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Abstract—This paper describes an efficient hybrid
laser/vision appearance-based approach to provide a mobile
robot with rich 3D information about its environment. By
combining the information from an omnidirectional camera
and a laser range finder, reliable 3D positioning and an

accurate 3D representation of the environment is obtained
subject to illumination changes even in the presence of
occluding and moving objects. A scan matching technique
is used to initialize the tracking algorithm in order to
ensure rapid convergence and reduce computational cost. The
proposed method is validated in an indoor environment using
data taken from a mobile robot equipped with a 2D laser
range finder and an omnidirectional camera.

I. INTRODUCTION

Autonomous navigation in unknown environments has

been the focus of attention in the mobile robotics community

for the last three decades. When neither the location of

the robot nor a map of the region are known, localization

and mapping are two tasks that are highly inter-dependent

and must be performed concurrently. This problem, known

as ”Simultaneous Localization and Mapping” (SLAM), was

originally introduced by Smith and Cheeseman [22], [20].

Localization methods based only on proprioceptive sensors

give bad results due to modeling approximations (rolling

without slippage,...) which are not satisfied and dead reck-

oning drift. Mobile robots have to be equipped with a

perception system that enables them to perform accurate

localization and reconstruct a reliable and consistent repre-

sentation of the environment.

Various techniques to solve the SLAM problem using laser

range finders have been extensively studied. The information

provided by laser range finders can be used not only to

obtain a more accurate position estimate, but also to measure

the distance to nearby objects. Localization schemes based

on laser scan matching involve computing the most likely

alignment between two sets of slightly displaced laser scans.

Unfortunately, the most extensively used scan matching

algorithm, ”Iterative Closest Point” (ICP) [2], suffers from

a high computational cost when dealing with large-scale

environments due to its expensive point-to-point association

rule. In order to reduce the computational resources spent on

searching for these point associations and scale up to larger
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environments, Diosi and Kleeman proposed the Polar Scan

Matching method [10], which simply matches points with

the same bearing.

While laser-based schemes perform reasonably well in

practice, the use of 2D laser alone limits SLAM to planar

motion estimation and does not provide sufficiently rich

information to reliably identify previously explored regions.

Vision sensors are a natural alternative to laser range find-

ers because they provide richer perceptual information and

enable 6 degrees of freedom motion estimation. One of the

first attempts to solve the SLAM problem using monocular

vision was the work by Broida et al. [4]. Since then faster

computers and ways of selecting sparse but distinct features

have allowed new approaches to emerge.

Davison [8] proposes a real-time approach that attempts

to minimise drift by detecting and mapping only long-

term landmarks during the SLAM process. This approach,

however, is not appropriate for long displacements because

of algorithmic complexity and growing uncertainty. Another

interesting approach better suited for outdoor environments

and large displacements was proposed in [18].

Standard cameras only have a small field of view (typically

between 40◦ and 50◦) and are easily affected by occlusion. It

was shown in [9] that a larger field of view (e.g. using fish-

eye lens) makes it easier to find and follow salient landmarks.

In contrast, omnidirectional cameras provide full 360◦ field

of view, which makes easier to recognize previously observed

places whatever the orientation of the robot is. Furthermore,

in order to avoid the limitations due to planar projections,

images captured by these cameras can be uniquely mapped

to spherical images [13].

Many authors avoid the problems of monocular algorithms

(i.e. scale factor, initialization, observability) by using multi-

view constraints (see [14] for a survey). Others try to com-

plement, merge or fuse the information of different sensors.

In [23] a combination of ultrasonic and vision sensors is

used to produce an occupancy grid representation of the en-

vironment. Fu et al. [11] extract environmental features from

monocular vision and laser range finders to build metric maps

and then fuse them using Kalman Filter to build a grid map

simultaneously. Complementary information from cameras

(panoramic or omnidirectional) with the depth information

acquired by a laser range finder is not a new idea; see e.g. [6],



[5], [3].

In this paper, an appearance-based approach for indoor

localization and mapping is proposed that merges data from

an omnidirectional camera and a laser range finder to tackle

the drawbacks of both sensors. The proposed framework

adapts and extends the ideas presented in [7], [21], [17].

An initial guess of the position provided by scan matching

is used to initialize the tracking algorithm to ensure rapid

convergence and reduce computational cost.

II. VERTICAL LINE EXTRACTION AND FLOOR DETECTION

FROM OMNIDIRECTIONAL IMAGES AND LASER SCANS

It is a well known fact that geometrical structures such as

lines or planes characterize well a human-made environment.

When using an omnidirectional camera, vertical lines in the

scene (e.g. walls, facades, doors, windows) project as quasi-

radial lines onto the image. A Hough transform was used to

detect prominent lines from a binary edge image. Since the

camera is calibrated, the image center (i.e, where all radial

lines intersect) is available. It can also be approximated by

the center of the mirror border (assumed to be a circle) by

using a circle detector to improve accuracy. Finally, the lines

detected by the Hough transform which intersect the image

center are marked as radial lines. Thanks to the calibration

between the laser and the camera, it is possible to project the

laser trace onto the omnidirectional image. Subsequently, at

each intersection point between the laser trace and a radial

line, a depth measurement can be determined which then

fully characterizes the vertical lines in the 3D scene [12].

Firstly, it is assumed that the distance between the laser

frame and the floor is approximately known (which requires

the plane to be horizontal). It is also assumed that the

pose between the camera and laser frames is correctly

estimated. Under these hypotheses, the laser scan can be

shifted along the vertical lines and used to predict where a

virtual laser trace, corresponding to the floor, should project

onto the omnidirectional image. Due to calibration errors, the

predicted trace does not exactly match the real boundary of

the floor observed in the image. In practice, the neighborhood

of the predicted trace is searched for the closest element of

contour detected in the image. This match is finally taken as

the intersection between the floor plane and the walls and

is integrated into a partial 3D model. Figure 1(a) shows the

predicted laser measurements projected onto the floor in blue.

From the zoomed image in Fig. 1(c) it can be seen that in

certain cases the prediction may be wrong as in the case of

the fire-extinguisher which breaks the planarity hypothesis of

the wall. Figure 1(b) shows in white the result of applying

the Canny edge detector to the entire image and in yellow the

detected edge points found by searching the neighborhood

of the laser floor plan, therefore giving a more accurate floor

estimation. A better view of this correction can be seen in

Fig. 1(d) where overlapping traces are shown.

III. AUGMENTED SPHERICAL VIEW

In this section, a novel robot-centered representation is

described that is well adapted to the appearance-based SLAM

(a) (b)

(c) (d)

Fig. 1. Floor Detection 1(a) Line extraction and laser re-projection shifted
at floor level. 1(b) Correct floor detection. 1(c) and 1(d) Zoom

method. Central omnidirectional cameras can be modeled

using two consecutive projections [13]: a spherical projection

followed by a perspective one. An omnidirectional image

can thus be mapped onto a sphere by means of an inverse

projection. A point P ∈ R
3 is projected as a point q on the

unit sphere S2 and the projection is given by q = P

‖P ‖ .

The coordinates of q can be expressed using standard

spherical coordinates. The aim of this section is to show

how this spherical representation can be constructed. Since

the omnidirectional camera has been calibrated, the intrinsic

parameters are known and the omnidirectional image plane

Ip(u, v) can be mapped onto the unit sphere image I(φ, θ).
This mapping is performed in four steps:

a) Sampling: First, the unit sphere is sampled at a

constant angle in a spherical grid defined with the maximal

radius of the omnidirectional image in φ and the laser points

in θ, to respect both laser sampling and omnidirectional

sampling.

b) To image plane: The spherical points q correspond-

ing to couples (φ, θ) are mapped onto the image plane using

the ”Unified Projection Model” defined in [16], which is an

extension of Geyer’s [13] and Barreto’s [19] models’.

c) Interpolation: The spherical image is obtained by

interpolating the omnidirectional intensity image around the

projected points as shown in Fig. 2(a).

d) Hybrid laser/image spherical view: Finally, the aug-

mented spherical view is constructed using the depth in-

formation from the laser range finder and the floor plane,

together with lines extracted from the omnidirectional image.

In order to have a more dense estimation in the sphere, the

laser trace is propagated down to the floor and upwards. The

resulting spherical image is shown in Fig. 2(b).

In summary, the current augmented spherical view is

denoted by S = {I, P } and the reference spherical view

by S
∗ = {I∗, P ∗}. A superscript ∗ will be used throughout

the paper to designate the reference view variables. P is

initialized from the laser scan and the vertical 3D lines as



(a) (b)

Fig. 2. Augmented spherical view. 2(a) Grey levels on the unit sphere.
2(b) Depth spherical image.

shown in Fig. 3.

IV. EFFICIENT HYBRID LASER/VISION

APPEARANCE-BASED LOCALIZATION

The main challenge of localization in the context of indoor

environments is to obtain reliable odometry subject to illu-

mination changes in the presence of occluding and moving

objects. As expected for an odometry-based approach, the

objective is to compute the trajectory of the robot (i.e. the

laser/vision sensor) along a sequence by integrating elemen-

tary displacements estimated from the successive spherical

views registered during motion.

An appearance-based localization method is proposed

which minimizes a non-linear cost function directly built

from the augmented spherical view defined above. As men-

tioned in the previous section, each pixel q of the spherical

view S is associated with a brightness function I(P) and is

augmented with the depth of the associated 3D point (when

data is available). In the following, the reference template

is denoted R∗ = {q∗
1, . . . ,q

∗
n}, which defines the subset of

the reference spherical view S
∗ where both the grey level

and the depth values are available, where n is the number of

pixels .

A. Sphere-to-sphere mapping

Consider a 3D point P
∗ ∈ R

3 and its projection q∗

onto the unit sphere. Using homogeneous coordinates, the

spherical parameterization (θ, φ, ρ), gives:

P
∗ =





ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)

ρ cos(φ)
1



 (1)

and

q∗ =
P

∗

‖P ∗‖
=





cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)
1



 . (2)

The motion of the sensor or objects within the scene

induces a deformation of the reference template. Denote

T = (R, t) ∈ SE(3) the true current sensor pose relative

to the reference sensor pose (homogeneous transformation

Fig. 3. Augmented spherical views: at each pixel on the unit sphere is
associated with a grey level intensity and the corresponding depth of the
3D point.

matrix). The function w(P ∗,T) which warps the current

sphere onto the reference one is defined as

I
∗(P∗) = I

(
w(P ∗,T)

)
, ∀P ∗ ∈R∗. (3)

In order to reduce computational time, the warping func-

tion is applied to the reference template R∗ only.

The warping function w(P ∗,T) defines a one-to-one

mapping q∗ ← qcur from the current sphere to the reference

sphere such that

qcur =
P

cur

‖P cur‖
=

TP
∗

‖TP ∗‖
. (4)

The current image I is then interpolated at points qcur to

obtain the corresponding intensities in spherical coordinates.

Considering that an initial estimation T̂ of current image

pose fully represents the pose of the current camera with

respect to a reference sphere, the tracking problem is reduced

to estimating the incremental pose T(x) assuming ∃x̃ :
T(x̃)T̂ = T. This estimate is updated by a homogeneous

transformation T̂ ← T(x)T̂. The unknown parameters x ∈
R

6 are determined by the integral of a constant velocity twist

that produces the pose T in 6 degrees of freedom:

x =

∫ 1

0

(ω, υ)dt ∈ se(3). (5)

The pose and the twist are related via the exponential map

by T = e[x]∧ , where the operator [.]∧ is defined as

[x]∧ =

[
[ω]× υ

0 0

]
(6)

and where [.]× represents the skew symmetric matrix oper-

ator. Hence, the current camera pose can be estimated by

minimizing a non-linear least squares cost function:

C(x) =
∑

P ∗∈R∗

(
I

(
w
(
P

∗,T(x)T̂
))
− I

∗ (P ∗)
)2

. (7)



B. Minimization of the cost function

The aim now is to minimize the difference in image

intensity from the cost function (7) in an accurate and robust

manner. Since this is a non-linear function of unknown

parameters, an iterative minimization procedure is used. The

minimization technique is quite similar to that used in [7], so

only the broad lines of the method are outlined here. Rather

than using a standard sum-of-squared differences (SSD)

technique based on an L2 norm, a robust M-estimator [15]

is used in order to reject the outliers due to illumination

changes, moving objects or occlusions in the scene. The

objective function therefore becomes:

O(x) = ρ

(
∑

P ∗∈R∗

I

(
w
(
P

∗,T(x)T̂
))
− I

∗(P ∗)

)
,

(8)

where ρ(u) is a robust weighting function (see [7], [15]

for more details).

The robust objective function is minimized by

∇O(x)|x=x̃ = 0, where ∇ is the gradient operator

with respect to the unknown x from (5) and it is assumed

that there is a global minimum within the convergence

domain (which experimentally is quite large). The Jacobian

of the objective function (8) can be decomposed in three

parts:

J(x)|x=x̃ = JI∗JwJT. (9)

Here JI∗ is the image gradient computed on the reference

sphere with respect to spherical coordinates (θ, φ) of dimen-

sion n×2n, Jw is the derivative of spherical projection in (2)

of dimension 2n×3n, and JT depends on parametrization of

x from (5) and has dimension 3n×6 . The objective function

(8) is iteratively minimized by computing T̂← T(x)T̂ with

the vector of unknown parameters x such that:

x = −λ(DJ)+D(I − I
∗), (10)

where (DJ)+ is the pseudo-inverse,D the diagonal matrix

determinated from the robust function ρ(u), and λ is a gain

factor that ensures the exponential decay of the error.

C. Initialization step

It is a well known fact that direct iterative methods

suffer from convergence problems when initialized far from

the solution. This is also true for our method where an

initialization sufficiently close to the solution is needed to

ensure rapid convergence and reduce computational cost.

This initial guess is obtained from the laser data using a 2D

scan matching technique that is accurate enough to ensure

fast convergence for the appearance-based method. Namely,

the ”Enhanced Polar Scan Matching” (EPSM) described

in [12] was used for this initialization step. As any scan

matching technique, it finds the pose of a laser scan with

respect to a reference scan by performing a gradient descent

search for the transformation that minimizes the square error

between corresponding points. In contrast to other methods,

it avoids an expensive search for corresponding points by

matching points with the same bearing, therefore taking

Fig. 4. Hannibal robot experimental testbed.

advantage of the natural representation of laser scans in

polar coordinates. The method assumes the reference and

current scans are given as sequences of range and bearing

measurements of the form {rri, φri}
n
i=1 and {rci, φci}

n
i=1,

respectively, and requires an initial estimate (xc, yc, θc) for

the pose of the current scan in the reference scan coordinate

frame. This estimate is obtained from the robot odometry.

V. EXPERIMENTAL TESTBED

Figure 4 shows the robot used in the experiments, Hanni-

bal, from Neobotix mobile platform (MP-S500). Hannibal

is equipped with a Sick LD-LRS1000 laser, capable of

collecting full 360◦ data. The laser head can revolve with a

variable frequency ranging from 5Hz to 10Hz and the angular

resolution can be adjusted up to 1.5◦ at multiples of 0.125◦.
The laser has a 30m range. To perform a 360◦ scan with a

resolution of 0.25◦, it was necessary to reduce the frequency

of the rotor to 5Hz, thus obtaining 1,400 data points per scan.

The perspective camera is a progressive-scan CCD camera

(Marlin F-131B) equipped with a hyperbolic mirror HM-

N15 from Accowle (Seiwapro) with a black needle at the

apex of the mirror to avoid internal reflections of the glass

cylinder. Careful calibration of the laser and the camera

is required for merging image and laser data. The Matlab

Omnidirectional Calibration Toolbox developed by Mei [1]

was used to estimate the intrinsic parameters of the camera

and the parameters of the hyperbolic mirror.

Odometry data arrives at a frequency of 50Hz, omnidirec-

tional images at 15Hz and laser measurements at 5Hz. Since

data from the different sensors arrive at different frequencies,

a function to synchronize the data as it is acquired by the

robot was implemented.

VI. RESULTS

The method is validated using a sequence of 3,262 images

and laser scans which were obtained by manually driving the

robot in an indoor environment. The exploration trajectory

constitutes a closed loop of about 40 meters across the

robotic hall.

Figure 5(a) shows the map and the pose estimated by scan

matching (in green) and the original odometry given by the



(a)

(b)

Fig. 5. 2D global maps obtained with the same laser data. 5(a) Map with
EPSM pose estimation. 5(b) Map with spherical pose estimation.

robot encoders (in red). The shift that can be observed in the

2D map at the end of the loop is caused by erroneous laser

measurements resulting in the failure of the scan matching

process. Even in the presence of these errors it can be seen

that the spherical tracking succeeds. This can be seen in

Fig. 5(b) in blue. In this case the shift is corrected due to

the redundancy between the laser and vision data leading to

overall robustness and accuracy.

A representation of the images used for the pose estimation

with the spherical tracking method is shown in Fig. 6.

Observe visually that the final current warped image 6(b)

(i.e. after convergence) is correctly matched with respect to

the reference one in Fig. 6(a). Notice also that in Fig. 6(c),

the moving pedestrian is rejected by the robust estimator

function because his position in the current warped image

differs too much from the reference one. In addition, the

algorithm is capable of rejecting specular reflections on the

ground and in the windows.

Under the assumption made in Sec. II that the walls

are vertical, from Fig. 6(d) it is clear that the error is

negligible for walls, while non vertical textured objects were

not matched completely and were correctly rejected. As an

example, notice the slanted calibration checkerboard on the

left bottom of the images that is perfectly rejected in Fig. 6(e)

and 6(f). Some parts of the static pedestrian on the left are

partially matched because these parts are untextured and do

not generate any matching errors, therefore estimation is not

affected.

Figure 7 shows the 3D textured reconstruction with the

(a)

(b)

(c)

(d)

(e) (f)

Fig. 6. Images used for pose estimation. 6(a) Reference spherical
image. 6(b) Current warped image. 6(c) Estimated rejection weights. 6(d)
Final error. 6(e) 6(f) Weights and error zoom.

correctly matched 3D points obtained from the spherical

tracking algorithm. Only the points that were not rejected

by the robust estimation were used (i.e. with weight equal

to 1). This leads to the rejection of moving pedestrians,

that were plotted on the 2D maps in Fig. 5 as well as

non-planar/vertical textured objects. The resulting 3D model

was rendered in OpenGL and allows walk-throughs as well

as bird eye views. The accompanying video1 illustrates the

incremental generation of a 2D map with both estimations

of the robot trajectory, as well as the representations of

the images used for the pose estimation with the spherical

1https://www-sop.inria.fr/arobas/videos/

HybridLaserOmni_IROS10.mp4



tracking algorithm. A walk-through the 3D reconstructed

model is shown at the end of the video.

In summary, the fusion of information from laser scan

matching and an appearance-based method improves the ro-

bustness of localization and mapping. The robot trajectory is

correctly estimated and the drift is minimized. The obtained

3D textured map represents the environment with a good

level of precision as seen through the visually satisfying 3D

model.

VII. CONCLUSION AND FUTURE WORK

The hybrid laser/vision appearance-based approach de-

scribed in this paper has proved to be very efficient in obtain-

ing reliable 3D odometry subject to illumination changes and

in the presence of occluding and moving objects. A complete

set of 3D points can be easily mapped to reconstruct a

dense and consistent representation of the environment. As

expected, the initialization of the tracking algorithm close

to the solution using scan matching ensures fast exponential

decrease of the error and avoids local minima.

Although the SLAM problem has been solved using many

different approaches, some important problems need to be

addressed that are often directly linked to the sensors used.

Laser range finders cannot always help in evaluating the

translation of a robot moving in a straight line in a corridor

leading to potential observability problems. Mapping in

dynamic environments is also hard using laser data only due

to 2D measurements and slow acquisition rate. On the other

hand, using exclusively visual sensors introduces issues such

as propagating correctly the scale factor.

In this approach, the data is obtained by two full 360◦

field of view sensors: laser range finder and an omnidirec-

tional camera. The experimental results are encouraging and

provide a valuable insight into the possibilities offered by

this hybrid approach.

In perspective, several research directions will be inves-

tigated including the extension of the formalism to deal

with non-planar scenes. In this case the problem will be to

formalise the uncertainties of different sensors so that the

estimation can be decoupled into two separate minimization

steps: 1) pose estimation, 2) depth refinement. Another

direction will be to fuse the initialization, through EPSM

scan matching, into the non-linear estimation scheme.

REFERENCES

[1] Calibration toolbox. http://www.robots.ox.ac.uk/˜cmei/
Toolbox.html.

[2] P.J. Besl and N.D. McKay. A method for registration of 3D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14:239–256, 1992.

[3] P. Biber, H. Andreasson, T. Duckett, and A. Schilling. 3D modeling
of indoor environments by a mobile robot with a laser scanner
and panoramic camera. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3430–3435, 2004.
[4] T. J. Broida, S. Chandrashekhar, and R. Chellappa. Recursive 3D mo-

tion estimation from a monocular image sequence. IEEE Transactions

on Aerospace and Electronic Systems, 26:639–656, 1990.
[5] A. Clerentin, L. Delahoche, C. Pégard, and E. Brassart. A localization

method based on two omnidirectional perception systems cooperation.
In IEEE International Conference on Robotics and Automation, pages
1219–1224, 2000.

Fig. 7. 3D reconstruction.

[6] D. Cobzas, H. Zhang, and M. Jagersand. Image-based localization with
depth-enhanced image map. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1570–1575, September 2003.
[7] A. Comport, E. Malis, and P. Rives. Accurate quadrifocal tracking

for robust 3D visual odometry. In IEEE International Conference on

Robotics and Automation, pages 40–45, Rome, Italy, April 2007.
[8] A.J. Davison. Real-time simultaneous localisation and mapping with a

single camera. In IEEE International Conference on Computer Vision,
pages 1403–1410, Washington, DC, USA, 2003.

[9] A.J. Davison, Y. Gonzalez-Cid, and N. Kita. Real-time 3D SLAM
with wide-angle vision. In IFAC Symposium on Intelligent Autonomous

Vehicles, 2004.
[10] A. Diosi and L. Kleeman. Laser scan matching in polar coordinates

with application to SLAM. In IEEE International Conference on

Robotics and Automation, pages 3317–3322, 2005.
[11] Sheng Fu, Hui ying Liu, Lu fang Gao, and Yu xian Gai. SLAM

for mobile robots using laser range finder and monocular vision. In
Mechatronics and Machine vision in Practice, 2007.

[12] G. Gallegos and P. Rives. Indoor SLAM based on composite sensor
mixing laser scans and omnidirectional images. In IEEE International

Conference on Robotics and Automation, Anchorage, USA, May 2010.
[13] C. Geyer and K. Daniilidis. A unifying theory for central panoramic

systems and practical applications. In European Conference on

Computer Vision, pages 445–461, 2000.
[14] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.
[15] P.-J. Huber. Robust Statistics. Wiler, New York, 1981.
[16] C. Mei. Laser-Augmented Omnidirectional Vision for 3D Localisation

and Mapping. PhD thesis, INRIA Sophia Antipolis, France, 2007.
[17] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient homography-

based tracking and 3D reconstruction for single viewpoint sensors.
IEEE Transactions on Robotics, 24(6):1352–1364, 2008. Special issue
on visual servoing.

[18] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd.
Monocular vision-based SLAM for mobile robots. In International

Conference on Pattern Recognition, pages 1027–1031, 2006.
[19] J. Pedro and A. Barreto. General central projection systems, modeling,

calibration and visual servoing. PhD thesis, 2003.
[20] M. Self R. Smith and P. Cheeseman. Estimating uncertain spatial re-

lationships in robotics. Proceedings of the Second Annual Conference

on Uncertainty in Artificial Intelligence, pages 435–461, 1986.
[21] G. Silveira, E. Malis, and P. Rives. An efficient direct approach to

visual SLAM. IEEE Transactions on Robotics (Special issue on visual

SLAM), 24(5):969–980, 2008.
[22] R. Smith and P. Cheeseman. On the representation and estimation

of spatial uncertainty. International Journal of Robotics Research,
5:56–68, 1986.

[23] Shin-Chieh Wei, Yasushi Yagi, and Masahiko Yachida. On-line map
building based on ultrasonic and image sensor. In IEEE Int. Conf. on

Systems, Man and Cybernetics, volume 2, pages 1601–1605, 1996.


