
 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

MARTE: A Profile for RT/E Systems Modeling, Analysis
—and Simulation?

(invited paper)

Frédéric Mallet
AOSTE Inria/I3S project

Université de Nice Sophia Antipolis
INRIA / CNRS / UNSA

+33 4 92 38 79 66

Frederic.Mallet@sophia.inria.fr

Robert de Simone
AOSTE Inria/I3S project

INRIA Sophia Antipolis Méditerranée
INRIA / CNRS / UNSA

+33 4 92 38 79 41

Robert.de_Simone@sophia.inria.fr

ABSTRACT
As its name promises, the Unified Modeling Language (UML)
provides a collection of diagrammatic modeling styles. To the
early class/objects and use-case diagrams were almost
immediately added state-, activity-, collaboration-, and
component diagrams. All these modeling views, required for
structural and behavioral representations of systems, were then
progressed to further detailed expressivity. Provision for domain-
specific specializations was made under the form of profiles.

Somehow this goal of being rather universal and extendible
discarded the possibility of UML to adopt too strict and precise a
semantics; as users were generally to define and refine it in their
stereotyped profiles anyway. As a result, even the little execution
semantics there is in the standard is often not considered in such
specializations.

We tackled the general issue of defining a broadly expressive
Time Model as a sub-profile of the upcoming OMG Profile for
Modeling and Analysis of Real-Time Embedded systems
(MARTE), currently undergoing finalization at OMG. The goal is
to provide a generic timed interpretation, on which timed models
of computation and timed simulation semantics could be built
inside the UML definition scope, instead of as part of the many
external proprietary profiles. The MARTE time library can be
used as the basis for the definition of a UML real-time simulator.

1. INTRODUCTION
Dictionaries define simulation as the act of (faithfully) imitating
the appearance or character of something. In that sense,
simulation tightly relates to modeling, and its accuracy is
measured by the distance to the underlying models semantics.

For complex systems, such models are to be shared by lots of
people with different backgrounds (from project management and
system level architects to designers and verification engineers).
Then visual languages, such as the Unified Modeling Language
(UML) [1], became increasingly popular for exchanging
information between designers and distinct design phases, as its
multiple diagrams provide modeling support to most aspects of
systems, whether functional, behavioral or structural. Meanwhile,
though, semantics was brought down to its minimal (light)
consensual form: hardly enough to fully base a non-ambiguous
(timed) simulation scheme.

Design practice is moving from traditional code-based
engineering, with a strong division of work along the
development life cycle, to model-driven engineering approaches
where all people in the design flow can have their saying on the
models. Aspect-oriented modeling allows for hiding irrelevant
aspects of models depending on the considered point of view.
Automated model transformations should be a ground for building
tools that guarantee the semantics preservation between
successive steps of the design flow. This trend is also happening
in the domain of real-time and embedded (RT/E) systems, where
traditional resource-constrained systems are becoming much more
complex, not so constrained and involve more and more partners.

UML is general-purpose and was designed to be customizable as
a family of modeling languages. Its definition includes many
semantic variation points, that is to say areas in which multiple
interpretations of the specification are possible. The possible
interpretations may be explicitly given or may remain implicit.
This purposely loose semantics together with the UML refinement
mechanism, called profiling, make UML a good base for building
a domain specific modeling language without the prohibitive cost
generally induced [2]. Indeed, main reasons that prevent a large
adoption of domain-specific languages are the lack of adequate
support (editors, compilers …) and the low availability of trained
programmers. Using a UML profile offers a practical and cost-
effective solution to reuse the large number of existing UML
graphical frameworks and trained designers. This approach still
requires a specialized training but with a reduced effort, though.
Note that defining a UML profile to get a domain-specific
modeling language is only possible when the domain-specific
language is not in conflict with the UML semantics. Here again,
the loose semantics of UML becomes an asset.

The relatively small community of the RT/E systems domain
prevents major tool vendors from developing specific tools,
making the domain an ideal candidate for defining a UML profile.
In 2005, the UML Profile for Schedulability, Performance and
Time (SPT) [3] was adopted by the Object Management Group
(OMG) to provide UML with a quantifiable notion of time and
resources and make it usable in the RT/E domain. Besides the fact
that SPT was conformant with UML 1.4 and needed to be aligned
with UML 2, several improvements were required. The OMG has
issued a Request For Proposals (RFP) [4] to lead the path to a new
specification that would supersede SPT. In 2007, the specification
of the UML Profile for Modeling and Analysis of Real-Time and

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

Embedded (MARTE) [5] systems has been adopted and is
currently undergoing finalization at OMG.

Our intention was to insist on time modeling, a fundamental
aspects of models, almost absent in UML (mainly because of its
numerous possible interpretations), and still that has to be a first-
class modeling construct when addressing real-time systems.
Giving a precise timed semantics to UML models makes it
possible to feed them into performance analysis tools, whether
analytical or simulation-based. MARTE, and the underlying UML
tooling support, then provide a general framework to gather
otherwise unrelated models. Using a consistent view of time
brings the currently missing consistency amongst the UML
models, even though these models cover different aspects of the
system under design and possibly at different abstraction levels.
Model-driven engineering gives the technology to build
transformation models to link UML models and the real-time
domain tools, fore and back, allowing interpretation in the UML
world.

Section 2 briefly introduces UML and its extension mechanism.
Section 3 gives an overview of MARTE. We try to give a
description understandable by non UML specialists and we focus
on aspects of interest for performance evaluation and simulation.

2. THE UML AND ITS PROFILES
A UML model consists of model elements such as classes,
associations, activities, and state machines. Some elements can
represent a functional decomposition (use cases), structural
aspects (classes, composite structures, and components),
behavioral aspects (state machines and activities), execution
traces (collaborations, sequence) or physical deployments
(nodes). UML diagrams are corresponding graphical
representations of these model elements. UML diagrams contain
graphical elements (nodes connected by paths) that represent
elements in the UML model. The intended meaning of any model
element can be refined by annotation called stereotypes. A profile
is a complete domain-specific extension of UML with relevant
stereotypes.

One of the most used UML diagram is the class diagram. After a
brief description we show on to extend it with a dummy profile.

2.1 Class Diagrams
Representing classes is essential in object-oriented programming.
In UML, classes own some properties (attributes/fields) and some
operations (methods/functions). Figure 1 shows an example with
the class PowerPC that owns one property (clockRate) and one
operation (execute). The UML primitive type Natural represents

the natural numbers and does not refer to a particular encoding

(int, long).

Figure 1. Class and instance specifications

The two instance specifications (G3, G5) denote particular
instances of the class PowerPC. The slot values are assumed to be
expressed in MHz in this particular example. UML does not
provide any effective mechanism to associate units with values.
That is one of the MARTE contributions.

2.2 The UML Meta-Model
Even though UML is mainly a graphical language, still it requires
a grammar so tool can automatically parse the models and check
their syntax. For UML, the grammar is defined in the UML
superstructure specification [1] using the Meta-Object Facilities
(MOF). The MOF is another OMG specification and can be
viewed as a minimal subset of UML. In UML the grammar is
called a meta-model (or a level M2 model) and its basic elements
are called meta-classes. Figure 2 shows a very small part of the
UML grammar (meta-model) relative to the UML basic structural
elements, the classifiers. The keyword «metaclass» differentiates
a meta-class from a class.

Figure 2. Meta-model of a UML classifier

Reading the diagram, we see that each classifier can have an
unbounded number of features (0..*). The features, which can be
static or not, are further refined into structural features (like
properties or signals) and behavioral features (like
operations/methods). The line with the hollow triangle as an
arrowhead represents a generalization. The arrowhead is directed
from the more refined element towards the more general one.
Generalization/Specialization and Inheritance are somehow
different. Generalization is the concept, whereas inheritance is
one of the ways offered by object-oriented languages to
implement the UML generalization.

Note that the class diagram in Figure 1 is compliant with this
classifier meta-model. The meta-model for instance specifications
is not presented here.

UML-compliant tools must understand the whole UML meta-
model. To extend UML there are two solutions. Either the
designer defines new meta-classes or he defines extensions to the
existing meta-classes. The former approach is called meta-
modeling and requires, at the very least, the modification of the
modeling tools and could require the definition of a completely
new tool. The latter approach is called profiling. A profile
consists of several stereotypes that extend existing meta-classes,
defining new constraints and giving a more precise semantics.
Profiling is a much lighter approach and has already been
implemented in several commercial UML tools whereas meta-
modeling remains mainly a research domain.

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

2.3 A UML Profile
As an example of one possible extension to UML we might
imagine that an architecture exploration tool needs to extract the
processors contained in one particular system so to get the
potential parallelism available. Unless the tool knows what a
PowerPC is, and potentially all the names of all existing
processors, it has no way to understand that the instances G3 and
G5 are processors. A simple extension to UML would consist in
tagging some model elements and explicitly identify them as
processors. For instance, we could tag the class PowerPC.

The definition of a UML profile consists in defining a set of
stereotypes. Each concrete stereotype extends one or several
existing meta-classes. Any model elements that conform to a
given meta-class can be annotated with the defined stereotype as
soon as the profile has been applied to the model.

Figure 3 (left-hand side) illustrates the definition of the stereotype
Hw_Processor that extends the meta-class Class. Once the
stereotype is defined, it can be applied to any class (Figure 3,
right-hand side). In that way, an architecture exploration tool can
easily tell the processors from any other model elements.

Figure 3. The stereotype Hw_Processor

2.4 Model libraries
Another interesting extension would be to assign a more explicit
type to the property clockRate, a type that would represent a
frequency. New types can be defined within model libraries. An
element from a model library can be used at any level, in a meta-
model, in a profile or in a normal UML model.

Figure 4. Example of a model library

Figure 4 shows a model library that defines a type Frequency. A
frequency has a value (a real number) and a unit to be chosen
amongst an enumeration of all possible units. Since UML does
not have any type to represent real numbers, an easy way around
consists in defining our own primitive type Real. Note that in
spite of being in double brackets the keywords dataType, primitive

and enumeration are not stereotypes. This is only a graphical
notation to distinguish classes from other structural elements.

Figure 5. A profile for defining units

The enumeration FrequencyKind defines the set of possible units.
To go further and establish relationships between the different
units for the same dimension we can define (see Figure 5) a
stereotype Unit that extends the meta-class EnumerationLiteral and
a stereotype UnitSystem that extends the meta-class Enumeration.
The stereotype Unit owns two properties (convFactor and base).

Figure 6. Identify units for the dimension frequency

Figure 6 applies the new stereotypes to the enumeration
FrequencyKind and its literals. Values for the stereotype properties
are provided within brackets. The conversion factors enable the
evaluation of expression where several units are used for the same
dimension. The stereotype UnitSystem explicitly identifies a
dimension (e.g., frequency) and its relation to standard
dimensions (e.g., frequency = 1/time). This provides for a
mechanism to ensure dimension coherency within expressions.

2.5 What about simulation?
UML focuses very much on early design and modeling of systems
and “simulability” is hardly an issue in UML literature. Some
elements of operational semantics are provided for state, activity
and sequence diagrams mostly, with for instance some attempts to
define automatic transformations into Petri Nets ([6], [7], [8]).
These approaches remain largely informal and subject to
unspecified semantic variations. Anyway, most profiles come
with semantic intentions that remain private to the stereotypes
interpretation, and may defeat the little there is of UML
semantics ([9], [10]).

In order to build proper (timed) simulation frameworks for UML
models, we first need to introduce a time model and the
possibility of adding clear time annotations to model elements.
Second, we must provide subsets of the meta-model that
correspond to analysis models as recognized in the simulation
community.

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

We shall now introduce the MARTE profile which aims at
providing such mechanisms in a well-defined and semantically
grounded way.

3. MARTE
RT/E systems correctness critically depends on meeting one or
more extra functional requirements, like real-time constraints,
throughputs, and energy consumption or reliability criterions. The
MARTE specification is made of three parts. The first part
(MarteFoundations) lays the foundations to model such systems.
The other two parts (MarteDesignModel and MarteAnalysisModel)
elaborate on that base and specialize it to address respectively the
design and the analysis aspects.

The first part defines the foundations for RT/E systems modeling
and analysis. It supports the modeling of extra functional
properties (see Section 3.1), including time properties (see
Section 3.2), resources. It provides a generic execution platform
model (see Section 0) as well as an allocation model (see Section
 3.4) to allocate application model elements onto execution
platform model elements.

The generic execution platform model is refined in the second
part and differentiates software from hardware execution
platforms. The third part concerns performance analysis and is
described in Section 3.5.

3.1 Non-Functional Properties
MARTE non-functional properties (NFP) package comes with a
user library (NFP_Types), a specification language called VSL
(Value Specification Language) and stereotypes to help the
definition of some domain-specific NFP. The package is very
generic and there are some attempts to share it with other profiles
coping with quality of service (QoS)-constrained systems.

The library contains the main measurement units and dimensions
from the international system of units. It provides support to build
complex types, like matrices and vectors and some predefined
NFP. For instance, the property ArrivalPattern specifies whether
an event is periodic, a-periodic, sporadic, or its occurrence
follows a given distribution.

Figure 7 shows an excerpt of the library NFP_Types to illustrate
the definition of the type NFP_Duration. The enumeration
DurationUnitKind is used as a dimension. The conversion factor
allows for automatic computation of VSL expressions.

Figure 7. Excerpt of the library NFP_Types.

Figure 8 illustrates how the type can be used when defining a new
type DRAM to model a dynamic memory and a particular
instance of this memory with a refresh rate of 64 ms. The same
expression can also be used as a constraint to specify that the
system all with memories which refresh rate is less than 64 ms
(see Figure 9).

Figure 8. Use of the type NFP_Duration

The analysis part heavily uses this package to define the UML
model elements with which some NFP should be associated to
apply a given schedulability (like Rate Monotonic Analysis—
RMA) or performance (like queuing theory) analysis technique.

Figure 9. A VSL expression as an NFP constraint

3.2 The Time Model
In the domain of real-time and embedded systems, time has to be
a first-class construct and not a mere annotation that comes after
the functionality validation. Missing a deadline is often as faulty
as not performing the right function. Though, apart from the
various philosophical and theological discussions about time, and
even restricting the scope to computer sciences, time can have
various interpretations. Schreiber in [11] gives a time ontology
for informatics.

However, UML, whose goal is to be very broad and platform-
independent, is mainly untimed. The package SimpleTime of
UML2 has a simplistic view of time and explicitly relies on
specific profiles for dealing with complex aspects: “The simple
model of time described here is intended as an approximation for
situations where the more complex aspects of time and time
measurement can safely be ignored. … It is assumed that
applications for which such characteristics are relevant will use a
more sophisticated model of time provided by an appropriate
profile.” (UML Superstructure v2.1.2, p. 423).

Duration, observation and time measurement constructs
introduced by SPT were conflicting with the package SimpleTime.
Some key concepts were missing to tackle relativistic effects that
may appear in distributed systems or issues induced by systems
with multiple clock domains (like many-core architectures or
network-on-chip). Thus, MARTE chapter Time gives a rich
theory, inspired from the tagged signal model [12], to model time-
related aspects appearing when dealing with RTE systems.

In MARTE, Time can be physical, and considered as continuous
or discretized, but it can also be logical, and related to user-
defined clocks. Time may even be multiform, allowing different
times to progress in a non-uniform fashion, and possibly
independently to any (direct) reference to physical time. The time
structure is defined by a set of clocks and relations on these
clocks. Here clock is not a device used to measure the progress of
physical time. It is a mathematical object lending itself to formal
processing instead. A clock that refers to physical time is called a
chronometric clock. A distinguished chronometric clock called
idealClk is provided in the MARTE time library. This clock
represents the “ideal” physical time used, for instance, in physical
and mechanics laws. At the design level most of the clocks are
logical ones.

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

Instances of logical “non-ideal” clocks are: the execution cycles
of a processor (e.g., in a world where processor clock rate can be
adapted for power saving); the sequence of instructions of a
thread (in a time sharing system where some an operating system
allocates execution cycles amongst several such threads);
algorithmic steps (in an abstract setting where data memory is not
mapped); an engine rotation angle (when action has to be taken
each 90° angle for instance). A general theory of multiform time
and “scheduling-as-time harmonization” has been developed [12]
and is a main influence in MARTE time model.

More precisely, a clock is an ordered set of instants with a
labeling function and a unit symbol. For chronometric clocks, the
unit can be the SI time unit s (second) or one of its derived units
(ms, s, ns …). For logical clocks, the usual unit is tick, but
clockCycle, executionStep may be chosen instead.

Clocks are a priori independent. They become dependent when
their instants are linked by instant relations imposing either
coincidence between instants or precedence. Clock relations are a
convenient way to impose many—often infinitely many—instant
relations. A time structure is set of clocks and instant relations. A
time structure is then a partially ordered set of instants.

During a design we introduce several (logical) clocks that are
progressively constrained. This strengthens the ordering relation
of the application time structure. The time structure can be used
by timing analysis tools to decide whether the requirements are
met. It can also be used by a simulator to execute the model.
When the ordering relation is total, there is one unique execution
and the simulation is deterministic. Otherwise, one possible
execution scenario can be chosen (deterministically or not) among
all possible ones.

A support for multi-clock systems is required in GALS (Globally
Asynchronous, Locally Synchronous) approaches and also in
distributed real-time systems subject to relativistic observation
effects. In that context, being distributed does not necessarily
involve a large scale network but rather an embedded one (like
CAN, TTP or FlexRay) often used in automotive or avionics
applications. Even system-on-chips have the same kind of
problems, mostly with many-core architectures and network-on-
chip, but also with mono-core high integration architectures
where the end-to-end latencies across the chip are not negligible
any more.

Another very important trait introduced by MARTE and that was
ignored by UML is the ability to deal with multiform time. This
feature allows for using several quantities (not only time) to
express deadline requirements or constraints. We can obviously
use durations (1.5 ms) or dates (before tomorrow noon), but also
rates (25 times per second) or expressions relative to any event
occurring in the system (before the camshaft has performed a
rotation of 90°).

We have tried to introduce all these concepts while defining new
stereotypes with parsimony. Figure 10 illustrates the definition of
a timed state machine where event occurrences depend on the
rotation angle of a car camshaft. The example used is a model of a
four-stroke engine cycle. Applying the stereotype TimeProcessing
associates the clock camClk with a UML behavior (a state
machine, an activity or an interaction). The default unit for this
clock is °CAM. Some clock relations can be established between

the camshaft rotation, the engine rotation speed and the clock
cycles of the injection controller.

Figure 10. A state machine with multiform time

Another very useful UML construct to represent timing
information is the timing diagram. Timing diagrams can be used
either to represent a single execution trace, like a waveform, but
they can also represent a family of possible traces.

Figure 11. A timing diagram

Figure 11 shows a refinement of the internal combustion engine
cycle that highlights the overlapping of the engine strokes. The
time observations (in green) identify significant events in the
system (OTDC – Overlap Top Dead Center, FBDC – First
Bottom Dead Center, SBDC – Second Bottom Dead Center). The
time constraints (in red) specify deadline requirements. For
instance, the intake stroke must complete during a precise time
range ([40..60]) after the beginning of the compression
stroke (FBDC). The time range is expressed in degrees and refers
to the rotation of the camshaft (°CAM). The physical time slot
varies according to the engine rotation speed. These timing
constraints can be used by a simulation engine to insert automatic
probes (observers) and anticipate incorrect behaviors.

3.3 The Execution Platform Model
When the application has been functionally specified and the
expected QoS have been defined, the actual cost of the execution
platform must be taken into account. Choosing the right execution
platform is often a problem, several solutions are available. The
easiest approach consists in using a general-purpose processor and
generating the code for it from the specification. Unfortunately,
this solution is often too slow for high performance applications.
The highest performances are generally achieved when using a
fully customized hardware accelerator (ASIC – Application
Specific Integrated Circuit) but this approach is very expensive
and time consuming. Some intermediate solutions are also
possible. In any case, a trade-off between the cost and the
performances must be found, this difficult process is called
architecture exploration or hardware/software partitioning.

Often, to abstract away the application from the actual hardware
execution platform, an intermediate layer is added, a middleware.

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

Even though MARTE does not bring any solution, it supports the
modeling of the execution platforms either software (middleware,
operating systems, and virtual machines) or hardware. It also
supports the modeling of all the possible solutions and the final
decision. Whatever the level of these execution platforms, they
share some commonalities. The package GenericResourceModel
(GRM) provides generic stereotypes to describe these
commonalities. It differentiates the computing resources from the
communication resources. It also separates active processing
resources from passive storage resources. All resources may
provide or require some services.

In the second part of MARTE, the package GRM is specialized
by the package DetailedResourceModel (DRM) that itself splits
into two sub-packages SoftwareResourceModel (SRM) and
HardwareResourceModel (HRM).

The package SRM concerns real-time operating systems or virtual
machines. MARTE annexes contain some guidelines to model
ARINC653, POSIX or OSEK. The abstract computing resources
of GRM are refined into threads or tasks. The passive resources
can for instance be mutual exclusion resources like POSIX mutex
or semaphores.

The package HRM provides stereotypes to model, at different
abstraction levels, processors, memory hierarchies, ASIC,
programmable logic devices (PLD).

Figure 12 illustrates the use of the package HRM with a UML
composite structure diagram. The example is a bi-core system-on-
chip (SoC) made of a digital signal processing (DSP) processor
and a general-purpose RISC (Reduced Instruction-Set Computer)
processor. The DSP processes data-intensive part of the
application whereas the RISC processes its control part (when
different algorithms must be executed and how do they relate to
each other). The two cores communicate through a double port
memory (DPRAM). On one side of the communication, the
AMBA High performance Bus (AHB) is used and on the other
side a general data bus (GDP) is used. Some properties are
associated with the stereotypes. For instance, the stereotype
«hwProcessor», comes with properties to specify its frequency
(the type NFP_Frequency has been defined for this purpose in the
library NFP_Types), the size of its internal memory (the type is
NFP_DataSize), the length of its pipeline …

With that capability, UML can be used as an architecture
description language on top of the behavioral description.
Choosing a two-layer approach provides a great flexibility for
hiding irrelevant details of the behavior thus enabling the
interoperability of multi-level models. This is happening with
OCSI SystemC and the SPIRIT consortium IP-XACT format. IP-
XACT is a language-independent front-end that allows for the
specification of Intellectual Property (IP) meta-data and tool
interfaces. It uses its own XML syntax to describe structure. For
behavioral representation, IP-XACT relies on SystemC, VHDL,
and Verilog HDL to specify the actual behavior of components.
SystemC provides programming libraries to represent IP
component behavior at different abstraction levels, from
Transaction Level Modeling (TLM) to RTL but it requires
additional support for architecture modeling.

Figure 12. Modeling a hardware execution platform

3.4 The Allocation Model
When models of the application and the possible execution
platforms are performed, the architecture exploration relies on the
possible mappings of the former onto the latter to decide what
solutions meet the requirements. In case there are several possible
solutions, the designer must choose the most cost-effective one.

In MARTE these mappings are called allocation. Allocations
comprise both spatial distribution and temporal scheduling
aspects, in order to map various algorithmic operations onto
available computing and communication resources and services.
The temporal scheduling is required when several application
elements are allocated to the same execution platform model
element (same processor or same thread) or when
synchronizations are required between different elements (e.g.,
two threads).

Both application and execution platform elements have structural
and behavioral aspects. The allocation often requires prior
adjustment (inside each separated model) to abstract/refine its
components and allow a direct match. Allocation can be viewed
as a “horizontal” association, and abstraction/refinement layering
as a “vertical” one, with the abstract version relying on constructs
introduced in the refined model. Even though different in role,
allocation and refinement share a lot of formal aspects, and so
both are described in the same chapter.

Application and Execution platform elements can be annotated
with NFP information. Allocation and refinement provide
relations (UML constraints) between these properties. Properties
such as time or space requirement, cost, or power consumption
are also considered.

In MARTE, we use the word allocation rather than deployment
(as in UML) since deployment implies a physical distribution
whereas allocation can also be logical (scheduling). For instance,
two pieces of an algorithm could be allocated to two different
processor cores, while the executable file containing both pieces
would be deployed on the memory of the processor and the source
file containing the specification of the algorithm would be
deployed on a hard disk. This dual function was recognized in
SPT, where allocation was called realization, while refinement
was used as such. MARTE allocation and refinement are
complementary to the UML deployment; we prefer to keep the
three concepts separated. This is not the case of other modeling
languages (like AADL) that, most of the time, merge them. The
allocation mechanism proposed by MARTE is inspired by the
SysML ([13]) allocation. However, MARTE makes it explicit that
both the logical and physical parts could be either of a behavioral
or structural nature. Contrary to SysML where any element can be

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

allocated onto any other element, MARTE only allows the
allocation of application elements onto execution platform
elements. Another difference is that MARTE explicitly separates
allocation from refinement.

Figure 13 shows an example of allocation. The application is
described as a UML activity diagram with two swim lanes that
model the potential allocation of each action. Note that the
intersection between the two swim lanes is not empty. The action
oper2 can be executed on any of the two processors. However, the
cost may not be the same. Typically a DSP processor can execute
a multiply-accumulate operation in one cycle whereas it would
take many more cycles with a RISC. It is also important to note
that the communications cannot be neglected. That is where it
becomes critical to get an accurate description of the platform
(see Figure 12).

Figure 13. An example of allocation

There are different ways to represent the cost of the allocations. A
very practical way is to use a table. Tables are officially
mentioned as acceptable UML models but unfortunately very few
tools actually support this notation. The tables below (Figure 14)
illustrate a possible graphical representation. There are no units
here because such tables can be supplied for any relevant QoS.
The column Unique Alloc identifies whether or not the
duplications of particular actions are allowed. When the
duplications are allowed, time performances may be better but the
implementation cost is generally higher.

Figure 14. Allocation cost

A more detailed description of MARTE allocation model is
available in [14].

3.5 MARTE Analysis Model
MARTE analysis model does not introduce or target new specific
analysis techniques. Rather it aims at representing well-known
models from schedulability and performance analysis theories
into a UML framework [15]. Following a model-driven
engineering process, transformation tools should be able to extract
the relevant information from MARTE models, feed them into
appropriate tools and bring the results back into UML for
interpretation or as back annotations to refine the models and
iterate with other tools (Figure 15).

The profile SPT was already offering constructs to support
quantitative analysis. However, the schedulability and
performance analysis packages in SPT were totally independent.
In MARTE, in addition to an alignment with UML2, the two

packages have been unified and both rely now on the same
foundations. New stereotypes have been introduced to model,
amongst others, jitter, transmission delays, deadline miss rates,
execution time (worst-case, best-case and average), and many
others.

Figure 15. Performance analysis with MARTE

Thus MARTE provides a common basis for both schedulability
analysis (Rate Monotonic, Deadline Monotonic, holistic
approaches) and performance analysis (queue networks, Petri
nets, stochastic process algebra). This basis can be adapted to
other quantitative analysis techniques via the definition of model
libraries.

4. CONCLUSION
One main issue in simulation-based techniques is to understand
the exact relation between what is simulated (usually a
mathematically grounded model), and what is implemented or run
(usually a software/hardware-based system). The same
observation would be true for high-level modeling frameworks
such as UML with respect to their implementation. It is certainly
inevitable that connections between man-made models and the
physical, more concrete, reality they are meant to represent (itself
of natural or human source), would remain informal and assumed
by faith. But if the same model contains the whole information (in
our case mainly concerning timing and other extra functional
requirements) from the design to the implementation through
analysis and testing, then there is of course a better chance that
they would coincide in the end.

In that direction, we provided a generic and broad sub-profile for
Time Modeling, as part of the UML profile for MARTE, so that
sophisticated timing relations can be expressed in UML models
and identically understood by other (private) profiles using it. As
a result, this can be thought of as a foundational step, defining a
timed dynamic semantics of UML models and naturally leading to
the possibility of timed analysis (schedulability and performance)
and timed simulation, while there is nothing of this kind currently
existing at all. However, there is still a long way before user-
friendly analysis models can be represented. This would require a
library of useful simulation patterns to ease the designer task.

5. ACKNOWLEDGMENTS
The original document is available in the ACM Digital Library
(http://portal.acm.org/citation.cfm?id=1416222.1416271).

MARTE is the result of the work of an international consortium
(http://www.omgmarte.org) that gathers tool vendors, industrial
end-users and academics.

 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks and Systems

 SIMUTools’08, pp. 1-8

© 2008 ICST ACM DL

Some of the work presented here was funded by the CAROLL
initiative, a joint partnership between CEA, INRIA and Thales.

Some examples used to illustrate this article have been
implemented in Papyrus UML, an open-source graphical UML
editor available at http://www.papyrusuml.org.

6. REFERENCES
[1] The Object Management Group. 2005. The Unified

Modeling Language (UML). OMG Adopted Specification
v2.1.2. http://www.omg.org/spec/UML/2.1.2/.

[2] B. Selic. 2007. A Systematic Approach to Domain-Specific
Language Design Using UML. In Proceedings of the 10th
IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (Santorini
Island, Greece, May 07 - 09 2007). ISORC’07. IEEE
Computer Society, 2-9.

[3] The Object Management Group. 2005. The UML Profile for
Schedulability, Performance and Time (SPT). OMG Adopted
Specification v1.1. Document Number: formal/05-01-02.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02.

[4] The Object Management Group. 2005. UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems. OMG Request For Proposals, realtime/05-02-06.
http://www.omg.org/cgi-bin/doc?realtime/05-02-06.pdf.

[5] The Object Management Group. 2005. The UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems, beta 1. OMG Adopted Specification, ptc/07-08-04.
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04.

[6] H. Störrle. 2005. Semantics and Verification of Data Flow in
UML 2.0 Activities. Electronic notes in Theoretical
Computer Science, 127(4), pp. 35-52.

[7] J.P. Lopez-Grao, J. Merseguer, and J. Campos. 2004. From
UML Activity Diagrams To Stochastic Petri Nets. Proc. Int.
Workshop on Software and Performance, January 2004,
Redwood City, CA, USA, pp. 25-36.

[8] F. Mallet, M-A. Peraldi, C. André. 2006. From UML to Petri
Nets for non functional Property Verification. In Proc. of the
IEEE Int. Symposium on Industrial Embedded Systems
(IES'2006), October 2006, France. ISBN: 0-7803-9759-2.

[9] The Object Management Group. 2006. Semantics of a
Foundational Subset for Executable UML Models. Initial
Submission. Document Number: 06-05-02.
http://www.omg.org/cgi-bin/doc?ad/06-05-02.pdf.

[10] C. Hardebolle and F. Boulanger. 2007. ModHel'X: A
Component-Oriented Approach to Multi-Formalism
Modeling. Proc. of the 4th Workshop on Multi-Paradigm
Modeling (MPM'07) at MoDELS, BME-DAAI Technical
Report Series, 1: pp. 49-60. October 2007.

[11] F.A. Schreiber. 1994. Is time a real time? An overview of
time ontology in informatics. Real-Time Computing.
F127:283-307, 1994.

[12] E.A. Lee and A. Sangiovanni-Vincentelli. 1998. A
framework for comparing models of computation. IEEE
Transactions on CAD of Integrated Circuits and Systems
(TCAD) 17(12):1217-1229.

[13] The Object Management Group. 2007. Systems Modeling
Language (OMG SysML) v1.0. OMG Available
Specification. Document number: formal/2007-09-01.
http://www.omg.org/cgi-bin/doc?formal/2007-09-01.

[14] C. André, F. Mallet, and R. de Simone. 2007. Modeling
Time(s). In Proceedings of the ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (MoDELS/UML), October 2007, TN, USA.
Springer Verlag, LNCS 4735, pp. 559-573.

[15] M. Woodside. 2007. From Annotated Software Designs
(UML SPT/MARTE) to Model Formalisms. Formal Methods
for Performance Evaluation, 7th Int. School on Formal
Methods (SFM’07) for the Design of Computer,
Communication, andd Software Systems, SFM 2007,
Bertinoro, Italy, May 28-June 2. LNCS 4486, Springer.

