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Abstract In this paper, we present a geometric construction of control meshes of helicoids

over trapezium domain. We first introduce the quasi-Bézier basis in the space spanned

by {1, t, cos t, sin t, t sin t, t cos t}, with t ∈ [0, α], α ∈ [0, 2π). We denote the curves ex-

pressed by the quasi-Bézier basis as algebraic-trigonometric Bézier curves, for short AT-

Bézier curves. Then we find out the transform matrices between the quasi-Bézier basis and

{1, t, cos t, sin t, t sin t, t cos t}. Finally, we present the control mesh representation of the heli-

coids and the geometric construction of the control mesh. In detail, we construct the control

polygon of the planar Archimedean solenoid, which is also expressed with the quasi-Bézier

basis, and then generate the mesh vertices by translating points of the control polygon.
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1 Introduction

Modeling of special surfaces is very important for computer aided design and com-
puter graphics because of the beautiful properties of special surfaces[1,3,11]. Recently,
minimal surfaces have attracted more attentions in CAGD[2,5−9,12−17]. Helicoid is an
important kind of minimal surfaces. Catalan verified that all ruled non-planar mini-
mal surfaces are helicoids[10]. Helicoids have various applications in manufacture and
architecture, for example, if a sliding board adopts helicoids, one can acquire constant
acceleration when sliding along it. Hence, it is valuable to introduce helicoids into
CAGD/CAM systems.
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Most of curves and surfaces in CAD/CAM systems are represented by control
polygons/control meshes. However, helicoids cannot be represented by Bézier or
NURBS surfaces. Hence, in order to introduce helicoids into CAD/CAM systems,
we should first propose the control mesh representation of helicoids. Refs.[7] and [14]
proposed two kinds of control mesh representations of helicoids. However, in their
presentations, the domain of the parameters is restricted to be a rectangle. It is
inconvenient to obtain a trimmed surface of helicoids over a rectangular domain. In
particular, rectangular domain is a special case of trapezium domain. Hence, in this
paper, we present a new control mesh representation of helicoids, letting the domain
of the parameters be a trapezium.

Motivated by this purpose, first, we introduce the quasi-Bézier basis {ui,5(t)}5i=0

in the space Γ5 = span {1, t, cos t, sin t, t sin t, t cos t} , with t ∈ [0, α], α ∈ [0, 2π), which
has been discussed in Mainar01. In this paper, we denote the curves expressed by
the quasi-Bézier basis {ui,5(t)}5i=0 as algebraic-trigonometric Bézier curves, for short
AT-Bézier curves. Then we find out the transform matrices between {ui,5(t)}5i=0 and
{1, t, cos t, sin t, t sin t, t cos t}. Hence, the definition of the basis is explicit, and the
control points can be attained expediently. Secondly, the tensor product representa-
tion of a patch of helicoids is derived, as well as the control mesh of the patch. Finally,
the geometric construction of the control mesh is discussed.

Section 2 introduces the AT-Bézier curves with AT-Bézier basis. Section 3 pro-
vides the representation of the helicoid patch defined on a trapezium domain. The
geometric construction of the control mesh of each helicoid patch is presented in
Section 4. Section 5 concludes the research and discusses the future work.

2 AT-Bézier Curves

2.1 AT-Bézier basis

Mainar01 defines the quasi-Bézier basis in the space Γ5 = span{1, t, cos t, sin t,

t sin t, t cos t}, t ∈ [0, α], α ∈ [0, 2π). We denote it as {ui,5(t)}5i=0. Let

F (t) = 3(t− sin t)− t(1− cos t),

G(t) = t− sin t.

Set the derivatives of F (t) be fi = F (i)(α), gi = G(i)(α), and denote

e = f2
1 − f0f2, g = f0f3 − f1f2, h = f2

2 − f1f3, H = h
e(f2h+f3g+f4e) ,

c = cos α, s = sin α, d = g + αh.

Then the quasi-Bézier basis is

u5,5(t) = F (t)/F (α),

u4,5(t) = f1
e (F (t)− f1 · u0,5(t)),

u3,5(t) = H(h · F (t) + g · F ′(t) + e · F ′′(t)),
u2,5(t) = u3,5(α− t),

u1,5(t) = u4,5(α− t),

u0,5(t) = u5,5(α− t).
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From the definition, {ui,5(t)}5i=0 satisfy:
(1) 0 is i-fold zero of ui,5(t), and α is (5− i)-fold zero of ui,5(t).

(2)
5∑

i=0

ui,5(t) = 1.

For expedience, we can rewrite the definition explicitly, i.e.

(u0,5(t), u1,5(t), u2,5(t), u3,5(t), u4,5(t), u5,5(t))
T = A (1, t, sin t, cos t, t sin t, t cos t)T ,

where the transform matrix A equals



2α
f0

−2
f0

2+c−f1
f0

f0−2α
f0

−s
f0

−c
f0

2f1(f0−αf1)
f0e

2f2
1

f0e
f1(e−g2

1)
f0e

2f1(αf1−f0)
f0e

f1(sf1−cf0)
f0e

f1(g0s−f1)
f0e

2dH −2hH 2f1g1H −2dH −2f0g1H 2(h− f1g1)H

2gH 2hH (e− 3h)H −2gH −gH (h− e)H
2f1
e

−2f2
1

f0e
3f2

1
f0e

−2f1
e

−f1
e

−f2
1

f0e

0 2
f0

−3
f0

0 0 1
f0




And the inverted matrix A−1 equals



1 1 1 1 1 1

0 f0
f1
− g

h
d
h − 2(h+f0s)e+gd

2f1h0
α

0 f0
f1
− g

h
2f0g1

h − (gg1+es)f0+eh
f1h0

s

1 1 g2
0−e
h

2(f1g1−h)
h

gh−(gg1+es)f1
f1h0

c

0 0 2e
h

2(3h−2f1g1)
h

(2f1g1−3h)g−ed
f1h0

αs

0 f0
f1
− g

h
2(3f0g1−d)

h
(d−3f0g1)g−(h+f0s)e

f1h0
αc




(0.1)

2.2 AT-Bézier curves

The AT-Bézier curve can be defined as

p(t) =
5∑

i=0

Piui,5(t), t ∈ [0, α],

where {ui,5(t)}5i=0 are the AT-Bézier basis functions and {Pi}5i=0 are control points.
Several transcendental curves can be expressed as an AT-Bézier curve, for instance,
the Archimedean solenoid and the conical solenoids. The followings are some exam-
ples.

A piece of the conical solenoids can be expressed as (Fig.1):

p(t) = (t cos t, t sin t, t) =
5∑

i=0

P 0
i ui,5(t), t ∈ [0, α],

where the six controls points
{
P 0

i

}5

i=0
are




0

0

0







f0
f1

0
f0
f1






− g

h
2e
h

− g
h







2(3f0g1−2d)
h

2(3h−2f1g1)
h
d
h







(3f0g1−2d)g+(h−f0s)e
f1(2f0g1−d)

(3h−2f1g1)g+ed
f1(2f0g1−d)

2(h−f0s)e+gd
2f1(2f0g1−d)







αc

αs

α


 (0.2)
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Figure 1. A piece of the conical solenoids and its control polygon under α = π

Similarly, a piece of circular arc can be represented as

q(t) = (cos t, sin t, 0) =
5∑

i=0

P 1
i ui,5(t), t ∈ [0, α],

where the six controls points
{
P 1

i

}5

i=0
are




1

0

0







1
f0
f1

0







g2
0−e
h

− g
h

0







2(f1g1−h)
h

2f0g1
h

0







(gg1+es)f1−gh
f1(2f0g1−d)

(gg1+es)f0+eh
f1(2f0g1−d)

0







c

s

0


 (0.3)

3 Representation of the Helicoid Patch

Refs.[7, 16] discuss two representations of helicoids, which is defined over a rect-
angular domain, that is,

r(w, v) = (w cos v, w sin v, v), 0 ≤ v ≤ α, γ0 ≤ w ≤ γ1.

Here we will generalize the domain of the parameters to be a trapezium. Consider a
helicoid patch defined as

r(w, v) = (w cos v, w sin v, v), 0 ≤ v ≤ α, γ0 + β0v ≤ w ≤ γ1 + β1v.

Fig.2 shows the shape of the patches defined on trapezium domain and rectangular
domain. In Fig.2(a), β0 = β1 = 1; in Fig.2(b), β0 = β1 = 0.

It is obvious that the w-parameter curves are all straight lines and the two v-
boundaries are AT-Bézier curves, that is

r(γi + βiv, v) = ((γi + βiv) cos v, (γi + βiv) sin v, v),

= γi(cos v, sin v, 0) + βi(v cos v, v sin v, v), 0 ≤ v ≤ α, i = 0, 1.
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(a) Trapezium domain (b) Rectangular domain

Figure 2. Helicoids over trapezium domain and rectangular domain

Suppose P 1
j , P 0

j , j = 0, · · · , 5 be given in Equation 2.2 and Equation 2.3, then,
the control points of the corresponding boundaries are

γiP
1
j + βiP

0
j , j = 0, · · · , 5, i = 0, 1,

Hence, we can represent the helicoids patch as a tensor product representation of
AT-Bézier basis and Bézier basis of degree one. Suppose

u =
w − (γ0 + β0v)

(γ1 + β1v)− (γ0 + β0v)
.

Then, the patch can be rewritten as

r(u, v) =




(((γ1 + β1v)− (γ0 + β0v))u + (γ0 + β0v)) cos v

(((γ1 + β1v)− (γ0 + β0v))u + (γ0 + β0v)) sin v

v




Let the control points be

Pij = γiP
1
j + βiP

0
j , i = 0, 1, j = 0, · · · , 5, (0.4)

Then,

r(u, v) =
5∑

i=0

1∑

j=0

Pijui,5(v)Bj,1(u), v ∈ [0, α], u ∈ [0, 1],

where ui,5(v) is AT-Bézier basis function and Bj,1(u) is Bézier basis function of degree
one. Fig.3 shows two examples with different α, with γ1 = 2π, γ0 = 0, β0 = β1 = 1.

4 Geometric Construction of the Control Meshes

4.1 Geometric construction of the control polygon of the Archimedean solenoid

Before discussing the geometric construction of the control mesh of the helicoids,
we exploit the geometric construction of the planar Archimedean solenoid. In the
next section, we will use it to construct the control meshes of the helicoids patches.
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Figure 3. The helicoid patches and their control meshes

The planar Archimedean solenoid can be expressed as

p(t) = (t cos t, t sin t).

For t0 ≥ 0, we exploit the geometric construction of p′(t0), p′′(t0) (see Fig. 4):

Figure 4. Geometric construction of p′(t0), p′′(t0)

Theorem 1. Let P = p(t0) and O be the origin. Clockwise rotate PO along
P to O1 with a right angle. Set the point P1 satisfy

|O1P1| = 1, O1P1//OP.

Then PP1 = p′(t0). Let point O2 be the symmetry point of P along O. Set the point
P2 satisfy

|O2P2| = 2, O2P2//PO1.

Then OP2 = p′′(t0).
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Proof From the definition of P1, P2 and OP = (t0 cos t0, t0 sin t0), we gain

p′(t0) = (cos t0, sin t0) + (−t0 sin t0, t0 cos t0) = O1P1 + PO1 = PP1,

p′′(t0) = 2(− sin t0, cos t0) + (−t0 cos t0,−t0 sin t0) = O2P2 + OO2 = OP2.

Then, Theorem 1 holds true.
Now, from Theorem 1, we discuss the geometric construction of the control poly-

gon of the Archimedean solenoids. A piece of the Archimedean solenoids can be
represented as a AT-Bézier curve, i.e.

p(t) = ((t + t0) cos(t + t0), (t + t0) sin(t + t0)) =
5∑

i=0

Qi,5ui,5(t), t ∈ [0, α].

where Qi,5 ∈ R2 are controls points. Then we can construct the points as follows.

Theorem 2. Suppose Q0,5 = p(0), Q5,5 = p(α). Following Theorem 1, we set

Q0,5T
1
0 = p′(0), OT 2

0 = p′′(0),

Q5,5T
1
1 = p′(α), OT 2

1 = p′′(α).

Let Q1,5, Q4,5 satisfy

Q0,5Q1,5 =
f0

f1
Q0,5T

1
0 , Q5,5Q4,5 = −f0

f1
Q5,5T

1
1 .

Let T 3
0 , T 3

1 satisfy

Q1,5T
3
0 =

(2g0 − f0)e
hf1

Q0,5T
1
0 , Q4,5T

3
1 = − (2g0 − f0)e

hf1
Q5,5T

1
1 .

Let Q2,5, Q3,5 satisfy

T 3
0 Q2,5 =

e

h
OT 2

0 , T 3
1 Q3,5 =

e

h
OT 2

1 .

Then {Qi,5}5i=0 are the control points (see Fig.5).

Figure 5. Geometric construction of the control polygon of the Archimedean solenoids
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Proof Differentiating p(t) =
5∑

i=0

Qi,5ui,5(t) at the point t = 0 and t = α to the first

and the second order, we obtain
{

∆Q0,5 = f0
f1

p′(0),

∆Q1,5 = (2g0−f0)e
hf1

p′(0) + e
hp′′(0).

{
∆Q4,5 = f0

f1
p′(α),

∆Q3,5 = − (2g0−f0)e
hf1

p′(α) + e
hp′′(α).

Then

Q1,5 = Q0,5 + f0
f1

p′(0) = Q0,5 + f0
f1

Q0,5T
1
0 ,

Q4,5 = Q5,5 − f0
f1

p′(α) = Q5,5 − f0
f1

Q5,5T
1
1 ,

Q2,5 = Q1,5 + (2g0−f0)e
hf1

p′(0) + e
hp′′(0) = Q1,5 + Q1,5T

3
0 + e

hOT 2
0 ,

Q3,5 = Q4,5 − (2g0−f0)e
hf1

p′(α) + e
hp′′(α) = Q4,5 + Q4,5T

3
1 + e

hOT 2
1 .

Hence, Theorem 2 holds true.

4.2 Geometric construction of the control mesh of the helicoids patch

As method mentioned above, we can obtain the control polygon for a segment of
the Archimedean solenoid. In the following, we will present the geometric construction
of the control mesh of the helicoids patch. For convenience, we only consider a special
case of Equation 3.4. Suppose the helicoid patch is defined on the domain

0 ≤ v ≤ α, 2kπ + v ≤ w ≤ 2(k + 1)π + v.

That is, let β0 = β1 = 1, γ0 = 2kπ, γ1 = 2(k + 1)π. After projecting the helicoids
patch to the xy-plane, we get

((2πu + (γ0 + v)) cos v, (2πu + (γ0 + v)) sin v) , v ∈ [0, α], u ∈ [0, 1].

The four boundary curves are

(γ0 + 2πu, 0) , u ∈ [0, 1]. (0.5)

(((γ0 + α) + 2πu) cos α, ((γ0 + α) + 2πu) sin α) , u ∈ [0, 1]. (0.6)

((γi + v) cos(γi + v), (γi + v) sin(γi + v)) , v ∈ [0, α], i = 0, 1. (0.7)

So, the projected area is surrounded by two segments of the Archimedean solenoid
(Equation 4.7) and two line segments (Equation 4.5 and Equation 4.6). Fig.6 shows
the projected area with γ0 = 2π, γ1 = 4π, α = 5

4π, β0 = β1 = 1.

So, our goal is first to construct the control points Qij of the projected area, and
secondly translate Qij to obtain the control points Pij , where i = 0, 1, j = 0, · · · , 5.
From the above section, the control polygon {Qij}5j=0 is easy to derive for i = 0, 1,
which correspond to the boundaries Equation 4.7. So the work turns to found how
to translate Qij along the z-axis to get Pij . Setting the 6 control points {li}5i=0 be

0,
f0

f1
, − g

h
,

d

h
,

2(h− f0s)e + gd

2f1(2f0g1 − d)
, α,

we get v =
5∑

i=0

liui,5(v), which is the z-coordinate of the helicoids patch. So, moving

Qij along the z-axis with the above lengths, we can get Pij .
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Figure 6. Projection of the helicoid patch to the xy-plane

Theorem 3 Geometric construction of the control mesh:
Step 1. (Fig.6) Choose the value k , and set

γ0 = 2kπ, γ1 = 2(k + 1)π.

Then, on the plane Q, from the planar Archimedean solenoid, we get two boundary
curves

((γi + v) cos(γi + v), (γi + v) sin(γi + v)) (i = 0, 1).

Step 2. (Fig.7(a)) Construct the control polygons of the boundary curves following
the theorem 2. Denote the control points as

Qi0, Qi1, Qi2, Qi3, Qi4, Qi5, (i = 0, 1).

Step 3. (Fig.7(b)) Let Pi0 = Qi0. Corresponding to Qij , set Pij satisfy

PijQij⊥Q, |PijQij | = lj , i = 0, 1, j = 1, · · · , 5.

Then the tensor product surface

r(u, v) =
5∑

i=0

1∑

j=0

Pijui,5(v)Bj,2(u), v ∈ [0, α], u ∈ [0, 1],

is a helicoids patch defined as

r(u, v) = (u cos v, u sin v, v), 0 ≤ v ≤ α, γ0 + v ≤ u ≤ γ1 + v.
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(a) Control points Qij of the boundary curves (b) Translate Qij to get Pij

Figure 7. Geometric construction of the control polygon of the helicoids patch

5 Conclusions and Future Work

In this paper, we propose a geometric construction of control meshes of helicoids
over trapezium domain. The result enables us to obtain trimmed minimal surface
patches over trapezium domain from helicoids. It is very meaningful for membrane
structure design in modern architecture. In the future, we will consider a more general
case, i.e.

r(w, v) = (w cos v, w sin v, v), 0 ≤ v ≤ α, p0(v) ≤ w ≤ p1(v),

where p0(v), p1(v) are all planar polynomial curves. For this purpose, we should first
construct the quasi-Bézier basis in the space

Γ2n+3 = span {1, t, cos t, sin t, · · · , tn sin t, tn cos t} .
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