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a b s t r a c t

A new method is presented for computing the minimum distance between a point and a NURBS curve.
It utilizes a circular clipping technique to eliminate the curve parts outside a circle with the test point as
its center point. The radius of the elimination circle becomes smaller and smaller during the subdivision
process. A simple condition for terminating the subdivision process is provided, which leads to very few
subdivision steps in the new method. Examples are shown to illustrate the efficiency and robustness of
the new method.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper discusses how to compute the minimum distance
between a point and a NURBS curve and to return the nearest
point on the curve as well as its corresponding parameter, which
is also called the point projection problem of a NURBS curve. It
is essential for interactively selecting curves [1,2], for the curve
fitting problem [2,3], and for reconstructing curves [4–6]. It is also
a key issue in the ICP (iterative closest point) algorithm for shape
registration [7].
Given a point p and a NURBS curve q(u) of degree p, the point

projection problem can be described mathematically as to find u∗,
such that

‖p− q(u∗)‖ = min{‖p− q(u)‖ | u ∈ [a, b]}.

If u∗ 6∈ {a, b}, we have the following necessary condition

(p− q(u∗)) · q′(u∗) = 0, (1)

where q′(u) denotes the derivative of q(u). Thus, the point
projection problem is turned into a root-finding problem of a
polynomial equation [8–10]. There are two steps for solving the
root-finding problem, the first one is to remove the parameter
intervals which contain no solution, and the second one is to
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compute local extrema in each remaining parameter interval
with numerical methods such as the Newton method [11–14].
The second step may be considered as the same in different
methods, and the first stepwill play an important role in thewhole
algorithm. Zhou et al. use both the Projected-Polyhedron and
Linear Programming methods for the first step [9], while Johnson
and Cohen utilize the tangent conemethod instead [10]. The above
two methods are also valid for the point projection problem of
NURBS surfaces. Another method based on spline functions can
be found in [15]. Other methods for root-finding problem can be
found in [16,17].
There are two main disadvantages of the above root-finding

methods. Firstly, as shown in Fig. 1(c), usually a multiple root does
not map to the nearest point, however, it is more sensitive to the
numerical method than a single root, and needsmore computation
to carefully deal with. Secondly, not all roots need to be computed.
Actually, only one of the four kinds of roots may reach local
minimum(see Fig. 1), andusually only one of all the localminimum
roots maps to the nearest point and needs to be computed [18]. In
the worst case, as shown in Fig. 1(a)–(c), the nearest point does
not map to a root of Eq. (1) and it is unnecessary to compute all of
the roots.
Several geometric methods are used to reduce the unnecessary

computation on finding the roots [2,5,19]. These methods work
for both NURBS curves and surfaces and seem geometrically more
intuitive, reasonable and robust. Peigl and Tiller suggest directly
turning the NURBS curve into several line segments within a given
tolerance and estimating the parameter of the nearest point based
on these line segments [5]. Ma and Hewitt point out that the
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Fig. 1. Four cases of f (u) in a sub-interval. f (u)will reach the local minimum only
in the case of 1(d).

method of [5] is time-consuming, and propose a method based
on the control polygon of the NURBS curve [2]. Their method is
efficient for planar NURBS curve, but it may fail for the NURBS
curve in R3 space [20]. Selimovic presents a hyperplane clipping
method for the point projection of NURBS curves [19]. If all the
control points of the NURBS curve and the test point are on the
different sides of a hyperplane which passes through an end-
point of the curve and perpendicular to the direction from the
test point to the end-point, then the end-point is the nearest
point. In these methods, when the sub-curve is flat enough or
the parameter interval of the sub-curve is smaller than a given
tolerance, the subdivision of the sub-curves is terminated and
numerical methods such as Newton’s method are utilized to solve
the local solution. The subdivision theory of NURBS curves can be
found in [21–23].
For B-spline surfaces, Chen et al. present a method based on

the subdivision of a B-spline function instead of the subdivision of
the B-spline surface. They provide a sufficient condition that the
nearest point is on the boundary curves of a B-spline surface, and
show that the new exclusion criteria in that paper are superior to
other comparable exclusion criteria. However, they do not cover
the rational case, i.e., neither NURBS curves or NURBS surfaces.
This paper presents a circular clipping method for the point

projection problem of NURBS curves. Based on the objective
squared distance function between the test point and the curve,
we provide a sufficient conditionwhether a curve is outside a circle
(or a sphere in R3 space). The elimination circle is utilized, whose
center point is just the test point p. We also provide a method
to obtain the initial value of the radius of the elimination circle.
We eliminate the curve parts which are outside the elimination
circle. Then, we iteratively subdivide the remaining curve parts
to obtain a new but smaller radius of the elimination circle, and
do the similar elimination work for these remaining curve parts.
A simple termination condition is provided. We show that the
new termination condition will be satisfied after a finite number
of subdivision steps, even when the remaining parameter interval
is large or the sub-curve is not flat enough. This termination
condition leads to little subdivision time in the new method.
When the subdivision process is terminated, the objective squared
distance function is convex and has exactly one minimum in its
local parameter domain, which ensures that the Newton method
will converge an accurate result [13,24]. Examples are shown to
illustrate the efficiency and robustness of the new method.
This paper is organized as follows. Section 2 presents the outline

of the new algorithm. Section 3 compares the new method with
other comparablemethods. Analyses and examples are also shown
in this section. Some conclusions are drawn at the end of this paper.

2. Outline of the circular clipping algorithm

This section presents a circular clipping algorithm for comput-
ing the minimum distance between a point and a NURBS curve,
which is shown to be superior to the hyperplane clipping method
of [19]. The new method needs to compute the squared distance
function between the test point and the curve into a B-spline or
Bézier form. It is much more efficient to compute the squared
Fig. 2. (a) A curve part can be eliminated with the hyperplane method of [19].
(b) Part of a curve inside a circle, even if all its control points are outside a circle.
(c) A curve part can be eliminated with the circular clipping method but not the
hyperplane method of [19].

distance function between the test point and a Bézier curve in
a Bézier form. In this paper, we first subdivide the NURBS curve
into several rational Bézier curves, which may leads to better effi-
ciency. Without loss of generality, we may assume that the given
curve is a rational Bézier curve. The basic idea is as follows. Sup-
pose that point p is a test point, point q is a point on the Bézier
curve, and C(p, ‖pq‖) is a circle (or sphere in R3 space) with the
center point p and its radius ‖pq‖. The nearest point to the point p
must be inside the circle C(p, ‖pq‖). Thus, any curve part outside
the circle C(p, ‖pq‖) can be directly eliminated. We also call circle
C(p, ‖pq‖) the elimination circle. During the subdivision process,
point q becomes closer and closer to the test point p and the radius
of the elimination circle becomes smaller and smaller, which will
lead to better elimination efficiency.
One of the key issues for the circular clipping method is to

judge whether a curve is outside a circle. If all the control points
of a Bézier curve are inside a circle, then the Bézier curve must
be inside the circle too. Thus, the elimination circle seems to be
useful to compute the maximum distance between a point and a
Bézier curve. Unfortunately, even if all the control points of a Bézier
curve are outside a circle, we cannot ensure that the Bézier curve
is outside the circle (see Fig. 2(b)). It does not seem easy to judge
whether a NURBS curve is outside a circle directly by its control
polygon. To overcome this problem, we introduce the objective
squared distance function for judging whether a curve is outside
a circle. Suppose that the curve is q(u) with its control points
{pi}

p
i=0 and the test point is p. From the formula for the product of

two B-spline basis function in [25], the objective squared distance
function can be rewritten into the following Bézier form

f (u) = (q(u)− p)2 =

2p∑
i=0
B̂i,2p(u)ŵiP̂i

2p∑
i=0
B̂i,2p(u)ŵi

. (2)

From the convex hull property, we obtain the following
property.

Property 1. Given α ∈ R+. If P̂i ≥ α, then f (u) ≥ α, for ∀u ∈
[0, 1]. Thus, the corresponding curve is outside the elimination circle
C(p,
√
α).

In Property 1,α denotes the currentminimum squared distance
between the test point p and the curve q(u). Usually, the smaller
the value of α, the better the elimination efficiency. The initial
value of α can be simply set to the value min{‖p0p‖2, ‖ppp‖2}. A
fast sampling technique using a forward differencemethod is quite
favorable for selecting a point on the curve q(u)which is very close
to the test point p, which will greatly improve the selection of an
initial value of α.
We provide a simple termination condition to reduce the

subdivision time in the circular clipping algorithm. When the
termination condition is satisfied, the minimum value can be
robustly solved by directly using the hybrid method of [24]
combining binary search andNewton’smethod. From the variation
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Fig. 3. Efficiency illustration of the new method.

diminishing property, we obtain the following property which
presents such a termination condition.

Property 2. If there exists an integer number k ∈ [1, 2p − 1], such
that P̂i > P̂i+1, for ∀i < k, and that P̂i < P̂i+1, for ∀i ≥ k. Then f (u)
has exactly one minimum value.

Let Var(f (u)) be the variant number of the curve f (u), which
is defined as the number of sign changes in the sequence {P̂i+1 −
P̂i}m−1i=0 , where {P̂i} are the control points of f (u). From the variation
diminishing property of NURBS curve, after a finite number of
steps of subdivision, the variant numbers of all the sub-curves of
f (u) are less than or equal to 1. That is to say, either Property 2
or Property 1 with α equal to the squared radius of the clipping
circle can be satisfied after a finite number of subdivision steps.
When Property 2 is satisfied, the hybrid method of [24] combining
binary search and Newton’s method is robust for computing the
minimum. Thus, both the efficiency and the robustness of the
algorithm will be improved by using Property 2.
The outline of the circular clipping algorithm mainly has three

steps. Firstly, we compute the objective squared distance function
in a Bézier form. Secondly, we iteratively subdivide and eliminate
the remaining curve parts with the elimination circle with its
center point p and its radius

√
α, until either Property 1 with α

equal to the squared radius of the clipping circle or Property 2
is satisfied. Finally, the hybrid method of [24] combining binary
search and Newton’s method is utilized to compute the locally
nearest point as well as its corresponding parameter for each
remaining curve part.

3. Analyses and examples

Compared with the root-finding methods, the circular clipping
method is able to eliminate most of the roots which do not map to
the nearest point. As shown in Fig. 1(a)–(c), the squared distance
function f (u) reaches local minimum values at one of the end-
points of the curve parts, thus the corresponding curve parts are
outside the elimination circle and the corresponding root can be
eliminated. Since the radius of the elimination circle will become
smaller and smaller, and part or all of the roots shown in Fig. 1(d)
can be eliminated (also see Fig. 3(b)).
We also compare the newmethodwith the geometric exclusion

methods based on the subdivision of the NURB curve. The control
polygon method of [2] is efficient for curves in R2 space. However,
it may fail for curves in R3 space [20]. We compare the circular
clipping method with the hyperplane clipping method. First of all,
the exclusion criteria of our method utilizes a considerably larger
clipping area than the criteria of [19]. As shown in Fig. 2(a), the
hyperplane clipping method of [19] eliminates the curve parts
inside region A, while the circle clipping method may eliminate
the curve parts inside both regions A and C.
Next, as shown in Fig. 3, the circular clipping method

can remove more unnecessary parameter intervals than the
hyperplane clipping method of [19]. In Fig. 3(a), p is a test point,
{pi}4i=0 are control points of a NURBS curve. In this case, the curve
is outside the elimination circle C(p, ‖pp0‖) and the exclusion
criteria in the new method is satisfied. However, since (p4 −
p0)(p0 − p) < 0, the exclusion criteria in [19] is not satisfied.
In Fig. 3(b), the shape of the NURBS curve is complicated. After
subdividing the curve, we obtain two sub-curves, one is in black,
and the other is in red. The exclusion criteria in [19] is still not
satisfied for both sub-curves. The sub-curve in red is outside the
elimination circle C(p, ‖pp0‖) and can be removed by the circular
clipping method.
Again, there are much fewer subdivision steps in the circular

clipping method than those in the hyperplane method of [19],
which can lead to better efficiency in the new method. For
NURBS curves in Rd space, though the computation time of each
subdivision step in the circular clipping method is about 4/d times
of that in the hyperplane clipping method, the total computation
time on subdivision in the new method is much less than that in
the hyperplane clipping method. Fig. 4 shows three non-rational
cases and three rational cases. And the test points are sampled
along their offset curves. We compare the new method with the
methods in [2,19] by using these examples. The corresponding
results are shown in Table 1. Both the subdivision time and the
computation time of the new method is less than those of the
other two methods. And the computation time in [19] is the most
expensive among the three methods. However, in the circular
clipping method, there is an extra computation time on obtaining
the objective squared distance function determined by Eq. (2) in a
Bézier form.
Finally, the Newtonmethod in the hyperplane clipping method

of [19] needs a good initial value and its resulting efficiency
and accuracy are very sensitive to the given tolerance for ter-
minating the subdivision process. On the other hand, the circu-
lar clipping method works less sensitively to the initial value and
Fig. 4. Examples. (a) A cubic Bézier curve (b) a quartic Bézier curve (c) a quintic Bézier curve (d) a cubic rational Bézier curve (e) a quartic rational Bézier curve (f) a sextic
rational Bézier curve.
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Table 1
Comparison on subdivision time and computation time

Subdivision time Computation time
Method Ma Selimovic Ours Ma (ms) Selimovic (ms) Ours (ms)

Fig. 4(a) 5.55 18.8 0.14 0.020 0.634 0.004
Fig. 4(b) 6.29 24.33 0.38 0.024 2.414 0.010
Fig. 4(c) 6.06 26.62 0.35 0.027 3.112 0.014
Fig. 4(d) 6.15 19.5 0.31 0.024 0.784 0.018
Fig. 4(e) 7.23 27.34 1.0 0.046 3.103 0.027
Fig. 4(f) 9.36 35.62 2.2 0.078 5.418 0.053
Fig. 5. Correctness comparison. (a) A quartic Bézier curve. (b) Resulting closest points from themethod of Ma and Hewitt [2] and the method of Selimovic [19]. (c) Resulting
closest points from the circular clipping method.
ensures convergence to an accurate result. Fig. 5 shows such an
example. Fig. 5(a) shows a quartic Bézier curve with its con-
trol points (−3.6164,−18.7790)T, (3.7808, 26.5070)T, (−0.6575,
−45.9815)T, (−2.2353, 44.1267)T, (17.1765,−1.4683)T, and the
test points are sampled along the circle with its radius 0.1340 and
its center point (0.5057,−2.4590)T. Fig. 5(b) and (c) magnify the
local region framed by a green rectangle. The lines are drawn from
the test points to the corresponding closest points on the Bézier
curve. The results from the method of Ma and Hewitt [2] and
the method of Selimovic [19] are similar as shown in Fig. 5(b). In
Fig. 5(b), the lines in red denote incorrect results from these two
methods, the corresponding lengths of which are 0.1341, 0.1327
and 0.1209, respectively. Fig. 5(c) shows the result from the circu-
lar clipping method, where the corresponding lines in green are of
lengths 0.1296, 0.1092 and 0.0909, respectively. It shows that the
circular clippingmethod ismore robust than themethods in [2,19].

4. Conclusions

This paper presents a circular clipping method for computing
the minimum distance between a point and a NURBS curve. Com-
pared with the root-finding methods, the new method can elimi-
nate most of the roots of Eq. (1) and reduce most of the computa-
tion time on solving the roots. Compared with other comparable
geometric methods in [2,19], the new method can eliminate more
curve parts and has better robustness. Examples are shown to il-
lustrate the efficiency and robustness of the new method.
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