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ABSTRACT  
The topic of this paper is to give an overview of a 
recent  approach,  called  isogeometric  analysis,  that 
aims at a seamless integration of geometric modeling 
and numerical computational. It is a uniform frame- 
work  to  describe  both  the  geometry  representation 
and approximate solutions  of  a  simulation problem 
on  this  geometry.  It  rises  interesting  geometric 
problems,  that  we review.  We describe the general 
framework of this approach, the interesting properties 
of B-spline bases, that it exploits. After showing on 
an example of 3D heat  conduction problem hwo it 
works,  we  discuss  geometric  issues  including  the 
parametrization  of  computational  domains  and  its 
impact  on  quality  of   approximation,  refinement 
techniques which allow to extend the function basis 
and  to  develop  adaptive  methods  to  improve 
efficiently  the  accurancy  of  approximation  and 
geometric issues related to complex topologies.
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I.INTRODUCTION
In  engineer  design  and  simulation  of  physical 
phenomena,  geometry  plays  an important  role. 
The  shape of  an  object  directly  influences  the 
functionalities that we expect from it. Consider 
just as examples the properler of a ship, the wing 
of a plane or the structure of a mechanical piece 
in  a  car  engine.  Its  performances  (force,  drag, 
resistance) are directly  related to its  shape. To 
analyze  and  optimize  these  performances, 
numerical simulations  are usually performed. In 
the  design  process,  these  objects  are  usually 
described  by  CAGD  tools,  which  involve 
parametric  non-linear  models  using  bspline 
functions. But in the simulation process, usually 
surface or volume discrete meshes  are used to 

approximate the solutions of partial  differential 
equations  that  describe  the  physical  phenom- 
ena we want to analyse.

This has two important consequences. Firstly, a 
conversion  step  is  needed  to  go  from  one 
representation  to  another,  which might  deviate 
corresponding performance analysis.  Secondly, 
this transformation needs to be tightly connected 
with  design  parameters  when  one  want  to 
optimize  the  geometry  with  respect  to 
performance analysis.

The  topic  of  this  paper  is  to  give  a  brief 
overview of recent developments, which tackle 
these  problems.  The  approach  uses  the  same 
type  of  mathematical  (piecewise  non-linear) 
representation, both for the geometry and for the 
physical  solutions,  and  thus  avoid  this  costly 
forth  and  back  transformations.  Moreover  its 
reduces  the  number  of  parameters  needed  to 
describe  the  geometry,  which  is  of  particular 
interest for shape optimisation.

This approach  was introduced by T. Hughes and 
his collaborators under the name of isogeometry 
in  the  context  of  PDE  problems  [1].  This 
uniform framework provides more accurate and 
efficient ways to deal with complex shapes and 
to  approximate  the  solutions  of  physical 
simulation problems. But it also rises interesting 
geometric  problems  for  the  representation  of 
shapes  and  functions  on  shapes  that  we  will 
describe.
 
To present the general idea of this approach, we 
simplify the context and consider a surface patch 
  of ℝ

3  on  which  we  want  to  solve  a 
differential equations of the form
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Df x=0 for x∈  
with boundary conditions:
N f x= f 0x  for x∈∂OMEGA.

Instead  of  directly  approximating  the  function 
f x on the domain  , 

• we first parametrize the physical domain 
by  a  computational  domain D (here  a 
rectangle)  by a map  : D

• And  then  we  compute  the  solution 
= f ° induced by partial  differential 

equations  with boundary conditions  on 
D  through the map  .

  D                                      

Figure 1. Parametrization of the physical domain.  
Therefore the  solution  f  is defined implicitly 

on    by  f x=°
−1
x. This  method 

naturally  extends  to  cases  where  the  physical 
domain   is a volume parametrized by a cube 
D  in  ℝ3 .

The isogeometric approach consists in choosing 
the  same  type  of  representation  for  the 
parametrization map   and the actual solution 

function  .  Because we  are  interested  by 
representing geometry objects which are coming 
from CAGD, a natural choice is to use B-spline 
basis  functions.  In  the  next  section,  we  will 
recall  their  definition  and  give  their  main 
properties. In the next section, we will show on 
an  example,  how  this  is  done  in  practice.  In 
section  IV,  we  will  discuss  some  of  the 
geometric issues related to this approach before 
the concluding section.

II.SPLINE REPRESENTATION

Given a nondecreasing sequence of knots 

={t 0 , t 1,,t h}t i≤ti1∈ℝ

the  B-spline  basis  of  degree  n can  be defined 
using the Cox-de Boor recursion formula:

N j ,0 t ={1 if t j≤tt j1

0 otherwise

N j ,nt =
t−t j

t jn−t j

N j ,n−1t 

            
t jn1−t

t jn1−t j1

N j1,n−1t 

B-spline cuves can be defined as follows,

Pt =∑
i=0

m

P i N i ,n t 

where  Pi  are called control points.   B-spline 
surfaces and volumes can be defined in a tensor 
product way, 

Pu , v=∑
i=0

m

∑
j=0

l

P i , j N i ,nuN j , nv

Pu , v , w= ∑
i , j, k=0

m ,l , q

P i , j , kN i , nuN j ,nv N k ,nw

B-spline  representation  has  many  interesting 
properties,  such  as  local  support,  partition  of 

unity,  Cn−1

 continunity and refinement prop 
erties  [3],   which  are   desired  for  numeric 
analysis. 

III. EXAMPLE

In this section,  we show how to solve a 3D heat 
conduction  problem with boundary  conditions, 
by  using  an  isogeometric  method.  Given  a 

domain    closed by the boundary ∂ , this 
physical  problem  can  be  described  as  the 
following PDE,      
T x=f x  in 

N T x=T0 x   on  ∂

where  x  are  the  Cartesian  coordinates,  T  
represents the temperature field. These boundary 
conditions  that  could  be  of  Dirichlet  or 
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Neumann  type  are  applied  on  the  boundary 
∂  of   ,  T0  being  the  imposed 

temperature.  f  is  a  user-defined  function  that 
allows to generate problems with an analytical 
solution, by adding
a source  term to the  classical  heat  conduction 
equation.
   According to a classical variational approach, 

we seek for a solution  T∈H1  ,  such that 
T x=T0x on  ∂  and:
−∫


∇T x∇xd

      =∫


f xxd                         1

 According  to  the  isogemetric  paradigm,  the 
temperature field  is  represented using B-spline 
basis  functions.  For  a  3D  problem,  we  have: 

T u ,v , w= ∑
i , j ,k=0

m ,l , q

T i , j ,k N i , nuN j ,nv N k ,n w
 

where  N i ,n  functions  are  B-spline  basis 

functions  and  p=u ,v , w∈D  are  domain 
parameters.  Then,  we define  the  test  functions 
x  in the physical domain bys:
Mijk x=N ijk°

−1 x
 where

 N ijk p=N i ,muN j , lv N k ,qw  
The weak formulation Eq. 1 reads:

∑
r=0

nr

∑
s=0

ns

∑
t=0

n t

T rst∫
∇ M rstx∇ Mijkxd

  

  
 =−∫


f xM ijkxd

Finally, we obtain a linear system similar to that 
resulting  from  the  classical  finite-element 
methods,  with  a  matrix  and  a  right-hand  side 
defined as:
Eijk ,rst=∫

∇ M rstx∇ Mijk xd= 

∫

∇ pN rst pB

T
pB p∇ pN ijk pJ pd P

S ijk=−∫
f x Mrst xd

 
   =−∫


f T  pN rst  pJ  pdP

 
where J  p  is  Jacobian of the transformation, 
BT

 is  the  transposed  of  the  inverse  of  the 
Jacobian  matrix.  The  above  integrations  are 
performed  in  parametric  space  using  classical 
Gauss quadrature rules.

An example is given in Figure 2 and Figure 3 
with 

f x=
−

2

3
sin

 x
3

sin
 y

3
 sin

 z
3


. 

Figure  2  shows  the  physical  domain  and  its 
boundary surfaces.  Figure  3 presents the  color 
map of the solution field and corresponding 3D 
control points. The solution value is represented 
by  the color information.  

Figure 2. Physical domain and its boundary surfaces.

Figure 3. Color map of the solution and control points.

IV. GEOMETRIC ISSUES

The isogeometric approach provides a uniform 
framework  to  represent  the  geometry  and  the 
physical  solutions. This  simplifies  significantly 
the  computation  process  involved  in  a 
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simulation or optimisation problem. But it also 
rises  new  questions,  which  are  of  geometric 
nature.

Injectivity Condition. The first geometric issue 
is  to  guarantee  the  injectivity  of  the 
paramaterisation  map   : D .  In  a  usual 
context,  this  physical  domain  is  described  by 
boundary curves or surfaces (see Figure 2); The 
computational domain needs to be parametrised 
such  that  the  parametrisation  coincides  on  the 
boundary of D , with the parametrisation of the 
boundary  surfaces.  Using  B-spline 
representations,  the  control  coefficients  are 
known on  the  boundary.  In  Figure  3,  we find 
that  the  outer  control  points  of  the  volume 
parameterisation,  wich  are  deduced  from  the 
control  points  of  the  boundary  surfaces.  The 
problem  reduces  to  find  the  interior  control 
points  such  that  the  map    is  a  bijection 
between  the  computation  domain  D  and  the 
physical domain   . The injectivity of     is 
verified if its Jacobian does not vanish on D . A 
sufficient  condition  for  injectivity  can  be 
deduced from the relative position of the control 
points of the parametrisation. For simple shapes, 
such a parameterisation can be constructed from 
so-called Coons pacthes [2]. For more complex 
shapes, a solution can be found using standard 
linear programming techniques  on the  position 
of  the  controlled  points.  Such  an  approach  is 
described in [4]. As a matter of fact, the choice 
of the free inner control points has an influence 
on the quality of approximation of the physical 
solution. As shown in [4], the optimal position 
of  the  control  points  is  not  necessarily  the 
natural (or regular) one. New types of strategies 
combining the optimisation of the position of the 
inner control  points  with approximation of  the 
solution and the estimation of the error can be 
considered. 

Figure  4.  Error  history  during  refinement  for 
different  parametrization  of  computational 
domain 

Function  space  refinement.  A  standard  and 
tranditional technique to improve the quality of 
approximation  is  to  refine  the  computational 
domain. This process, also called h-refinement, 
consists to insert knots in the parametric domain, 
that  is  to  add new control  points.  Note  that  it 
does  not  change  the  parametrisation  map  but 
increase the space of (B-spline) functions used 
to represent it. Thus it provides  more freedom 
to  better  approximate  the  solution  of  our 
problem.  An  interesting  characteristic  of  these 
approximation  schemes  is  that  their  order  of 
approximation is directly related to the degree of 
regularity  of  the  bspline  space.  Figure  4 is  an 
example  of  a  planar  heat  conduction  problem 
analysis, where the error is given in terms of the 
log of the square root of the number of control 
points: The two curves represent the L2 error of 
the  approximated  solution,  when  we  use  a 
natural position of the control points (plain blue 
curve) and we when we optimize their position 
(dash red curve). We observe that in both cases, 
the slopes of the curves tend to -4, which is the 
speed of approximation we expect using bicubic 
bspline functions. 

Using  tensor  product  B-spline  functions  has 
however some drawback in this context. When a 
knot is inserted in one direction of the parameter 
domain, we add not one but the number control 
points involved in the other parameter direction.
This can lead to too many knot insertions if  h-
refinement  operations  are  required  in  all 
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parametric  directions. Instead, we would like to 
have  local  parameter  space  refinements 
possibilities. To handle this problem, new types 
of  B-spline  basis  are  considered.  So-called  T-
splines, introduced by T.W. Sederberg et al. [5], 
are a generalisation of rational bspline functions, 
which are associated to rectangular subdivisions 
of  the  parametric  domain.  These  subdivisions 
allow to have T-junctions and to perform local 
refinements. They have interesting properties for 
the isogeometric approach [6]. Other types of T-
splines which are piecewise polynomial [7] are 
also  considered  in  isogeometric  problems  [8]. 
These  spaces  of  T-splines  are  not  completely 
under-  stood.  In  particular,  open  questions 
remain on their dimension and the construction 
of  explicit  bases.  Another  family  of  B-spline 
functions  is  related  to  the  triangular  control 
meshes.  These  splines  extend   the  concept  of 
simplex splines to a triangular mesh, attaching a 
sequence  of  nodes  to  each  vertex  of  the 
triangulation [9]. They allow to deal with 2D or 
3D domains  with arbitrary  topology,  and with 
arbitrary  degree  of  regularity.  Having  the 
possibility  to  perform  local  refinement  with 
these types of bspline functions is important in 
the isogeometric approach. To fully exploit these 
capacities,  efficient  local  error  estimators  are 
however needed, which remains a difficult issue 
in  numerical  analysis,  whatever  the  approach 
chosen to approximate the physical solution. 

Multipatches. The geometry on which we want 
to perform the simulation may not be composed 
of one part that can be parametrized by a simple 
domain  D .  It  may  have  holes  or  different 
pieces assembled in a non-manifold way:

This  type of geometry requires a special  treat- 
ment for the description of the parametrisations 
of  the  different  parts  of  the  object  and  the 
constraints  that  should  be  satisfied  along  the 

boundary  of  these  different  components.  The 
topological  structure  and  the  geometric  and 
functional  basis  description  should  be  tightly 
linked in order to provide an efficient solution to 
the  simulation  problem.  In  particular, 
assembling  the  (stiffness)  matrix  E  should  be 
optimized according to the support of the basis 
functions.

V.CONCLUSION
The  isogeometric  approach  is  a  promosing 
technique  which  represents  in  the  same 
framework  the  geometry  and  for  the  physical 
functions  on  the  geometry.  By  representing 
exactly the geometry, it avoids some numerical 
artefacts  that  can  appear  in  finite  element 
method with mesh approximation. It also leads 
to high order numerical approximation scheme, 
using  basis  functions  such  as  splines.  These 
piecewise  polynomials  functions  which  are 
heavily  used  in  CAGD  provide  a  uniform 
framework  to  describe  the  geometry  and  the 
solutions. Tranditional finite element techniques 
extend naturally to this  new framework. Shape 
optimisation  methods  can  be  applied  more 
efficiently by moving control points instead of 
nodes on the finite element mesh.
This recent approach rises interesting geometric 
modeling  and  representation  challenges,  that 
need  to  be  addressed  for  further  impact  of 
isogeometry  in  scientific  computing.  This  also 
implies  some  deep  changes  in  the  numerical 
tools  and  techniques  involved  in  numerical 
computation,  which  is  another  challenge  to 
address.
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