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Abstract

In this paper, we investigate the direct manipulation
problem of free form deformation with rational DMS spline
volume (RDMS-FFD). For the weights based direct manip-
ulation method, the solution of the weights can be achieved
by solving a linear system; for the control points based
method, the explicit solution of displacements of the control
points can be obtained, and some properties are also derived
from the results. For the constraint points inside the control
lattices, we use the weights based methods; for the constraint
points outside the control lattices, the control points based
method is adopted. Several examples are presented to show
the effectiveness of the proposed methods.

1. Introduction

Free-form deformation (FFD) has been one of the most
popular modeling tools in Computer Graphics and Computer
Aided Design. One limitation of the existing FFD methods
is the indirect manipulation of the deformation by modifying
control points or weights of the embedding tools. In order to
improve the controllability of FFD methods, it is a key issue
to make the deformed object pass through some constraint
points. That is, given some source points on an object to be
deformed and the corresponding target points, the adjusted
position of the control points or the changed values of
weights can be computed automatically. By using the direct
manipulation methods, it is more intuitive to model complex
objects with FFD methods, because the users don’t need to
understand the mathematics background of FFD methods.

In [1], we proposed a new FFD method called RDMS-
FFD by using rational DMS spline volumes. RDMS-FFD in-
herits some good properties of rational DMS-spline volume
and combines more deformation techniques than previous
FFD methods in a consistent framework, such as local
deformation, control lattice of arbitrary topology, smooth
deformation, multiresolution deformation and direct manip-
ulation of deformation. For a given objective point, we
can only move some vertices of the tetrahedral domain
towards the objective point, and increase the weight of the
corresponding control point that is closest to the objective

point, then all affected points with the rational DMS-volume
will move towards the objective point.

However, the exact displacements of the control points
and the weights have not been proposed in [1]. In this
paper, we will give the exact solution for direct manipulation
problem of RDMS-FFD. In general, we adopt the weights
based method for the constraint points inside the control
lattices,, and for the constraint points outside the control
lattices, we use the control points based method.

The rest of the paper is organized as follows. In Section
2, we introduce some related work on volume-based FFD
techniques and direct manipulation of FFD. Section 3 briefly
reviews RDMS volumes and RDMS FFD. Section 4 presents
the weights based direct manipulation method by minimizing
the change of control polygon. The control points based
direct manipulation method and its properties are presented
in Section 5. Conclusions and future work are presented in
Section 6.

2. Related work

Free-form deformation technique (FFD) is firstly proposed
by Sederberg and Parry [2], which is widely available and
almost all subsequent methods are based on it. Griessmair
and Purgathofer proposed a FFD method based on B-Spline
volumes, and optimized the mesh division after deformation
[3]. Kalra et al. proposed a Rational Free-Form Deformation
(RFFD) method to use a rational parametric volume to
simulate the movement of facial muscles [4]. The method
proposed by Lamousin and Waggenspack was based on
NURBS volumes and succeeded in raising the flexibility of
FFD [5]. However, the control lattice of the above methods
should be a regular parallelepiped or a uniformly arranged
shape. Hence, the users cannot predict the deformation
results correctly from the manipulation of the control lattice.

To overcome this limitation, many FFD techniques that
use control lattices with arbitrary topology have been pro-
posed in recent years. Coquillart proposed an extension of
free-form deformation (EFFD), which uses several low reso-
lution lattices, called ”chunk”, for deformation [6]. By using
the Catmull-Clark subdivision scheme, MacCracken and
Joy further extended the capability of FFD by introducing
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lattices of arbitrary topology [7]. Bechmann et al. proposed
continuous FFD (CFFD) based on barycentric coordinates
and Bézier tetrahedrons [8] . Moccozet and Magnenat-
Thalmann proposed Dirichlet FFD approach based on the
Voronoi structure defined within the convex hull of a set
of points [9]. By employing weighted T-spline volume as
deformation tools, Song and Yang proposed a more flexible
and adaptive FFD method [10]. Feng et al. proposed a
deformation technique with subdivision surface of arbitrary
topology [11].

There are many other FFDs based on surfaces or curves.
For more information, the reader can refer to the survey on
FFD [12].

In order to improve the controllability of FFD techniques,
several constraint FFD methods have been proposed. Hsu et
al. adopted least-square fitting approach to determine the
movement of the control points[13]. Hu et al. solved the di-
rect manipulation problem of NURBS based FFD explicitly
using constraint optimization [14]. Zhang and Sun proposed
the weights based method for direct manipulation problem
of NURBS based FFD [15]. The direct manipulation of a
generalized cylinder is presented in [16].

3. Free form deformation with rational DMS-
Spline volumes

In this section, we will review the rational DMS-Spline
volumes and the corresponding RDMS-FFD method pre-
sented in [1].

3.1. Rational DMS spline volumes

DMS-splines, introduced by Dahmen, Micchelli and Sei-
del in [17], are based on the simplex splines. We will
firstly review the formulation of the trivariate simplex splines
presented in [18].

A trivariate simplex spline M(x|x0, . . . , xn+3) of degree
n is a function of x ∈ R

3 over the half open convex hull of a
point set V = [x0, . . . , xn+3), depending on the n + 4 knots
xi ∈ R

3, i = 0, 1, . . . , n + 3. The basis function of trivariate
simplex splines can be defined recursively as follows. When
n = 0,

M(x|x0, . . . , xn+3)

=
{ 1

6|Vol
R3 (x0,...,x3)| , x ∈ [x0, . . . , x3),

0, otherwise.

When n > 0, select four points W = [xk0 , xk1 , xk2 , xk3 ]
from V, such that W is affine independent, then

M(x|x0, . . . , xn+3) =
3∑

j=0

λj(x|W)M(x|V\{xkj
}),

where
3∑

j=0

λj(x|W) = 1 and
3∑

j=0

λj(x|W)xkj
= x. In fact,

λj(x|W) are the barycentric coordinates of x with respect to
W.

In the following, we will review the construction of DMS-
spline volume: let Ω be an arbitrary proper tetrahedralization
of R

3 or some bounded domain D ⊂ R
3. The proper tetra-

hedralization means that every pair of tetrahedral domain
are disjoint, or share exactly one vertex, one edge, or one
face. Next, with every vertex x of Ω, we associate a cloud
of knots [t0, t1, · · · , tn], where t0 = t. For every tetrahedron
I = (p, q, r, s), we require
• all the tetrahedron [pi, qj , rk, sl] with i + j + k + l ≤ n

are nondegenerate.
• the set

Z = interior(
⋂

i+j+k+l≤n

[pi, qj , rk, sl])

satisfies
Z �= ∅

• if I has a boundary triangle, the knots associated to the
boundary triangle must lie outside of Ω.

Then the trivariate DMS-spline basis function N I
β(u) is

defined by means of trivariate simplex spline M(u|VI
β) as

N I
β(u) = |d(pi, qj , rk, sl)|M(u|VI

β).

where β is the 4-tuple(i, j, k, l),

VI
β = [p0, · · · , pi, q0, · · · , qj , r0, · · · , rk, s0, · · · , sl].

d(pi,qj , rk, sl) is six times of the volume of (pi, qj , rk, sl)
.

A degree n DMS-spline volume S(u) over Ω is then
defined as

S(u) =
∑
I∈Ω

∑
|β|=n

cI
βN I

β(u). (1)

where cI
β ∈ R

3 are the control points.
Generalizing (1) by associating a weight ωI

β with each
control point, we define rational DMS-spline volume as the
combination of a set of piecewise rational functions:

F(u) =
P(u)
Q(u)

=

∑
I∈Ω

∑
|β|=n

ωI
βcI

βN I
β(u)

∑
I∈Ω

∑
|β|=n

ωI
βN I

β(u)
.

The rational DMS-spline volumes can be also considered
as the trivariate generalization of the triangular NURBS
presented in [19]. They have many properties of the non-
rational schemes, such as convex hull property, local support
and affine invariance. Moreover, they have some additional
properties:

• Like the DMS-spline volumes, rational DMS-spline
volumes and their rational basis functions are also



Cn−1 continuous if the knots are in general position,
where n is the degree of rational DMS-spline.

• The weights of rational DMS-spline volumes are extra
degrees of freedom which influence local shape. If a
weight is increased, the volume will move towards the
corresponding control point.

3.2. RDMS FFD

In [1], the RDMS-FFD method is proposed by using ra-
tional DMS-spline volumes. The main steps for the RDMS-
FFD algorithm are as follows

• Construct the tetrahedral domain and DMS-lattice. Set
initial weights for rational DMS-spline volume. For
details, see [1].

• Calculate the parametric coordinates u = (u, v, w) for
each point on the object to be deformed. Nonlinear
conjugate gradient method is adopted to implement the
parametrization process. For details, see [1].

• Manipulate the vertices of the tetrahedral domain or
weights of the control points and update the DMS-
lattice, evaluate the new locations of the points accord-
ing to the new tetrahedral domain and DMS-lattice. We
will obtain a raw global deformation.

• Use multiresolution deformation technique to obtain
satisfied results.

4. Weights based direct manipulation of RDMS
FFD

4.1. Case of single point constraint

In this section, we will investigate the following problems:
given one source point S on the object with parameter value
u0 and the corresponding target point T , we want to modify
the weights of the rational DMS volume such that S is
moved to T while making the changes of weights as small
as possible.

In [15], Zhang et al proposed the solution of this problem
for NURBS based FFD. Instead of solving a linear system
for the Lagrange multiplier in NURBS based FFD, we
directly solve a linear system for the displacements of the
weights for RDMS-FFD.

If we denote the displacement of each weight ωβ,I by εβ,I,
then we have

S =

∑
I∈Ω

∑
|β|=n

ωβ,Icβ,INβ,I(u0)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)

T =

∑
I∈Ω

∑
|β|=n

(ωβ,I + εβ,I)cβ,INβ,I(u0)

∑
I∈Ω

∑
|β|=n

(ωβ,I + εβ,I)Nβ,I(u0)

If we denote T − S by D, then the constraint condition can
be written as

T − S − D = 0,

and the objective function is

Min
∑
I∈Ω

∑
β|=n

ε2
β,I.

Following the Lagrange multiple method, we can construct
the Lagrange function as following,

L =
∑
I∈Ω

∑
β|=n

ε2
β,I + λ(T − S − D) (2)

where λ = (λ1, λ2, λ3) is the Lagrange multiplier. By setting
∂L
∂λ1 = ∂L

∂λ2 = ∂L
∂λ3 = 0, ∂L

∂ε1
β,I

= ∂L
∂ε2

β,I
= ∂L

∂ε3
β,I

= 0, we have

⎧⎨
⎩

T = S + D

2εβ,I = λ
∂D

∂εβ,I

(3)

After some computation, we have

D =

∑
I∈Ω

∑
|β|=n

εβ,Icβ,INβ,I(u0)S� − S⊥ ∑
I∈Ω

∑
|β|=n

εβ,INβ,I(u0)

(S� +
∑
I∈Ω

∑
|β|=n

εβ,INβ,I(u0))S�

∂D
∂εβ,I

=
(cβ,I − T)N2

β,I(u0)
S� +

∑
I∈Ω

∑
|β|=n

εβ,INβ,I(u0)
(4)

where
S� =

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)

S⊥ =
∑
I∈Ω

∑
|β|=n

ωβ,Icβ,INβ,I(u0)

From (3) and (4), we obtain

λ =

2(S� +
∑
I∈Ω

∑
|β|=n

εβ,INβ,I(u0))2(T − S)

∑
I∈Ω

∑
|β|=n

(cβ,I − T)(cβ,I − S)N3
β,I(u0)

(5)

Submitting (5) into (3), we have

εβ,I =

(S� +
∑
I∈Ω

∑
|α|=n

εα,INα,I(u0))(T − S)(cβ,I − T)N2
β,I

∑
I∈Ω

∑
|α|=n

(cα,I − T)(cα,I − S)N3
α,I(u0)

(6)
Hence, we can obtain m equations as (6), where m is the
number of control points of RDMS volume. These equations
can be rewritten as matrix form as follows,

Mε = b, (7)

where ε is the vector of displacement of each weight. Hence,
we obtain

ε = M−1b. (8)



(a)

(b)

Figure 1. Weight-based direct manipulation of RDMS-
FFD:(a)original horse model and the constraint points,
where the red point is the source point, and the green
one is the target point; (b) deformation result.

Figure 1 shows an example of weight-based direct manip-
ulation. In order to show the results more clearly, we only
present the boundary control points of the control lattices in
this paper.

4.2. Case of multiple constraint points

Suppose that Si are the source points on the object with
parameter value ui, and Ti, are the corresponding target
points, i = 1, · · · , l. We denote Di = Ti − Si, then the
corresponding Lagrange function can be constructed as

L =
∑
I∈Ω

∑
β|=n

ε2
β,I +

l∑
i=0

λi(Ti − Si − Di) (9)

where λi = (λ1
i , λ

2
i , λ

3
i ) is the Lagrange multiplier. By

setting ∂L
∂λ1

i
= ∂L

∂λ2
i

= ∂L
∂λ3

i
= 0, ∂L

∂ε1
β,I

= ∂L
∂ε2

β,I
= ∂L

∂ε3
β,I

= 0,
we have ⎧⎪⎨

⎪⎩
Ti = Si + Di,

2εβ,I =
l∑

i=0

λi
∂Di

∂εβ,I

(10)

where

Di =

∑
I∈Ω

∑
|β|=n

εβ,Icβ,INβ,I(ui)S�
i − S⊥

i

∑
I∈Ω

∑
|β|=n

εβ,INβ,I(ui)

(S�
i +

∑
I∈Ω

∑
|β|=n

εβ,INβ,I(ui))S�
i

,

∂Di

∂εβ,I
=

(cβ,I − T)N2
β,I(ui)

S�
i +

∑
I∈Ω

∑
|β|=n

εβ,INβ,I(ui)
,

S�
i =

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(ui),

S⊥
i =

∑
I∈Ω

∑
|β|=n

ωβ,Icβ,INβ,I(ui).

Then the displacement of each control point can be obtained
by solving the linear system (10).

5. Control points based direct manipulation of
RDMS FFD

5.1. Case of single point constraint

In this section, we will investigate the following problems:
given one source point S on the object and the corresponding
target point T , we want to modify the control points of
the rational DMS volume such that S is moved to T while
making the change of control polygon as small as possible.

In [14], Hu et al proposed the solution of this problem
for NURBS based FFD. For RDMS-FFD, the similar result
can be obtained.

If we denote the displacement of each control point cβ,I
by εβ,I, then the constraint condition is

T − S −

∑
I∈Ω

∑
|β|=n

εβ,Iωβ,INβ,I(u0)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)
= 0, (11)

and the objective function is

Min
∑
I∈Ω

∑
|β|=n

‖εβ,I‖2. (12)

Following the Lagrange multiple method, we can construct
the Lagrange function as following,

L =
∑
I∈Ω

∑
|β|=n

‖εβ,I‖2+λ(T−S−

∑
I∈Ω

∑
|β|=n

εβ,Iωβ,INβ,I(u0)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)
)

(13)
where λ = (λ1, λ2, λ3) is the Lagrange multiplier. By setting
∂L
∂λ1 = ∂L

∂λ2 = ∂L
∂λ3 = 0, ∂L

∂ε1
β,I

= ∂L
∂ε2

β,I
= ∂L

∂ε3
β,I

= 0, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T = S +

∑
I∈Ω

∑
|β|=n

εβ,Iωβ,INβ,I(u0)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)
,

2εβ,I = λ
ωβ,INβ,I(u0)∑

I∈Ω

∑
|β|=n

ωβ,INβ,I(u0)

(14)



From (14), we can obtain the explicit solution of the
displacement,

εβ,I =

ωβ,INβ,I(u0)
∑
I∈Ω

∑
|α|=n

ωα,INα,I(u0)

∑
I∈Ω

∑
|α|=n

ω2
α,IN

2
α,I(u0)

(T − S) (15)

Because RDMS volume has the local properties, not all
the control points are modified during the manipulation
process. From(15), some properties of control points based
direct manipulation can be derived.
Corollary 1. The displacement of each control point is
parallel with the displacement vector of the constraint points
T − S, and the ratio of the displacement lengths equals the
ratio of the coefficient of the control points.
Corollary 2. The sum of the displacement of each control
point equals

[
∑
I∈Ω

∑
|α|=n

ωα,INα,I(u0)]2

∑
I∈Ω

∑
|α|=n

ω2
α,IN

2
α,I(u0)

(T − S) (16)

That is, the sum of the displacement of each control point is
larger than the displacement of the constraints points T −S.

The formula (16) can be derived from that the sum of
RDMS basis functions equals 1.

As the NURBS based FFD, the control points based direct
manipulation of RDMS-FFD also has the commutative,
associative and invertible properties.

Figure 2(a) and Figure 2 (b) show an example of control
point based direct manipulation with single constraint point.

5.2. Case of multiple constraint points

Suppose that Si are the source points on the object with
parameter value ui, and Ti, are the corresponding target
points, i = 1, · · · , l. We denote Di = Ti − Si, then the
corresponding Lagrange function can be constructed as

L =
∑
I∈Ω

∑
β|=n

ε2
β,I+

l∑
i=0

λi(Ti−Si−

∑
I∈Ω

∑
|β|=n

εβ,Iωβ,INβ,I(ui)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(ui)
)

(17)
where λi = (λ1

i , λ
2
i , λ

3
i ) is the Lagrange multiplier. By

setting ∂L
∂λ1

i
= ∂L

∂λ2
i

= ∂L
∂λ3

i
= 0, ∂L

∂ε1
β,I

= ∂L
∂ε2

β,I
= ∂L

∂ε3
β,I

= 0,
we have⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ti = Si +

∑
I∈Ω

∑
|β|=n

εβ,Iωβ,INβ,I(ui)

∑
I∈Ω

∑
|β|=n

ωβ,INβ,I(ui)
,

2εβ,I =
l∑

i=0

λi
ωβ,INβ,I(ui)∑

I∈Ω

∑
|β|=n

ωβ,INβ,I(ui)

(18)

Then the displacement of each control point can be obtained
by solving the linear system (18).

(a) (b)

(c) (d)

Figure 2. Control points based direct manipulation of
RDMS-FFD: (a) original bunny model with one con-
straint point; (b)deformation result; (c) original model
with multiple constraint points; (d) deformation results.

As the NURBS based FFD, the multiple point constraints
can also be decomposed into separate manipulations of
single point constraints.

Figure 2(c)(d) and Figure 3 present examples of control
points based direct manipulation with multiple constraint
points.

In general, for the constraint points inside the control
lattices, we use the weights based methods; for the constraint
points outside the control lattices, the control points based
method is adopted. In case of the constraint points are
both inside and outside of the control lattice, from the
decomposition property of the proposed methods, we can
firstly use the control points based method for the outside
constraint points, and then use the weights based method
for the inside constraint points. In particular, because the
investigated problems in this paper are linear problems,
the manipulation can be implemented in realtime after the
parametrization process is finished.

6. Conclusion

In this paper, the direct manipulation problem of RDMS-
FFD is addressed. For the weights based direct manipulation
method, the solution of the weights can be achieved by
solving a linear system; for the control points based method,
the explicit solution of displacements of the control points
can be obtained. We also present several examples to show
the effectiveness of the proposed methods.



(a)

(b)

Figure 3. Direct manipulation of dolphin model: (a)
original model with multiple constraint points; (b) defor-
mation results.

In the future, we will add some other object functions
into the framework, such as volume-preserving constraints
and area-preserving constraints.
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