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Extended Cubic Uniform
B-spline and ααα-B-spline

XU Gang1 WANG Guo-Zhao1

Abstract Spline curve and surface play an important role in
CAD and computer graphics. In this paper, we propose several
extensions of cubic uniform B-spline. Then, we present the ex-
tensions of interpolating α-B-spline based on the new B-splines
and the singular blending technique. The advantage of the ex-
tensions is that they have global and local shape parameters.
Furthermore, we also investigate their applications in data in-
terpolation and polygonal shape deformation.
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lation, curve/surface modeling

Curve and surface modeling is an important subject in
CAD and computer graphics[1−3]. Spline curve/surface
modeling is the most traditional modeling method based on
the theory of computer aided geometric design (CAGD)[4].
Several kinds of splines have been proposed in the field
of CAGD, such as B-splines and T-splines[5]. In prac-
tice, we often use cubic uniform B-spline for curve/surface
modeling. However, once the control points of the cu-
bic uniform B-spline curve are determined, the shape of
the curve is determined. In order to overcome this dis-
advantage, several extensions of cubic uniform B-spline
have been proposed[6−8]. On the other hand, cubic B-
spline interpolation is the traditional global interpolation
method[9−10]. Unfortunately, it also has some disadvan-
tages, making them less desirable for certain applications.
First, it cannot provide parameter for curve local modifi-
cation; second, it may exhibit undesirable oscillations; and
finally, solving the linear system is very expensive compu-
tationally. Moreover, the interpolation method is global;
thus, changes to any data point will require solving again
all the linear systems.

In order to avoid the above limitations, Tai et al. pro-
posed a new method to solve the interpolation problem[11]

based on the α-B-spline presented in [12]. The general-
izations and applications of α-B-spline were investigated in
[13−15]. However, the above interpolating splines based on
singular blending cannot conveniently modify the curves. If
the users want to globally modify the curves, they must set
all the local parameters to be equal. In this paper, we
first propose two kinds of new extensions of cubic uniform
B-spline. Then we propose the extensions of interpolating
α-B-spline by the singular blending technique, and name
them α-EB-spline. They not only have local shape parame-
ters, but also have global parameters. We also present their
applications in data interpolation and shape deformation.

1 Extended cubic uniform B-spline blend-
ing functions

The blending function of degree 4 was proposed in [6],
which is an extension of cubic uniform B-spline basis func-
tion.
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Definition 1. For t ∈ [0, 1], the blending function of
degree 4 is defined as follows.




b4
0(t) =

1

24
(4− λ− 3λt)(1− t)3

b4
1(t) =

1

24
[16 + 2λ− 12(2 + λ)t2 + 12(1 + λ)t3 − 3λt4]

b4
2(t) =

1

24
[4− λ + 12t + 6(2 + λ)t2 − 12t3 − 3λt4]

b4
3(t) =

1

24
[4(1− λ) + 3λt]t3

In particular, in case of λ = 0, the blending func-
tion of degree 4 will degenerate to the cubic uniform B-
spline blending function. In the following, we will list two
new kinds of extensions of blending functions of degree 4.
Hence, they can be considered as further extensions of cubic
uniform B-spline blending function.

Definition 2. For t ∈ [0, 1], the blending function of
degree 5 is defined as follows.




b5
0(t) =

1

40
(5− λ− 4λt)(1− t)4

b5
1(t) =

1

40
[30 + 2λ− 20(3 + λ)t2 + 40(1 + λ)t3 − 5(1+

7λ)t4 + 12λt5]

b5
2(t) =

1

40
[5− λ + 20t + 10(3 + λ)t2 − 20(1 + λ)t3−

5(1− 5λ)t4 − 12λt5]

b5
3(t) =

1

40
[5(1− λ) + 4λt]t4

Definition 3. For t ∈ [0, 1], the blending function of
degree 6 is defined as follows.




b6
0(t) =

1

60
(6− λ− 5λt)(1− t)5

b6
1(t) =

1

60
[48 + 2λ− 30(4 + λ)t2 + 40(3 + 2λ)t3 − 30(2+

3λ)t4 + 6(3 + 7λ)t5 − 5λt6]

b6
2(t) =

1

60
[6− λ + 30t + 15(4 + λ)t2 − 20(3 + 2λ)t3+

15(2 + 3λ)t4 − 6(3 + 2λ)t5 − 5λt6]

b6
3(t) =

1

60
[6(1− λ) + 5λt]t5

When λ = 0, bk
i (t) will be bk−1

i (t) with λ = 1, k =
5, 6. The above three kinds of blending functions have the
following theorem.

Theorem 1. The blending functions bk
i (t), where k =

4, 5, 6, and i = 0, 1, 2, 3, satisfy
1)

∑3
i=0 bk

i (t) = 1;

2) bk
i (t) = bk

3−i(1− t);

3) When −k(k − 2) ≤ λ ≤ 1, bk
i (t) ≥ 0, t ∈ [0, 1].

2 Extended cubic uniform B-spline curves
The properties mentioned in Theorem 1 enable the

blending functions to be used for curve design.
Definition 4. Given control points PPP i ∈ Rd (d =

2, 3, i = 0, 1, · · · , n), and the knots u1 < u2 < · · · < un+1,
for u ∈ [ui, ui+1], i = 3, 4, · · · , n, the polynomial curve seg-
ments are defined as follows.

CCCj,k(λ; t) =

3∑
i=0

bk
i (t)PPP j+i−3, k = 4, 5, 6
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where t = u− ui
hi

, hi = ui+1 − ui. The polynomial curve is

defined as follows.

CCCk(λ; u) = CCCi;k(λ;
u− ui

hi
), u ∈ [ui, ui+1]

They can be considered as extensions of cubic uniform
B-spline curve. They have many nice properties such as
convex full property, symmetry, and geometric invariability.

Theorem 2. For the case of uniform knot, CCCk(λ; u) is
C2 continuous; for the case of nonuniform knot, CCCk(λ; u)
is G2 continuous.

Proof. After direct computation for k = 5 and k = 6,
we have

CCCi,k(λ; 0) =
1

2k(k−1)
{(k − λ)PPP i−3+2[k(k − 2) + λ]PPP i−2+

(k − λ)PPP i−1}
CCCi,k(λ; 1) =

1

2k(k−1)
{(k − λ)PPP i−2+2[k(k − 2) + λ]PPP i−1+

(k − λ)PPP i}
CCC′i,k(λ; 0) =

1

2
(PPP i−1 −PPP i−3), CCC′i,k(λ; 1) =

1

2
(PPP i −PPP i−2)

CCC′′i,k(λ; 0) =
1

2
(k + λ− 2)(PPP i−3 − 2PPP i−2 + PPP i−1)

CCC′′i,k(λ; 1) =
1

2
(k + λ− 2)(PPP i−2 − 2PPP i−1 + PPP i)

Hence, for i = 4, 5, · · · , n, we can obtain

CCC
(l)
k (λ; u−i ) = (

hi

hi−1
)lCCC

(l)
k (λ; u+

i ), l = 0, 1, 2, k = 5, 6

Thus, the conclusion is proved. ¤
Fig. 1 presents the curves constructed by various blend-

ing functions with different shape parameters. We can find
that the approaching degrees of the curves of degree 5 and
degree 6 to their control polygon are higher than that of
the curves of degree 4 with the same shape parameters.

(a) (b)

(c)

Fig. 1 Curve examples constructed by blending functions with
λ = −4,−3,−2,−1, 0, 1 ((a) Curves constructed by blending
function of degree 4; (b) Curves constructed by blending func-
tion of degree 5; (c) Curves constructed by blending function of
degree 6)

3 Singularly reparameterized line seg-
ment

A singularly reparameterized (SR) line segment is a line
segment that possesses parametric derivatives equal to zero
at each end. It is obtained by blending two endpoints
with a singular blending function[11, 15]. An m-level singu-
lar blending function S(t), t ∈ [0, 1], satisfies the following
conditions

S(0) = 0, S(1) = 1

S(k)(0) = S(k)(1) = 0, k = 1, 2, · · · , m
(1)

Loe used a 2-level singular blending function and suggested
S(t) = 1 − (1 − t3)3 in [12]. Another choice is the quintic
Hermite polynomial S(t) = 10t3 − 15t4 + 6t5. For the re-
mainder of this paper, we will adopt the singular blending
function presented in [14]. It is a piecewise cubic polyno-
mial defined on three subintervals.

S(t) =





9

2
t3, 0 ≤ t ≤ 1

3

9

2
[t3 − 3(t− 1

3
)3],

1

3
≤ t ≤ 2

3

1− 9

2
(1− t)3,

2

3
≤ t ≤ 1

(2)

Using the singular blending function S(t), we can blend
two adjacent vertices VVV j and VVV j+1 to produce a SR line
segment LLLj(t), that is,

LLLj(t) = (1− S(t))VVV j + S(t)VVV j+1, t ∈ [0, 1]

From (1), we have

LLLj(0) = VVV j , LLLj(1) = VVV j+1

LLL′j(0) = LLL′j(1) = LLL′′j (0) = LLL′′j (1) = 0

4 ααα-EB-Spline curves
For the interpolating α-B-spline presented in [11] and

[13], a local tension parameter αj will be assigned to each
vertex PPP j . And we interpolate these tension parameters
using the singular blending function.

αj(t) = (1− S(t))αj + S(t)αj+1

By using the singular blending technique, we construct the
interpolating α-EB-spline as follows.

QQQk
j (λ; t) = (1− αj(t))CCCj,k(λ; t) + αj(t)LLLj(t) =

(1− αj(t))CCCj,k(λ; t) + αj(t)[(1− S(t))VVV j + S(t)VVV j+1]

where 0 ≤ αj ≤ 1, S(t) is defined as (2), and

VVV j = PPP j +
1− αj

αj
(PPP j −CCCj,k(λ; 0))

We easily obtain that

QQQj(0) = PPP j , QQQj(1) = PPP j+1

For open control polygon, we introduce two additional
points PPP−1 and PPP n+2, where
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PPP−1 = 2PPP 0 −PPP 1,PPP n+2 = 2PPP n+1 −PPP n

The plantom points are chosen so that the extended B-
spline curve interpolates the endpoints PPP 0 and PPP n+1 (See
Fig. 2).

To produce the closed curve for closed polygon, three
additional points PPP−1, PPP n+2, and PPP n+3 are introduced as
follows (See Fig. 3).

PPP−1 = PPP n,PPP n+2 = PPP 0,PPP n+3 = PPP 1

The interpolating α-EB-spline interpolates the polygon
vertices as shown in Figs. 2 and 3. As LLLj(t) and CCCj,k(λ; t)
are both C2 continuous, the α-EB-spline is also C2 con-
tinuous. We can also change the shape of the curves by
adjusting the shape parameters αj and λ (See Figs. 2 and
3).

(a) (b)

(c) (d)

Fig. 2 The butterfly-like curves constructed by the blending
function of degree 5

(a) (b)

(c) (d)

Fig. 3 The closed curve constructed by the blending function
of degree 4

5 ααα-EB-spline surface

For the blending of extended B-spline curve with SR
line segments, we can blend extended B-spline surface
with network of singularly reparametrized bilinear patches.
An SR bilinear patch is determined by four vertices
{VVV i,j ,VVV i,j+1,VVV i+1,j ,VVV i+1,j+1}:

LLLi,j(u, v) = (1− S(u))(1− S(v))VVV i,j + (1− S(u))S(v)×
VVV i,j+1 + S(u)(1− S(v))VVV i+1,j + S(u)S(v)VVV i+1,j+1

where S(u) and S(v) are defined as (2).
Obviously, its first and second order partial derivatives

vanish at the boundaries.

∂uLLLi,j(0, v) = ∂uLLLi,j(1, v) = ∂vLLLi,j(u, 0) = ∂vLLLi,j(u, 1) = 0

∂2
uLLLi,j(0, v) = ∂2

uLLLi,j(1, v) = ∂2
vLLLi,j(u, 0) = ∂2

vLLLi,j(u, 1) = 0

∂2
uvLLLi,j(0, v) = ∂2

uvLLLi,j(1, v) = ∂2
uvLLLi,j(u, 0) =

∂2
uvLLLi,j(u, 1) = 0

The extended B-spline surface is defined by

CCCk
i,j(u, v) =

3∑
n=0

3∑
m=0

bn,k(λ; u)bm,k(λ; v)PPP i+n−1,j+m−1

where bn,k(λ; u) and bm,k(λ; v) are the extended blending
functions, and PPP i+n−1,j+m−1 is the control point. The in-
terpolating α-EB-spline surface is given by

QQQk
i,j(u, v) = (1− αij(u, v))CCCk

i,j(u, v) + αij(u, v)LLLij(u, v)

where

αi,j(u, v) = (1− S(u))(1− S(v))αi,j + (1− S(u))S(v)×
αi,j+1 + S(u)(1− S(v))αi+1,j + S(u)S(v)αi+1,j+1

VVV i,j in LLLij(u, v) are defined as follows.

VVV i,j = PPP i,j +
1− αij

αij
(PPP ij −CCCk

i,j(0, 0))

Obviously, QQQk
i,j(0, 0) = PPP i,j . That is, interpolating α-

EB-spline surface interpolates the vertices of the network.
It is also C2 continuous. We can change the shape of the
surface by adjusting the shape parameters λ and αij .

6 Applications

As the α-B-spline[11−14], the interpolating α-EB-spline
can also be used for curve/surface interpolation. It avoids
the necessity of solving linear systems for interpolation of
B-spline curve/surface (See Fig. 4). As the interpolating

α-B-spline[15], we can also use α-EB-spline for deforming
polygonal shapes into smooth surfaces. The user only needs
to input a polygonal shape, then the modeling system will
generate an original smooth surface interpolating all the
polygonal vertices. The user can modify the smooth sur-
face, both globally and locally, by changing the global shape
parameter λ and the local tension parameters αij , respec-
tively. Fig. 5 shows the effects of the global shape parame-
ter in a interpolating surfaces constructed by the blending
functions of degree 6.
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(a)

(b)

Fig. 4 Data points interpolation with the same λ but different
αj

(a) (b)

(c)

Fig. 5 The effects of global shape parameter λ ((a) λ = −2;
(b) λ = 0; (c) λ = 1)

7 Conclusion
In this paper, we first proposed two kinds of new ex-

tensions of cubic uniform B-spline. The extensions have
global shape parameters, so the users can modify the curve
globally by adjusting the shape parameters. Then, we pro-
posed the extensions of interpolating α-B-spline by the sin-
gular blending technique. We also studied their applica-
tion in curve interpolation and deformation. The advan-
tage of the extensions is that they have global and local
parameters. The modeling examples illustrate that these
new interpolating splines are valuable for curve/surface de-
sign in CAD systems. Convexity-preserving interpolation

and monotone-preserving interpolation are very important
in practice. In the future, we will study the convexity-
preserving conditions and the monotone-preserving condi-
tions of these interpolation splines.
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