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Abstract In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD),
based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and
combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation,
control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deforma-
tion. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splines.
How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this
paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation
results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.

Keywords free-form deformation, rational DMS-spline volume, control lattice of arbitrary topology, multiresolution

deformation, direct manipulation

1 Introduction

1.1 Motivation and Contribution

The design of complex models is a key problem in
geometric modeling[1−3]. One of the most powerful
tools for deforming a complex model is free-form defor-
mation (FFD), which was first introduced by Sederberg
and Parry[4]. By using this method, the users first gen-
erate some control points called a lattice to contain a
3D model to be deformed, and then modify the control
points to deform the parametric space inside. Finally,
the deformed parametric space is mapped onto a tar-
get model automatically. A lot of related approaches
are based on this method, and it has been integrated
into most of leading commercial computer animation
software systems as their modeling and animation com-
ponents, for example, Maya, Softimage XSI, 3DS MAX
etc. However, each method of free-form deformation
has its own advantages and disadvantages. We will
discuss them in next section. In [5], Bechmann and
Gain proposed some criteria to assess the FFD tech-
nique, such as versatility, ease of use, correctness and

efficiency. In particular, local property, multiresolution
and direct manipulation are also very important for
free-form deformation. Unfortunately, few of the ex-
isting methods satisfy user’s demands in all the aspects
listed above.

In this paper, we propose a novel free-form deforma-
tion technique based on rational DMS-spline volume,
which satisfies most of the criteria listed above. We
call this method RDMS-FFD. DMS-splines were pro-
posed by Dahmen et al. in [1]. We generalize the re-
sults presented in [6, 7] and give the definition of ratio-
nal DMS-spline volumes, which generalizes DMS-spline
surfaces with planar triangulation domains to tetrahe-
dral domains, with arbitrary topology. The rational
DMS-spline volumes have many beautiful properties,
such as convex hull property, local support, continu-
ity and affine invariance. More importantly, they can
be defined by the control lattice of arbitrary topology.
Our technique inherits these properties and provides
various important advantages, which we list in the fol-
lowing summary of the main contributions of our work.
• Unlike the traditional FFD methods, we
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manipulate the vertex of the tetrahedral domain to
achieve deformation results. The control lattices will
be updated according to the new tetrahedral domain.
In fact, the control lattices have the same shape as the
tetrahedral domain, only some control points will be
located at the edges of the tetrahedral domain. Hence,
ease of use is improved.
• The tetrahedral domain can be arbitrary topol-

ogy and approximate any complex shapes tightly and
automatically. Hence, we can easily predict the defor-
mation results from the manipulating of vertices of the
tetrahedral domain.
• DMS-spline has smooth basis functions defined on

arbitrary topology. Hence, the smoothness of the de-
formation space can be guaranteed. This solves the
problem presented in [8].
• The deformation method has local and multireso-

lution property. Hence, the deformation technique has
elaborate sculpture ability.
• Direct manipulation of deformation can be

achieved by combining weights change and lattices ma-
nipulation. We will discuss it in detail in Subsection 4.4.

1.2 Overview

The rest of the paper is organized as follows. In
Section 2, we introduce some related work on FFD
techniques and DMS-splines. Section 3 briefly reviews
DMS-spline volumes[7] and presents rational DMS-
spline volumes. Section 4 describes the deformation
algorithm in detail which includes the generation of
the tetrahedral domain and control lattice, the attach-
ment of the object to the rational DMS-spline volume,
and multiresolution deformation technique. Section 5
presents some experimental results and discusses the
performance. Conclusions and future work are pre-
sented in Section 6.

2 Related Work

In this section we present an overview of a number
of existing free-form deformation techniques and some
related work on DMS-splines.

Free-Form Deformation. Free-form deformation
technique, firstly proposed by Sederberg and Parry[4],
is widely available and almost all the subsequent meth-
ods are based on it. Griessmair and Purgathofer pro-
posed a new FFD method based on B-Spline volumes,
and optimized the mesh division after deformation[9].
Kalra et al. proposed a Rational Free-Form Deforma-
tion (RFFD) method which uses a rational parametric
volume to simulate the movement of facial muscles[10].
The method proposed by Lamousin and Waggenspack

was based on NURBS volumes and succeeded in raising
the flexibility of FFD[11]. Raviv and Elber developed a
three dimensional interactive sculpting paradigm that
employs a collection of scalar uniform trivariate B-
spline functions[12]. Kagan and Fischer presented a
CAE system using the deformation method based on fi-
nite element B-splines[13]. However, the control lattice
of the above methods should be a regular parallelepiped
or a uniformly arranged shape. Hence, the users can-
not predict the deformation results correctly from the
manipulation of the control lattice.

To overcome this limitation, many FFD techniques
that use control lattices with arbitrary topology have
been proposed in recent years. Coquillart proposed
an extension of free-form deformation (EFFD), which
uses several low resolution lattices, called “chunk”, for
deformation[14]. Coquillart and Jancéne used EFFD
method to build animations called Animated Free-Form
Deformation (AFFD)[15]. But it has a continuity prob-
lem. By using the Catmull-Clark subdivision scheme,
MacCracken and Joy further extended the capability of
FFD by introducing lattices of arbitrary topology[16].
However, the smoothness of the deformation space is
not guaranteed. Furthermore, how to generate the con-
trol lattice is also difficult. Bechmann et al. proposed
continuous FFD (CFFD) based on barycentric coordi-
nates and Bézier tetrahedrons[17]. Its control lattice is
also arbitrary topology, but keeping the deformation
continuous between tetrahedrons requires defining con-
straints on the displacement of control points. Thus the
manipulation of the control lattice is no longer free-
form. Moccozet and Magnenat-Thalmann proposed
Dirichlet FFD approach based on the Voronoi struc-
ture defined within the convex hull of a set of points[18].
Though there is no restriction on the shape of the vol-
ume, it is hard to manipulate the influence of a sin-
gle control point. By employing weighted T-spline vol-
ume as deformation tools, Song and Yang proposed a
more flexible and adaptive FFD method[19]. But for
some special cases, the control lattice cannot approx-
imate the shape of object very well. Ju et al. gen-
eralized mean-value coordinates from closed 2D poly-
gons to closed triangular meshes and applied them to
free-form deformation[20]. But it is only appropriate
for global deformation. Feng et al. proposed a defor-
mation technique with subdivision surface of arbitrary
topology[8]. However, it is hard to achieve direct manip-
ulation of deformation. In [21], Yoon and Kim proposed
a sweep-based approach to the free-form deformation of
3D objects. Unlike the previous methods, they approxi-
mate deformable parts using sweep surfaces. Hierarchy-
based interaction of deformation and volume preserving
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property are its main advantages, but multiresolution
deformation is difficult to be achieved.

Based on this background of FFD methods with con-
trol tools of arbitrary topology, we propose RDMS-FFD
by combining more deformation techniques than previ-
ous FFDs in a consistent framework. The details will
be given in the following sections.

There are many other FFDs based on surfaces or
curves, but most of them are only suitable for global
deformation. Feng et al. provided an FFD method by
using two parametric surfaces called shape surface and
height surface[22]. Feng and Peng proposed an accurate
B-Spline FFD method[23]. Kazuya et al. proposed a
similar method which adopted a triangular mesh as the
deformation control tool[24]. Hua and Qin presented a
modified FFD in which they employ a scalar field as the
embedding space instead of a volume[25]. Lazarus et al.
used an axis, instead of using a lattice, to provide an
efficient and intuitive deformation method called Axial
Deformations (AxDf)[26]. Chang and Rockwood used
a Bézier curve to define the desirable skeleton of the
deformed object[27]. Singh and Fiume used wires for
deformation[28].

In order to improve the controllability of FFD tech-
niques, several constraint FFD methods have been pro-
posed. To overcome the difficulty in getting the de-
formed object to pass through desired points precisely,
the direct manipulation FFD methods were proposed.
Hsu et al.[29] adopted a least-square fitting approach
to determine the movement of the control points. Hu
et al.[30] solved this problem explicitly using constraint
optimization. The direct manipulation of a general-
ized cylinder was presented in [31]. Aubert and Bech-
mann proposed a volume-preserving FFD approach[32].
The algorithm presented in [33] is another kind of con-
strained FFD, where the developability of a patch un-
dergoing FFD is preserved.

DMS-Splines. Dahmen et al. proposed DMS-splines
from the point of view of blossoming[1]. Fong and Sei-
del presented several useful properties of DMS-splines,
such as affine invariance, convex hull, locality, and
smoothness[34]. Greiner and Seidel presented some ap-
plications of multivariate B-spline algorithms in com-
puter graphics and geometric design[35]. Pfeifle and Sei-
del proposed a faster evaluation technique for quadratic
bivariate DMS-spline surfaces[36]. Franssen et al. pro-
posed an efficient evaluation algorithm for DMS-spline
surfaces of arbitrary degree[37]. Qin and Terzopou-
los presented rational DMS-spline surfaces and their
dynamic generalization[6]. He and Qin presented a
surface reconstruction approach by using DMS-splines
surface[38]. Hua et al. introduce trivariate DMS-spline

volume and employed it in solid representation and
modeling[7]. He et al. presented rational spherical
DMS-spline for genus zero shape modeling[39]. He et
al. proposed an automatic and efficient method of gen-
erating visually pleasing, high-quality DMS-spline sur-
faces of arbitrary topology for shape fairing[40]. Gu et
al. introduced manifold DMS-splines, which general-
ize DMS-spline surfaces with planar domains to mani-
fold domains with arbitrary topology with or without
boundaries[41].

3 DMS-Splines and Rational DMS-Spline
Volumes

DMS-splines, introduced by Dahmen, Micchelli and
Seidel in [1], are based on the simplex splines. Further-
more, DMS-spline is a multivariate B-spline scheme,
and its univariate (surface) scheme is also called trian-
gular B-spline. Throughout this paper, we employ the
trivariate (volume) scheme to deform the free-form ob-
jects. Now we will firstly review the formulation of the
trivariate simplex splines presented in [7].

A trivariate simplex spline M(x|x0, . . . ,xn+3) of de-
gree n is a function of x ∈ R3 over the half open convex
hull of a point set V = [x0, . . . ,xn+3), depending on
the n + 4 knots xi ∈ R3, i = 0, 1, . . . , n + 3. The ba-
sis function of trivariate simplex splines can be defined
recursively as follows. When n = 0,

M(x|x0, . . . ,xn+3) =



1
6|VolR3(x0, . . . ,x3)| , x ∈ [x0, . . . ,x3),

0, otherwise.

When n > 0, select four points W = [xk0 ,xk1 ,xk2 ,xk3 ]
from V , such that W is affine independent, then

M(x|x0, . . . ,xn+3) =
3∑

j=0

λj(x|W )M(x|V \{xkj
}),

where
∑3

j=0 λj(x|W ) = 1 and
∑3

j=0 λj(x|W )xkj
= x.

In fact, λj(x|W ) are the barycentric coordinates of x
with respect to W .

In the following, we will review the construction of
DMS-spline volume. Let Ω be an arbitrary proper
tetrahedralization of R3 or some bounded domain D ⊂
R3. The proper tetrahedralization means that every
pair of tetrahedral domain are disjoint, or share exactly
one vertex, one edge, or one face. Next, with every ver-
tex x of Ω , we associate a cloud of knots [t0, t1, . . . , tn],
where t0 = t. For every tetrahedron I = (p, q, r, s), we
require
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• all the tetrahedron [pi, qj , rk, sl] with i+j+k+l 6
n are non-degenerate;
• the set

Z = interior(
⋂

i+j+k+l6n

[pi, qj , rk, sl])

satisfies
Z 6= ∅;

• if I has a boundary triangle, the knots associated
with the boundary triangle must lie outside of Ω .

Then the trivariate DMS-spline basis function
NI

β (u) is defined by means of trivariate simplex spline
M(u|V I

β) as

NI
β (u) = |d(pi, qj , rk, sl)|M(u|V I

β),

where β is the 4-tuple (i, j, k, l),

V I
β = [p0, . . . ,pi, q0, . . . , qj , r0, . . . , rk, s0, . . . , sl].

d(pi, qj , rk, sl) is six times of the volume of
(pi, qj , rk, sl).

A degree n DMS-spline volume S(u) over Ω is then
defined as

S(u) =
∑

I∈Ω

∑

|β|=n

cI
βN I

β(u), (1)

where cI
β ∈ R3 are the control points.

Generalizing (1) by associating a weight ωI
β with

each control point, we define rational DMS-spline vol-
ume as the combination of a set of piecewise rational
functions:

F (u) =
P (u)
Q(u)

=

∑
I∈Ω

∑
|β|=n ωI

βcI
βNI

β (u)∑
I∈Ω

∑
|β|=n ωI

βNI
β (u)

.

Note that when we set the weights of each control
point to be 1, the rational DMS-spline volume is just the
DMS-spline volume. The rational DMS-spline volumes
can be also considered as the trivariate generalization
of the triangular NURBS presented in [6]. They have
many properties of the non-rational schemes, such as
convex hull property, local support and affine invari-
ance. Moreover, they have some additional properties:
• like the DMS-spline volumes, rational DMS-spline

volumes and their rational basis functions are also Cn−1

continuous if the knots are in general position, where n
is the degree of rational DMS-spline;
• the weights of rational DMS-spline volumes are ex-

tra degrees of freedom which influence local shape. If a
weight is increased, the volume will move towards the
corresponding control point.

The proof of these properties is similar to the proof
in [6, 39]. In order to improve the performance of
the evaluation algorithm for rational DMS-spline vol-
ume, in this paper, we consider a more restricted case
by sharing respective control points and weights along
common triangles of two adjacent tetrahedrons in tetra-
hedral domain.

For rational DMS-spline volume with shared control
points/weights, we can prove[38]

P (u) =
∑

I∈Ω

∑

|β|=n−1

ĉI
β(u)NI

β (u), (2)

Q(u) =
∑

I∈Ω

∑

|β|=n−1

ω̂I
β(u)NI

β (u), (3)

where

ĉI
β(u) =

3∑

j=0

ωI
β+ej cI

β+ej λj(u|[pi, qj , rk, sl]),
(4)

ω̂I
β(u) =

3∑

j=0

ωI
β+ej λj(u|[(pi, qj , rk, sl)]), (5)

and ej = (δi,j)3i=0, j = 0, 1, 2 as the coordinates vectors.
From (2)∼(5), we know that a degree n rational

DMS-spline volume F (u) = P (u)/Q(u) can be evalu-
ated with the efficiency of a degree n − 1 volume. In
practice, this property is very useful in improving the
performance of the algorithm for rendering a rational
DMS-spline volume.

Analogously, the directional derivative of F (u) with
respect to a vector v can be calculated as follows:

DvF (u) =
DvP (u)− F (u)DvQ(u)

Q(u)
, (6)

where

DvP (u) = n
∑

I∈Ω

∑

|β|=n−1

čI
β(v)NI

β (u), (7)

DvQ(u) = n
∑

I∈Ω

∑

|β|=n−1

ω̌I
β(v)NI

β (u), (8)

and

čI
β(v) =

3∑

j=0

cI
β+ej λj(v|[(pi, qj , rk, sl)]),

ω̌I
β(v) =

3∑

j=0

ωI
β+ej λj(v|[(pi, qj , rk, sl)]).

Note that F (u) and DvF (u) have the same basis func-
tions. Thus, the value F (u) and the first order deriva-
tives can be evaluated simultaneously.
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In this paper, we modify and extend the evaluation
algorithm on planar triangular B-splines presented in
[37] to the rational DMS-spline volume.

From the analytic and geometric properties of ratio-
nal DMS-spline volume listed above, we know that it is
suitable for free-form deformations. In this paper, we
mainly employ cubic rational DMS-spline volumes as
deformation tools. Cubic rational DMS-spline volumes
keep C2 continuous in the whole parametric volumes.
Therefore, there is no continuity problem for deforma-
tion.

4 Free-Form Deformation via Rational
DMS-Spline Volumes

4.1 Construction of Parametric Domains and
DMS-Lattices

As presented in [7], if we locate control points at the
edges of the tetrahedral domain of rational DMS-spline
volume, the shape and the features represented by the
original domain can be well preserved. The difference
between the shape of the domain and the resulting ra-
tional DMS-spline volume is very small. Hence, in this
paper, we first construct the tetrahedral domain that
approximates the shape of the object to be deformed.
Then the DMS-lattice is constructed according to the
following DMS-lattice update rules: we place control
points on all the vertices of the tetrahedral domain;
in addition, we place two control points on each edge
of the tetrahedral domain, which divide each edge into
three equal-length line segments. Unlike the traditional
FFD methods, we employ the tetrahedral domain as
deformation tool, that is, we manipulate the vertices of
the tetrahedral domain to achieve deformation results.
Then, the DMS-lattice will be updated according to the
new tetrahedral domain and DMS-lattice update rules.
The shape of the tetrahedral domain approximates the
object shape well, so the deformation control will be
intuitive and convenient. The following problem is how
to generate the tetrahedral domain that approximates
the shape of the object to be deformed tightly.

However, it is difficult to generate the tetrahedral
domain according to the object shape automatically
since the object representations are different. For a
mesh object, we propose a modified version of the meth-
ods presented in [42, 43]. For the other object represen-
tations, we adopt the method presented in [8]. However,
as mentioned in [8], how to generate the DMS-lattices
for the non-manifold object robustly and automatically
remains an open problem. In the following, we will
introduce the generation method of the tetrahedral do-
main for mesh object. The algorithm consists of two

steps (see Fig.1) as follows.
• Construct the closed coarse control mesh M of the

original mesh by using the method presented in [44].
The method is based on the progressive convex hull
construction algorithm in [42]. For details, see [42, 44].
• Build an inside volumetric graph Gin of M by us-

ing the method presented in [43]. In order to reduce
the vertices of the tetrahedral domain, we set the grid
interval grid of the BBC lattice to twice the average
edge length of the coarse mesh. For more information,
see [43].

After the tetrahedral domain is constructed, the
DMS-lattice will be built according to the DMS-lattice
update rules. The initial weights of control points be-
longing to the coarse control mesh are set much larger
than the other ones in the inside of the tetrahedral do-
main. The ration of them is 50:1. Hence, we can obtain
the desired deformation results by manipulating the
control points only belonging to the coarse mesh. Fig.2
presents the tetrahedral domain of the horse model and
the corresponding deformation result.

4.2 Parametrization

After the tetrahedral domain and DMS-lattice are
constructed, the object will be attached to the rational
DMS-spline volume like the traditional FFDs. That is,
we should calculate the parametric coordinates for each
point of the object to be deformed. Let G = (x, y, z) be
an arbitrary point of the original object, RDMS-FFD
parameterizes the point G by the DMS-lattice which
includes G. With the parameters calculated, the point
G will be mapped to a new point according to the mod-
ified lattice or the modified weights. When the object is
embedded into the lattice, we calculate the parametric
coordinates of the point G by the following equation

G =
P (u)
Q(u)

=

∑
I∈Ω

∑
|β|=n ωI

βcI
βNI

β (u)∑
I∈Ω

∑
|β|=n ωI

βNI
β (u)

, u ∈ Ω .

(9)
Obviously, (9) is a nonlinear equation and the solution
is unique.

We will solve (9) by using the method presented in
[19]. It has two steps:
• rewrite (13) as an equivalent scalar function

H(u) = ‖P (u)

Q(u)
−G‖2 = 0;

• solve this equation by using nonlinear conju-
gate gradient method[45]. The initial solution u0 =
(u0, v0, w0) is set to the point G itself and the decent
direction is −∇H0, where ∇H0 = (F u((u0, v0, w0),
F v((u0, v0, w0), F w((u0, v0, w0))>. −∇H0 can be ob-
tained from (6)∼(8).
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Fig.1. Construction of the tetrahedral domain. (a) Original horse model. (b) Construct an inner shell Min for the coarse mesh M

obtained using the method presented in [44]. (c) Embed Min and M in a body-centered cubic (BCC) lattice. (d) Remove lattice nodes

outside Min. (e) Build edge connections among Min, M and lattice nodes. (f) Simplification and smoothness.

Fig.2. Deformation of the horse model. (a) Initial horse model. (b) Initial tetrahedral domain. (c) Deformed tetrahedral domain. (d)

Deformed horse model by (c).

Table 1. Model Size and Parametrization Time

Model ] NVOM ] NVTD ] NCPOS PT(m)

Horse 42 568 356 463 27.08

Bunny Head 741 182 237 1.59

Chetah 21 478 203 258 13.88

Dolphin 2 217 228 279 5.46

Dinnosaur 23 976 212 324 15.79

Bird 34 126 302 491 22.42

Note: ] NVOM: the number of vertices of the original model;
] NVTD: the number of the vertices of the tetrahedral do-
main; ] NCPOS: the number of control points generated by
octree subdivision for w-TFFD, here the octree depth equals
3; PT: the parametrization time.

Currently, we cannot prove the convergence of iter-
ative algorithm theoretically. If the solution does not
converge with limited steps, we can reset a new initial
value and solve the equation again. Because rational
DMS-spline volumes are arbitrary topology, the recom-
putation is necessary. In fact, the re-initiation is few in
our examples. There are only three times at most. The
computational and storage cost of the proposed method
is O(n3). The parameterization runtime statistics of all
the examples that we have presented are listed in Table
1. It should be noted that the embedding step is com-
puted only once for the given control lattices. Thus its
computational time will not influence the subsequent
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deformation interaction.

4.3 Multiresolution Deformation

Multiresolution deformation enables stable recon-
struction of the detail information. The deformation
technology presented above has a local property inher-
ited from rational DMS-spline volume. However, the
local influence region cannot be arbitrarily small for the
given lattice, because once the lattice and the tetrahe-
dral domain is given, the influence region of moving a
control point is fully determined. To achieve a more
elaborate sculpture ability, we propose a multiresolu-
tion deformation method.

As we known, the subdivision technique has a mul-
tiresolution property. In this paper, we achieve mul-
tiresolution deformation by employing the smooth sub-
division of tetrahedral mesh presented in [46]. Unlike
the method presented in [8], we firstly subdivide the
tetrahedral domain with the subdivision scheme in [46],
and then we obtain the refined DMS-lattice according
to the refined tetrahedral domain and the DMS-lattice
update rules. The refined tetrahedral domain will have
fine resolution while its approximate shape will be sim-
ilar to the original object. If the refined domain tetra-
hedral and refined DMS-lattice are adopted as new do-
main tetrahedral and DMS-lattice and the object is
reattached to the rational DMS-spline volume gener-
ated from the refined tetrahedral and DMS-lattice, the
deformation will have a better local property than the
original tetrahedral domain. In our implementation,
we firstly deform the object by the raw tetrahedral do-
main (see Figs.3(b) and 3(c)). Then the refined tetrahe-
dral domain is used as the new tetrahedral domain (see
Fig.3(d)). Finally, we reattach the globally deformed
object on the new rational DMS-spline volume to ob-
tain fine local deformation (see Figs.3(e) and (f)). This
interactive process continues until we obtain a satisfy-
ing deformation result according to the user’s intention.

4.4 Deformation Algorithm

The main steps for the RDMS-FFD algorithm are
as follows.
• Construct the tetrahedral domain and DMS-

lattice. Set initial weights for rational DMS-spline vol-
ume.
• Calculate the parametric coordinates (u, v, w) for

each point on the object to be deformed.
• Manipulate the vertices of the tetrahedral domain

or weights of the control points and update the DMS-
lattice, evaluate the new locations of the points accord-
ing to the new tetrahedral domain and DMS-lattice.

We will obtain a raw global deformation.
• Use multiresolution deformation technique to ob-

tain satisfying results.
RDMS-FFD supports direct manipulation. For a

given objective point, we only move some vertices of
the tetrahedral domain towards the objective point, and
increase the weight of the corresponding control point
that is closest to the objective point, then all affected
points with the rational DMS-volume will move towards
the objective point (see Fig.4). Fig.5 shows an example
with the same control mesh but the different weights at
the control points with yellow color.

5 Implemented Results and Discussion

In this section, we will present some experimental
results achieved with our deformation system. Our de-
formation system has functions such as construction of
the closed coarse control mesh of the original mesh,
generation of the inside volumetric graph, modeling of
rational DMS-spline volumes, direct deformation, mul-
tiresolution deformation etc.

Fig.2(b) illustrates the tetrahedral domain for the
horse model shown in Fig.2(a). The modified tetrahe-
dral domain is shown in Fig.2(c) and the corresponding
deformation result is presented in Fig.2(d).

Fig.3 is an example of multiresolution deformation
control for a bunny head. Fig.3(a) presents the origi-
nal model. The modified raw tetrahedral domain and
corresponding deformed model are shown in Figs.3(b)
and 3(c). The refined tetrahedral domain is illustrated
in Fig.3(d). Figs.3(e) and 3(f) show the deformed fine
tetrahedral domain and the corresponding deformation
result.

Fig.4 shows several examples of the direct manip-
ulation of deformation of the bunny’s ear. Fig.4(a)
presents the original model and two objective points.
Fig.4(b) shows the direct deformation results. Other
two examples are shown in Figs.4(c) and 4(d). Fig.5
illustrates the effects of the weights.

Fig.6 shows some deformation results of the dolphin
model. Fig.6(a) illustrate the original model. Figs.6(b),
6(d), 6(f) and 6(h) show the deformed tetrahedral do-
main. Figs.6(c), 6(e), 6(g) and 6(i) show the corre-
sponding deformation results.

Fig.7 shows the deformation results of dinosaur
model using RDMS-FFD. The global deformation is
shown in Fig.7(b). Fig.7(c) illustrates the local de-
formation of the results presented in Fig.7(b). The
multiresolution deformation of the mouth in Fig.7(b)
is shown in Fig.7(d). Fig.8 presents three deformation
results of the bird model.
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Fig.3. Multiresolution of the bunny head. (a) Initial bunny head model. (b) Deform tetrahedral domain. (c) Deform object by (b).

(d) Refine domain in (b). (e) Deform the refined domain in (d). (f) Deform object by (e).

Fig.4. Direct manipulation of the bunny ear. (a) Initial bunny head model and two objective points. (b) Deformed object through

objective points. (c)∼(d) Deformed object.

Fig.5. Effects of the weights. (a) Deformed tetrahedral domain. (b)∼(c) Deformation results with respect to different weights at the

vertices with yellow color in (a).

We also evaluate the performance of RDMS-FFD
technique by calculating the number of vertices of the
tetrahedral domain and the parametrization time. The
parametrization was measured on a PC with 3.0GHz
Pentium-IV CPU, 1.0GB of RAM and Windows OS.
The statistic numbers of the models together with the
parametrization time are listed in Table 1. From Ta-
ble 1, we can find that the number of the vertices of
the tetrahedral domain in our method is smaller than

the number of control points generated by octree sub-
division for w-TFFD. So easy-to-use is improved in our
method. The parametrization process is the most time-
consuming step. As shown in Table 1, the parametriza-
tion time depends heavily on the number of the vertices
of the original model. Fortunately, the parametrization
time will not influence the subsequent deformation in-
teraction.

Remark 1. Similar to the DMS-spline surfaces, the
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Fig.6. Deformation of the dolphin model. (a) Initial dolphin model. (b) Modified tetrahedral domain. (c) Deformed object by (b). (d)

Modified tetrahedral domain. (e) Deformed object by (d). (f) Modified tetrahedral domain. (g) Deformed object by (f). (h) Modified

tetrahedral domain. (i) Deformed object by (h).

Fig.7. Deformation of the dinosaur model. (a) Initial dinosaur model. (b)∼(d) Deformed object.

RDMS-spline volume also has the so-called knot-lines.
In order to eliminate these knot lines efficiently, we pro-
pose an approximate method based on the method in
[39]. We minimize the integral of an approximation of
the curvature along the lines in the definition domain:

min
∫

L

(F uu + F vv + F ww)2dudvdw, (10)

where L denotes the lines of the tetrahedral domain.
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Fig.8. Deformation of the bird model. (a) Initial bird model. (b) Tetrahedral domain at the mouth. (c)∼(f) Deformed object.

Fig.9. Knot-line elimination. (a)∼(b) Initial RDMS-spline volume and its mean curvature distribution. (c)∼(d) RDMS-spline volume

after knot-line elimination and mean curvature distribution.

Note that the control points are fixed and only the
weights are free variables in (10). We adopt the conju-
gate gradient method to solve this nonlinear optimiza-
tion problem. The example of the dinosaur model is
shown in Fig.9.

6 Conclusion and Future Work

In this paper, a novel free-form deformation tech-
nique is proposed. The technique is based on rational
DMS-spline volume and inherits some good properties
of rational DMS-spline volume. More importantly, it
combines more advantages than previous FFD methods
in a consistent frame work, such as local deformation,
control lattice of arbitrary topology, smooth deforma-
tion, multiresolution deformation, and direct manipula-
tion of deformation. Our experimental results for mesh
models show that our method is powerful, flexible and

intuitive for shape design in solid modeling and com-
puter animation.

In the future, we will address some remaining limi-
tations of the current method. Firstly, finding a tetra-
hedral domain of freeform objects is still an opening
problem. Secondly, the main difficulty in our method
is the parametrization process. Hence, finding an effi-
cient parametrization method is an important problem
to improve the current implementation. Finally, how
to introduce hierarchy-based interactions and volume-
preserving interactions as presented in [21] into RDMS-
FFD is also very valuable.
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