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Abstract

The stretching energy functional and the bending energy
functional are widely used for approximating the solution
of the Plateau-Béizer Problem. This paper presents another
two simple methods by using the extended stretching energy
functional and the extended bending energy functional. The
resulting surface obtained by the new methods will have a
smaller area. Comparisons are made with both the area and
the mean curvature of the resulting surfaces.

1. Introduction

The Plateau Problem is to find a surface that minimizes
the area with prescribed border [2, 11]. There is the fact that
the resulting minimal surfaces have zero mean curvature.
Most of these minimal surfaces are not in the polynomial
form. When the prescribed border curves are constrained
to the Bezier curves and the required resulting surface is
restricted within rectangular or triangular Bezier surfaces,
the corresponding Plateau Problem is called the Plateau-
Bézier Problem [8, 11]. The Plateau-Bézier Problem can
be described as follows: given the control points of the
boundary curves of a Bézier surface, to find the inner control
points of the surface such that the resulting Bézier surface
has a minimal area.

The constraint that the mean curvature is equal to zero is
too strong. In most of the cases, there are none of such a
rectangular Bézier surface [9] with zero mean curvature. In
fact, among all bicubical Bézier surfaces, only the Enneper’s
surface has zero mean curvature [4, 9].

The Plateau-Bézier Problem is equivalent to minimize the
area functional, which is highly nonlinear. Several energy
functionals are used to approximate the area functional,
which lead to easy management for the Plateau-Bézier prob-
lem. The first one is a stretching energy functional, which is
also called Dirichlet functional in the mathematical literature
[9]. The extremals of a Dirichlet functional can be obtained
by solving linear systems [1, 5, 9]. As the degrees of the
boundary curves increase, this extremals of the resulting
surface converge to that of the exact minimal Bézier surface
[8, 9]. Farin and Hansford proposed a mask derived from
the discretization of the Laplacian operator for generating
the control net of the resulting Bézier surface [3], which is

also to solve a linear system. Bending energy functional [7]
and mean curvature energy functional [10, 12, 13] are also
used for approximating the solution of the Plateau-Bézier
Problem. Most of the methods discuss both the rectangular
case and the triangular case [6, 9, 10].

This paper focuses on the Plateau-Bézier Problem for
rectangular Bézier surfaces. Given a surface X(u, v), we
propose an extended stretching energy functional

||Xu||2 + ||Xv||2 + λ < Xu, Xv >

and an extended bending energy functional

||Xuu||2 + ||Xvv||2 + α||Xuv||.
Simple methods are provided to estimate the values of λ and
α. When α or λ is determined, the resulting surface can be
computed by solving a linear system. Examples show that
the resulting surfaces from the new methods have smaller
areas than those in the previous methods. Comparisons with
mean curvature are also made among the resulting surfaces
from different methods.

2. The extended Dirichlet method

2.1. The extended Dirichlet functional

A Bézier surface can be described by

X(u, v) =

n∑

i=0

m∑

j=0

PijB
i
n(u)Bj

m(v), u,v ∈ [0, 1], (1)

where {Pij} are the control points. The area of the Bézier
surface is

A(X) =

∫ ∫

R

√
EG− F 2dudv,

where R = [0, 1] × [0, 1], and E, F, G are the coefficients
of the first fundamental form of the surface X(u, v). The
corresponding Dirichlet functional is

D(X) =

∫ ∫

R

(
E + G

2
)dudv. (2)

We have that

(E + G)/2 ≥
√

EG ≥
√

EG− F 2. (3)
_____________________________ 
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From Eq.(3), F = 0 is a necessary condition such that D(X)
is equal to A(X). The condition F = 0 may imposes too
many restrictions on the resulting Bézier surface. We take
the condition F = 0 into account to obtain an extended
Dirichlet functional

E(X) =

∫ ∫

R

(
E + G

2
+ λF )dudv, − 1 ≤ λ ≤ 1. (4)

Note that
√

EG− F 2 ≥ 0, here we restrict λ ∈ [−1, 1]
to ensure that (E + G)/2 + λF ≥ 0. When λ is set to
zero, then Eq. (4) is degenerated into Eq. (2), which is just
a Dirichlet one. When the value of λ is determined, all
the corresponding inner control points can be represented
as functions in λ by directly solving a system of linear
equations as the Dirichlet method does.

2.2. Estimating the value of λ

The main idea of the extended Dirichlet method is to
find a suitable value of λ such that |E(X) −A(X)| is very
close to zero. Then the minimal value of E(X) is also
close to the minimal value of A(X), which may lead to
a better result than that of the Dirichlet method. Given a
value of λ, we obtain the resulting surface Xλ(u, v) by
minimizing the functional E(X). Let the area of Xλ(u, v)
be h(λ). Then we will estimate the value of λ such that
h(λ) reaches the minimal in the interval [−1, 1]. To simplify
the estimation process, we approximate h(λ) by its Taylor
expansion approximation

h̄(λ) = h(0) + h′(0)λ + h′′(0)λ2/2.

Suppose that the possible root of h̄′(λ) in the interval [−1, 1]
is

t1 = −h′(0)/h′′(0).

Then h̄(λ) must reach its minimal in the interval [−1, 1]
at −1, 1 or t1. Finally, we set λ to be λ0 such that h̄(λ)
reaches its minimal in the interval [−1, 1]. It is obvious that

h̄(λ0) ≤ h̄(0) = h(0),

which means that the area of the resulting surface from the
extended Dirichlet method is equal to or less than that of
the resulting surface from the Dirichlet method.

3. The extended bending energy method

Suppose that the Bézier surface is determined by Eq.(1)
and the extended bending energy functional is given by

B(X) = ||Xuu||2 + ||Xvv||2 + α||Xuv||, α ∈ [−2, 2]. (5)

Given a value of α, we obtain the resulting surface Xα(u, v)
by minimizing the functional B(X). Let the area of Xα(u, v)
be g(α). Then we will estimate the value of α such that

g(α) reaches the minimal in the interval [−2, 2]. g(α) can be
simply approximated by its Taylor expansion approximation

ḡ(α) = g(2) + g′(2)(α− 2) + g′′(2)(α− 2)2/2.

ḡ(α) is a quadratic polynomial in α. Suppose that α0 is
the place where the minimum value of ḡ(α) in the interval
[−2, 2] occurs. Then α0 is possibly one of the three values,
i.e., −2, 2 or −g′(2)/g′′(2). And we have that

ḡ(α0) ≤ ḡ(2) = g(2),

which means that the area of the resulting surface from the
extended bending energy method is equal to or less than that
of the resulting surface from the bending energy method.

4. Examples and comparisons

The Dirichlet method obtains the resulting surface with
the minimal stretching energy, while the bending energy
method reaches the minimal bending energy. Both of them
can be used for approximating the solution the Plateau-
Bézier problem, which is to minimize the area of the
resulting surface. Since the minimal surface in the Plateau
problem has both the minimal area and zero mean curvature,
we compare these methods with both area and mean cur-
vature in the approximation problem of the Plateau-Bézier
problem.

Fig. 1 shows four bicubic cases, and the comparisons with
area and mean curvature are shown in Tables 1 and 2. In
Tables 1 and 2, MD, ED, MB and EB denote the Dirichlet
method, the extended Dirichlet method, the bending energy
method and the extended bending energy method, respec-
tively. Max|H| and Aver|H| denote the maximum and the
average of the absolute value of the mean curvature of the
resulting surface, respectively. As shown in Tables 1 and 2,
we may be able to say:

1) the Dirichlet method seems to reach the resulting
surface of a smaller area than that of the bending
energy method;

2) the extended Dirichlet method could reduce the area of
the resulting surface, but it seems to be not effective,
for it reduces at most 0.02% in these four cases;

3) when the boundary curves are extracted from a En-
neper’s surface, the Dirichlet method and the extended
Dirichlet method are able to reach the corresponding
Enneper’s surface (see Table 1, Fig.1(c));

4) in some cases, the extended bending energy method
may be very effective in reducing the area of the
resulting surface (see Table 1, Fig.1(d));

5) the resulting surfaces with smaller areas may have
larger absolute values of mean curvature (see Table
2, Fig.1(d) and Fig.2).
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Figure 1. Examples of the extended Dirichlet method.

Table 1. Comparisons on areas from different methods
Example MD ED MB EB

Fig. 1(a) 180.8742 180.8316 181.2321 180.9807
100% 99.98% 100.20% 100.05%

Fig. 1(b) 3303.0558 3302.3273 3307.4998 3304.8128
100% 99.98% 100.13% 100.05%

Fig. 1(c) 110.4390 110.4390 111.2089 111.1068
100% 100% 100.69% 100.60%

Fig. 1(d) 91.1152 91.1102 97.8972 87.4718
100% 99.99% 107.44% 96.00%

5. Conclusions

This paper discusses the approximation solution of the
Plateau-Bézier Problem and presents two new methods, i.e.,
the extended Dirichlet method and the extended bending
energy method. The resulting surfaces in the new methods
are dependent on the parameters λ and α. Simple methods
are provided to estimate the values of λ and α. Comparisons
with both areas and mean curvatures of the resulting surfaces
are also made in this paper. It shows that the resulting
surfaces from the new methods could have smaller areas
than those of the previous relative methods. In our future
work, we will do more tests on the Bézier surfaces of

higher degrees, and discuss the approximation solution of
the Plateau-B-spline problem.
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Table 2. Comparisons on mean curvatures from different methods
Example MD ED MB EB

Max|H| Aver|H| Max|H| Aver|H| Max|H| Aver|H| Max|H| Aver|H|

Fig. 1(a) 0.0559 0.0066 0.0877 0.0127 0.0559 0.0066 0.0559 0.0123
Fig. 1(b) 0.0659 0.0056 0.0525 0.0053 0.0128 0.0060 0.0389 0.0048
Fig. 1(c) 0 0 0 0 0.0573 0.0247 0.0530 0.0226
Fig. 1(d) 0.1770 0.0744 0.1773 0.0749 0.0587 0.0286 0.3630 0.1784
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Figure 2. Illustrations of Fig.1(d): (a) resulting surface from the bending energy method (b) resulting surface from
the extended bending energy method (c) curvatures of the two methods.
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