The initial placement of inner control points is non-uniform as shown in Figure 13 (a),
and the final parameterization result and some comparison are also shown in Figure 13.
During the optimization, the initial error is reduced by 3.31% as shown in Figure 13 (g).
The error history during refinement operation is presented in Figure 13 (h).

More details and examples can be checked in [6].

7.3 Variational harmonic spline method for parameterization of

computational domain

Injectivity is a basic requirement in parameterization of computational domain for IGA
problems. In this section, a variational harmonic spline method is proposed to obtain
injective parameterization with high quality.
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(a) initial control mesh
and surface

(b) final control mesh
and surface

(c) final
parameterization

(d) color map and
iso-temperature lines of
initial solution surface

(e) color map and
iso-temperature lines of
final solution surface

(f) color map of exact
solution surface

(g) error history during the
optimization process

(h) error history during the
refinement process

Figure 12: Example I.
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(a) initial control mesh and surface (b) color map of initial solution
surface

(c) final control mesh and surface (d) color map and iso-temperature
lines of final solution surface

(e) final parameterization (f) color map of exact solution
surface

(g) error history during the
optimization process

(h) error history during the
refinement process

Figure 13: Example II.
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In the field of mesh generation in FEA, a general method is based on partial differential
equations. The grid points are the solution of an elliptic partial differential equation sys-
tem with Dirichlet boundary conditions on all boundaries. There are several advantages in
elliptic mesh generation. The theory of partial differential equations guarantees that the
mapping between physical and transformed regions will be one-to-one. Another important
property is the inherent smoothness in the solution of elliptic systems. A disadvantage of
elliptic method is that there will be some non-uniform grid elements near convex (concave)
parts of the boundary. Different from the previous elliptic mesh generation method, the
proposed method focus on isogeometric version( the coordinates of interior control points
are unknown variables), and converts the elliptic PDE into a nonlinear constraint optimiza-
tion problem. A regular term is integrated into the optimization formulation to achieve
more uniform grid.

Consider a simply connected bounded domain S in two dimensional space with Carte-
sian coordinates (x; y)T . Suppose that S is bounded by four B-spline curves S(ξ, 0),S(ξ, 1),
S(1, η),S(0, η). The parametric domain P of S should be a rectangular in two dimensional
space with coordinates ξ, η, which is determined by the knot vector of boundary B-spline
curves in ξ and η direction. The mapping from parametric space P to physical space S can
be described as a B-spline surface S(ξ, η) = (x(ξ, η), y(ξ, η)) =

∑n
i=0

∑m
j=0N

p
i (ξ)N q

j (η)Pi,j

with given four B-spline curves as boundaries. Np
i (ξ) and N

q
j (η) are B-spline basis func-

tions, Pi,j are control points. Assume that this mapping is prescribed which maps the
boundary of P one-to-one on the boundary of S. The parameterization problem of compu-
tational domain can be stated as: given four boundary B-spline curves, find the placement
of inner control points such that the resulted planar B-spline surface is a good computa-
tional domain for isogeometric analysis.

Harmonic mapping, which is a one-to-one transformation both for 2D and 3D regions,
will be used in our parameterization method. Let σ : S 7→ P be a harmonic mapping from
S to P. That is,

∆ξ(x, y) = ξxx + ξyy = 0

∆η(x, y) = ηxx + ηyy = 0

By chain rules, we have

dξ = ξxdx+ ξydy = ξx(xξdξ + xηdη) + ξy(yξdξ + yηdη) (3)

dη = ηxdx+ ηydy = ηx(xξdξ + xηdη) + ηy(yξdξ + yηdη) (4)

From (3) and (4), we have

ξxxξ + ξyyξ = ηxxη + ηyyη = 1

ξxxη + ξyyη = ηxxξ + ηyyξ = 0

By solving above two linear systems, we obtain

ξx =
yη

J
, ξy =

−xη

J
(5)

and

ηx =
−yξ

J
, ηy =

xξ

J
(6)
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where
J = xξyη − xηyξ

is Jacobian of transformation from P to S.
From (5)(6)and ∂

∂x
= ξx

∂
∂ξ

, ∂
∂y

= ξy
∂
∂ξ

, we have

J∆ξ(x, y) = J
∂

∂x
ξx + J

∂

∂y
ξy

= (Jξx
∂

∂ξ
+ Jηx

∂

∂η
)ξx + (Jξy

∂

∂ξ
+ Jηy

∂

∂η
)ξy

= (yη

∂

∂ξ
− yξ

∂

∂η
)(
yξ

J
) + (−xη

∂

∂ξ
+ xξ

∂

∂η
)(
−xη

y
) = 0

After differential computation, we have

−yηLx+ xηLy = 0 (7)

where

L = (x2
η + y2

η)
∂2

∂ξ2
− 2(xξxη + yξyη)

∂2

∂ξη
+ (x2

ξ + y2
ξ )
∂2

∂η2

Similarly, from J∆η(x, y) = 0, we have

yξLx− xξLy = 0 (8)

Then from (7) and(8), we have

Lx(ξ, η) = Ly(ξ, η) = 0

that is,
‖ LS(ξ, η) ‖2= (Lx)2 + (Ly)2 = 0

This is a nonlinear system in terms of inner control points. The final grid obtained by this
method usually has non-uniform elements near convex(concave) boundary region. In order
to solve this problem, we consider the uniform issues and minimize the following energy
function,

∫∫

λ1(‖ Sξξ ‖
2 + ‖ Sηη ‖2 +2 ‖ Sξη ‖2) + λ2(‖ Sξ ‖

2 + ‖ Sη ‖2)dudv (9)

Then by adding the harmonic mapping term into (9), we obtain a new energy function for
parameterization of computational domain

∫∫

‖ LS(ξ, η) ‖2 +λ1(‖ Sξξ ‖
2 + ‖ Sηη ‖2 +2 ‖ Sξη ‖2) + λ2(‖ Sξ ‖

2 + ‖ Sη ‖2)dudv

where λ1 and λ2 are positive weights to control the final parameterization results.
The Discrete Coons method in (2) is used to construct initial inner control points, and

the Steepest Descent method is employed to minimize the energy function. Figure 14(a)(b)
present the initial parameterization and Figure 14(c)(d) show the final parameterization
using the variational harmonic spline method.
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(a) initial coons parameterization (b) initial iso-parametric net

(c) final variational harmonic
parameterization

(d) final iso-parametric net

Figure 14: Examples of variational harmonic parameterization.

8 Simplex spline tools for isogeometric analysis

DMS-splines, introduced by Dahmen, Micchelli and Seidel in [1], are based on the simplex
splines.

A simplex spline M(x|x0, . . . , xn+3) of degree n is a function of x ∈ R
2 over the half

open convex hull of a point set V = [x0, . . . , xn+2), depending on the n + 3 knots xi ∈
R

2, i = 0, 1, . . . , n + 2. The basis function of simplex splines can be defined recursively as
follows. When n = 0,

M(x|x0, . . . , xn+2)

=

{ 1
|Area

R2(x0,...,x2)|
, x ∈ [x0, . . . , x2),

0, otherwise.

When n > 0, select three points W = [xk0
, xk1

, xk2
] from V, such that W is affine inde-

pendent, then

M(x|x0, . . . , xn+2) =

2
∑

j=0

λj(x|W)M(x|V\{xkj
}),

where
2

∑

j=0

λj(x|W) = 1 and
2

∑

j=0

λj(x|W)xkj
= x. In fact, λj(x|W) are the barycentric

coordinates of x with respect to W.

27



In the following, we will introduce the definition of DMS-spline surface: let Ω be an
arbitrary proper triangulation of R

2 or some bounded domain D ⊂ R
2. The proper trian-

gulation means that every pair of triangle domain are disjoint, or share exactly one vertex
or one edge. Next, with every vertex x of Ω, we associate a cloud of knots [t0, t1, · · · , tn],
where t0 = t. For every triangleI = (p, q, r), we require

• all the triangles [pi, qj, rk] with i+ j + k ≤ n are non-degenerate.
• the set

Z = interior(
⋂

i+j+k≤n

[pi, qj , rk])

satisfies
Z 6= ∅

• if I has a boundary edge, the knots associated to the boundary edge must lie outside
of Ω.

Then DMS-spline basis function N I
β(u) is defined by means of simplex spline M(u|VI

β)
as

N I
β(u) = |d(pi, qj , rk)|M(u|VI

β).

where β is the 3-tuple(i, j, k, l),

VI
β = [p0, · · · ,pi, q0, · · · , qj, r0, · · · , rk].

d(pi,qj, rk) is the area of (pi, qj , rk) .
A degree n DMS-spline surface S(u) over Ω is then defined as

S(u) =
∑

I∈Ω

∑

|β|

cI
βN

I
β (u).

where cI
β ∈ R

3 are the control points.
DMS-spline surface has the following properties which are similar with the properties

of B-spline surfaces.

• affine invariance

• convex hull property

• local support

• DMS-spline surfaces are Cn−1 continuous if the knots are in general position, where
n is the degree of DMS-spline.

The directional derivative of S(u) with respect to a vector v can be calculated as follows:

DvS(u) = n
∑

I∈Ω

∑

|β|−1

čI
β(v)N I

β(u)

and

čI
β(v) =

2
∑

j=0

cI
β+ejλj(v|[(pi, qj , rk)])

Important functionality is listed below:
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• evaluation algorithm for DMS-spline surface

• compute the derivatives of DMS-spline surface

• insert new knots into the knot clouds of the surface and adapt the surface description
accordingly

• refinement operation for DMS-spline surface

For above functionality, we have developed a plugin called “QSimplexSplinePlugin” in
AXEL. For example, the class “QSimplexsplineSurface” is defined as follows,

class QSimplexsplineSurface : public QCADSurface

{

Q_OBJECT

public:

QSimplexsplineSurface(void) ;

~QSimplexsplineSurface(void) { /* freeSurf in glue */ }

void draw(void) ;

void drawWithNames(void) ;

void draw_patch(int k, int res); //draw k-th patch with "res" samplings

void draw_control(int k);//draw control mesh of k-th patch

public slots:

QPoint3f * eval(float u, float v) ;

QPoint3f * evalFu(float u, float v) ;

QPoint3f * evalFv(float u, float v) ;

double3 BasisFunction(int index, int j, float u, float v);

void compute(void) ;

public :

int degree ; //!< Degree of simplex spline surface

int number ; //!< Number of control points

int res; //resolution

protected:

static int id_ ;

bool dirty;

} ;

Figure 15 presents two examples of simplex spline surfaces and their parametric domain.

9 PHT spline tools for isogeometric analysis

A new type of piecewise bi-cubic polynomial splines called PHT spline was introduced
over hierarchical T-meshes in [10]. It can be extended easily to high-degree cases. The
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(a) simplex spline surface I (b) simplex spline domain I

(c) simplex spline surface II (d) simplex spline domain II

Figure 15: Examples of simplex spline surface and parametric domain.

basis functions of PHT-splines have many important properties as B-splines, such as non-
negativity, local support and partition of unity. Compared with Sederberg’s T-splines [11],
they have two main advantages : first, the basis functions are polynomials rather than
rational functions, which makes the computation efficient; second, they have nice local
refinement operation by using cross insertion. In addition, there is a fast conversion between
NURBS and PHT-splines, while the conversion between NURBS and T-splines is more
complicated.

9.1 Hierarchical T-mesh

A T-mesh is basically a rectangular partition of a domain that allows T-junctions. The
end points of each grid line in the T-mesh must be on two other grid lines, and each cell
or facet in the grid must be a rectangle. A grid point in a T-mesh is also called a vertex of
the T-mesh. If a vertex is on the boundary of the domain, then is called a boundary vertex.
Otherwise, it is called an interior vertex. Interior vertices have two types. One is called
crossing vertex, the other one is called T-vertex respectively. The line segment connecting
two adjacent vertices on a grid line is called an edge of the T-mesh.

A hierarchical T-mesh is a special type of T-mesh with a level structure. It is defined in
a recursive fashion. One generally starts from a tensor-product mesh (level 0). From level
k to level k + 1, one subdivide a cell at level k into four sub cells which are cells at level
k+. For simplicity, we subdivide each cell by connecting the middle points of the opposite
edges with two straight lines. Figure 16 gives an example of hierarchical T-mesh.
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(a) first level (b) second level (c) third level

Figure 16: Hierarchical T-mesh.

9.2 PHT-spline space and basis function construction

Let Ω ∈ R be a rectangular domain with boundary ∂Ω in R2 . Denote by T = ∪K a
hierarchical T-mesh over domain Ω, where Ks are cells of the mesh, then define

S(m,n, α, β, T ) := {s(x) ∈ Cα,β(Ω)|s(x) ∈ Pmn over any element K ∈ T },

where Pmn is the space of all the bivariate polynomials with degree (m,n), and C denotes
the space of all the bivariate functions which are continuous in with order (α, β). And
S(m,n, α, β, T ) is therefore a spline space over T . In [17], a dimension formula for the
spline space S(m,n, α, β, T ), with m ≥ 2α + 1 and n ≥ 2β + 1, is provided. Here, we set
m = n = 3, α = β = 1, so that

dimS(3, 3, 1, 1, T ) = 4(Vb + V+)

where Vb and V+ represent the number of boundary and crossing vertices, respectively.
From the dimension formula, we can see that each basis vertex (boundary vertex or crossing
vertex) is associated with four basis functions, which can be constructed in a hierarchical
manner.

For the initial level (level 0, denoted as T0), the standard bi-cubic tensor-product B-
splines are used as basis functions. For simplicity, we set the initial mesh to be uniform
rectangular gird. Suppose the grid is [x1, x2, x3, ..., xs] × [y1, y2, y3, ..., yt], and there are
four basis functions to be defined on any vertex (xi, yj), since all the vertices are ei-
ther crossing vertices or boundary vertices. Each basis function at (xi, yj) has support
[xi−1, xi+1] × [yj−1, yj+1]. These four basis functions are defined to be B-spline basis func-
tions with knots [xi−1, xi−1, xi, xi, xi+1] × [yj−1, yj−1, yj, yj, yj+1], [xi−1, xi, xi, xi+1, xi+1] ×
[yj−1, yj−1, yj, yj, yj+1], [xi−1, xi, xi, xi+1, xi+1] ×[yj−1, yj, yj, yj+1, yj+1], [xi−1, xi−1, xi, xi, xi+1]×
[yj−1, yj, yj, yj+1, yj+1], respectively, such that their function values and derivatives vanish
outside [xi−1, xi+1] × [yj−1, yj+1].

We now proceed to the mesh refinement of T0. We denote the T-mesh at level k as Tk.
Inductively, suppose that the basis functions bkj , j = 1, ..., dk, on Tk have been constructed,
the basis functions on Tk+1 can then be constructed from two sources: some from the
modifications of the old basis functions on Tk, and others from the new basis functions
associated with the new basis vertices of Tk+1. Notice the fact that a basis function can
be represented by specifying its 16 Bézier ordinates (coefficients) in every cell within the
support of the basis function. When a cell is refined by adding a cross vertex, the cell
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(a) boundary B-spline surface (b) solution field

Figure 17: 3D colormap.

is subdivided into four sub cells. Each sub cell supports the original basis function, and
there are 16 Bézier ordinates on it. After this subdivision, the basis function remains the
same, only that it is defined on the refined mesh. By adding a cross vertex, we get 5 new
vertices, some of which are new basis vertices. Then we have to reset all the associated
Bézier ordinates associated with the new basis vertices to zero.Other than the modification
of old basis functions, there are some new basis vertices. These new basis vertices may be
crossing vertices; or may be some T-vertices from the mesh of the previous level, which
become basis vertices due to the addition of cross points to the neighbouring cells. For
these kind of basis vertices, we simply build basis functions over their support cells as in
the initial level. One may check [10] for more details on the construction of basis functions.

10 Visualization tools for isogeometric model and re-

sults

From the idea of isogeometry, in 2D isogeometric analysis, the solution field is represented
by B-spline surface with 3D control points; similarly, for 3D isogeometric analysis , B-
spline volume with k-D control points is used to represent the solution field, where k is the
number of kind of unknown solution variables.

Visualization of isogeometric model and results is an important issue in the isogeometric
toolbox. For isogeometric model, we can use AXEL as an interface for visualization, which
has been described in WP-6-2. For the visualization of analysis results, the color-map and
iso-value objects are used.

10.1 Color map tools

In order to visualize the analysis results in user-interface, a kind of unknown solution field
of specified physical simulation problem, can be represented by color-map tools(also known
as pseudo-coloring). This involves assigning a different color to each value in the functions
range, so that color visually conveys numeric information. For points in the domain other
than the input grid points, the function can be interpolated, and the resulting scalar can
be used with the color map.
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A C++ class named ”QHSVcolormap” is added to convert the solution value into HSV or
RGB color information. The following code shows how to construct and add the colormap
into the object list.

// define surfaceColorMap by QBSpineSurface "solsurf"

QSurfaceColorMap *colormap = new QSurfaceColorMap(solsurf);

// add QSurfaceColorMap into QViewer

ObjectManager::instance()->addObject(colormap) ;

For B-spline volume with 4D control points, we have a similar class:

class QBSplineVolume4f : public QParametricVolume

{

Q_OBJECT

public:

QBSplineVolume4f(void) ;

~QBSplineVolume4f(void) { /* freeSurf in glue */ }

void draw(void) ;

void drawWithNames(void) ;

public slots:

QPoint4f * eval(float u, float v, float w) ;

float umin(void) { return knots1[0] ; }

float umax(void) { return knots1[number1+order1-1] ; }

float vmin(void) { return knots2[0] ; }

float vmax(void) { return knots2[number2+order2-1] ; }

float wmin(void) { return knots3[0] ; }

float wmax(void) { return knots3[number3+order3-1] ; }

public slots :

void compute(void) ;

void push_point(QPoint4f * p) ;

void push_point(QPoint4f * p, int position) ;

void computeKnots1(void);

void computeKnots2(void);

void computeKnots3(void);

void computeMinMaxValue(void); // compute min and max value

QList<QPoint4f *> listSelectedControlPoints(void) ;

public :

float Valmin; //min value which will be shown by color information

float Valmax; //max value which will be shown by color information

bool uniform ;

int order1 ; //!< Order of volume in first parameter direction

int order2 ; //!< Order of volume in second parameter direction

int order3 ; //!< Order of volume in third parameter direction
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(a)3D solution field (b) interior view by clipping plane

Figure 18: Interior view by clipping plane.

(a)2D colormap and its iso-curves (b) iso-surfaces of colormap in
Fig.17(a)

Figure 19: Iso-value object.

int number1; //!< Number of coefficients in first parameter direction

int number2; //!< Number of coefficients in second parameter direction

int number3; //!< Number of coefficients in third parameter direction

double * knots1 ; //!< knot vector in first parameter direction

double * knots2 ; //!< knot vector in second parameter direction

double * knots3 ; //!< knot vector in third parameter direction

QList<QPoint4f *> points ; //list of control points

protected:

static int id_ ;

bool dirty ;

} ;

Figure 17 presents a 3D example using color map to represent the solution field.
Clipping plane, which is an kind of OpenGL tools, can be used for the visualization of

interior colormap in isogeometric solution volume. Figure 18 shows the clipping plane and
the corresponding interior colormap.
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10.2 Iso-value tools

Iso-value object has an implicit form to represent the solution part which has the same
solution values. It is an important tools for field visualization. The isosurface in 3D case
for a given value fTv is the set of all points in the domain for which the function has the
value fTv. Under a fairly common set of conditions this set is a surface or set of surfaces.
For 2D case, this concept reduces to an isocurve or isoline. The isocurve is the same thing
as a contour line in topographical maps. The isosurface is the 3-d analog of an isocurve.

The classical marching square/cube method is employed for rendering iso-value object
in our implementation. The following code shows the class of QIsovalueSurface.

class QIsovalueSurface : public QAxelObject

{

Q_OBJECT

public:

QIsovalueSurface(QBSplineVolume4f * vol, int sample) ;

~QIsovalueSurface(void) { delete vertices; delete colors; delete index; }

virtual void draw(void) ;

virtual void drawWithNames(void) ;

public:

void marching_cube(void);

void vMarchCubes(int cubeindex, float fTv); // compute iso-surface in "cubeindex"-th

cube for isovalue "fTv"

QBSplineVolume4f * vol;

int sample; //sample for computation

int isosample; // number of isosurface

float vmax;

float vmin;

QList<QCubeIGA *> cubes ;

float* vertices;

float* colors;

int * index;

protected:

static int id_ ;

HSVColor hsv_colormap;//draw color map

void getcolor(double c, float* mc);

} ;

Figure 19 presents 2D and 3D iso-value objects for visualization of solution field.

11 Toolbox modules

The current toolbox deliverable contains the following packages:

axel : Interface and object definition for software AXEL
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gotools : NURBS spline and geometry library

optimization : Isogeometric solver, optimizer and visualization tools

phtspline : PHT spline tools for isogeometric analysis

simplexspline : Simplex spline tools for isogeometric analysis

sisl : Complement for gotools

Axel is an algebraic-geometric modeler developed in GALAAD team in INRIA Sophia-
antipolis. It provides a unified framework for both the visualization and manipulation of
geometric objects with semi-algebraic representation, manipulating exact data to provide
certified results or computing with approximations in a robust way. The application is
designed to be either used stand alone or connected together with external tools and
therefore become a graphical front end. Its modular architecture using plugins makes easy
the wrapping of external libraries or the connection with other tools.

Much of the geometry related software are implemented as extensions to the background
software SISL and GoTools from SINTEF. The current toolbox deliverable in gotools con-
tains the functionality for:

• Spline space exploration

• Univariate, bivariate and trivariate geometry description, creation and operations
upon these entities

• Single block and multiblock models

The toolbox modules related to SISL and GoTools are:

sisl SINTEF’s spline library. It is partly replaced by GoTools, but act as a complement
whenever appropriate.

gotools-core Parametric curves and surfaces including construction methods and opera-
tions on the entities. Trimmed surfaces are included in the module.

trivariate Spline volume including some creation methods

igeslib Read from and write to iges format. Conversion between sisl and GoTools data
structures

compositemodel View a set of surfaces as one entity and perform operations on the
model. Represents an isogeometric model in 2D during the construction phase and
may represent it also in later phases.

trivariatemodel View a set of volumes as one entity and perform operations on the
model. Represents an isogeometric model in 3D during the construction phase and
may represent it also in later phases.

model toolbox Some functionality to modify a set of surfaces. Most important is replace-
ment of 4-sided trimmed surfaces by approximating non-trimmed spline surfaces.
This module will be improved and modified during the remainder of the Exciting
project, but the current version may still be useful.
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viewlib Viewer for curves and surfaces

The following GoTools modules are to some extend used by the main modules, but are
not seen as top level modules in an isogeometric context.

topology Structures for computing the topology of a surface model. The module is used
from compositemodel in adjacency analysis.

parametrization Parametrization of scattered data points.

implicitization Approximating spline curves and surfaces by implicit geometry.

intersection Intersections involving spline curves and surfaces, and surface self intersec-
tion.

ttl Triangulations

The module isogeometric model which is described in section 5 will also be added to
the toolbox.

A set of example programs are included in the GoTools toolbox modules. They are
placed in the examples folder of gotools-core and illustrate the use of selected functions.
More example programs will be added later.

All modules are equipped with doxygen documentation. The main GoTools toolbox
modules in isogeometric context do in addition have an overview documentation. The
document is placed in the doc folder for the relevant modules.

12 Toolbox development

The first version of the toolbox contained basic geometric support tools, see [14]. This
version was mostly adapted to single block models. In the new version, multiblock models
are handled although the specific data structures for multiblock models for isogeometric
analysis are postponed. These structures will be added to the toolbox within short time.

The geometry tools in the toolbox are also extended since the last deliverable as ex-
plained in the section 6 to 9. The visualization tools related to Axel are also extended.

The module model toolbox was described in the report corresponding to D6-1 [15]. This
module has tools to merge surface patches into larger spline surfaces and to improve tangent
plane continuity between adjacent surfaces. The report of D6-1 gives some background for
this functionality. The software in model toolbox is in a prototype stage. It has been used
in an isogeometric setting to approximate trimmed 4-sided surfaces by non-trimmed spline
surfaces. The experience shows that the tool is really useful, but that some improvements
is required to make it sufficiently flexible and stable. This will be a topic before the next
toolbox delivery.

The PHT-splines described in section 9 is a tool for local refinement of B-spline surfaces.
The work with local refinement will be continued.

The current toolbox contains a couple of solvers in the optimization module. These
solvers will be raised to a more visible level and more solvers will be added. This is
expected to give rise to a partly reorganization of the toolbox. The reorganization will not
affect the geometry tools.
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13 Application of the isogeometry toolbox for simu-

lation problems

Milestone 6.1 [15] addresses the use of the isogeometry toolbox for representative test cases.
Subsection 13.1 describes an isogeometric solver for heat conduction and how the toolbox
is used in this context. This solver is also a part of the toolbox and currently placed in the
optimization module.

Examples related to use of the toolbox in a structural solver are given in subsection 13.2
and in fluid structure interaction in subsection 13.3. Subsection 13.4 illustrates the use of
the toolbox in least squares fitting.

13.1 Isogeometric solver for heat conduction

The first solver in toolbox focus on the heat conduction problem in (2). According to a
classical variational approach, we seek for a solution T ∈ H1(Ω), such as T (x) = T0(x) on
∂ΩD and:

∫

Ω

∇(κ(x)∇T (x)) ψ(x) dΩ =

∫

Ω

f(x) ψ(x) dΩ ∀ψ ∈ H1
∂ΩD

(Ω), (10)

where ψ(x) are test functions. After integrating by parts and using boundary conditions,
we obtain:

−

∫

Ω

κ(x)∇T (x) ∇ψ(x) dΩ +

∫

∂ΩN

Φ0(x) ψ(x) dΓ =

∫

Ω

f(x) ψ(x) dΩ. (11)

According to the IGA paradigm, the temperature field is represented using B-spline
basis functions. For a 2D problem, we have:

T (ξ, η) =

ni
∑

i=1

nj
∑

j=1

Ñ
pi

i (ξ) Ñ
pj

j (η)Tij, (12)

where N̂i functions are B-Spline basis functions and u = (ξ, η) ∈ P are domain parameters.
Then, we define the test functions ψ(x) in the physical domain such as:

Nij(x) = Nij ◦ σ
−1(x, y) = Ñij(ξ, η) = Ñ

pi

i (ξ) Ñ
pj

j (η). (13)

where σ is the planar B-spline mapping from parametric domain P to physical domain Ω
as follows

σ(u) = σ(ξ, η) =

ni
∑

i=1

nj
∑

j=1

N
pi

i (ξ)N
pj

j (η) cij, (14)

The weak formulation Eq. 11 reads:

nk
∑

k=1

nl
∑

l=1

Tkl

∫

Ω

κ(x)∇Nkl(x) ∇Nij(x) dΩ =

∫

∂ΩN

Φ0(x) Nij(x) dΓ −

∫

Ω

f(x) Nij(x) dΩ.
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Figure 20: Interface for isogeometric solver in AXEL.

Finally, we obtain a linear system similar to that resulting from the classical finite-
element methods, with a matrix and a right-hand side defined as:

Mij,kl =

∫

Ω

κ(x)∇Nkl(x) ∇Nij(x) dΩ

=

∫

P

κ(T (u))∇uÑkl(u)B(u)TB(u) ∇uÑkl(u)J(u) dP

Sij =

∫

∂ΩN

Φ0(x) Nij(x) dΓ −

∫

Ω

f(x) Nij(x) dΩ

=

∫

∂PN

Φ0(T (u)) Ñkl(u)J(u) dΓ̃ −

∫

P

f(T (u)) Ñkl(u)J(u) dP.

(15)

where J is the Jacobian of the transformation, BK is the transposed of the inverse of
the Jacobian matrix. The above integrations are performed in the parameter space using
classical Gauss quadrature rules.

Starting from a planar B-spline surface as computational domain, a general framework
of an isogeometric solver for thermal conduction problem (2) has been implemented as
plugins in the AXEL platform [2], yielding a B-spline surface as solution field. This plugin
is written in C++ and QT, and has nice user-interface as shown in Figure 20. GoTools is
used to evaluate the basis functions and their derivatives. Visualization of analysis results
is done by the visualization tools in toolbox. Gauss-Seidel algorithm is employed to solve
the linear system. In order to improve the simulation results, refinement operation can be
performed for two parametric directions.

Additional details concerning the methods can be found in [3].

13.2 A structural solver

The application of work package 3 is car components and frames and in this context
an isogeometric structural solver is being developed. Report [12] describes this solver at
the stage of D3.2 and the problem formulation for isogeometric analysis related to linear
elasticity. In this report a comparison between the isogeometric solver and an isoparametric
FEM approach is made. The result is favorable for isogeometric analysis.
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Figure 21: Eigenvalue computations of a propeller blade

The solver is using the isogeometric toolbox for functionality related to geometry and
spline space exploration.

Figure 21 illustrates eigenvalue analysis for a propeller blade. Figure 22 shows von
Mises stress computation on a bent half cylinder. Both test cases are computed with the
structural solver.

13.3 A finite volume method applied on NURBS geometry for

FSI problems

In connection with WP4, a method for applying Finite Volume Method on NURBS geome-
try has been developed. The idea of this approach is to solve incompressible Navier-Stokes
equations on exact geometry for use in Fluid-Structure Interaction.

The idea in the modified Finite Volume Method is to transform the Navier-Stokes equa-
tion to the parametric space. The discretization of the domain being performed in FVM
is done in parameter space. A number of geometric quantities appear in the transformed
formulation. These are exactly computed using the isogeometric toolbox.

Figure 23 shows the mesh of a 2D example structure and fluid. The initial shape is a
bent pipe with circular behaviour. This example is fetched from the presentation given by
Christoph Heinrich in 7th International Conference on Curves and Surfaces held in Avignon
in June 2010. Figure 24 shows how a 3 refinements of the initial mesh still maintain the
exact continuity between the fluid and the structure. The boundary between the fluid and
the structure is updated in the initial space and again the fluid mesh is refined. During
computations the number of degrees of freedom in the fluid mesh is more than 5 times as
high as for the structure.

Figure 25 shows first the total velocity in the modified model, then the pressure distri-
bution and finally the fluid and structure shown together. In Figure 26 the result of the
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Figure 22: Von Mises stress computation

Figure 23: FSI example with a bent pipe

Figure 24: Fluid and structure grids
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Figure 25: Results of the computations
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Figure 26: Comparison of result

modified Finite Volume Method on the fluid side and isogeometric analysis on the struc-
tural side are compared at the interface with the results achieved with the commercial
Finite Element code COMSOL.

13.4 Fitting of blade surfaces

In WP1, the main use of the toolbox is in least squares approximation to a sets of data
points by spline surfaces. Figure 27 shows the medial surface of a turbine blade together
with the defining data points. Similarly, Figure 28 shows a turbine blade.

Figure 27: Medial surface fitting
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Figure 28: Blade surface fitting
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