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Abstract

Large System-on-Chips (SOC) are now built by assem-
bly of existing components, modeled at different represen-
tation levels(TLM, RTL ... ). The 1P-XACT standard was
recently developed to help normalize interfaces of IP com-
ponents, and ease their composition. Currently it does not
fully face timing representation issues. The equally recent
MARTE UML profile focuses explicitly on the rich expression
of time (physical or logical), clocks, and timing features.

We attempt here to embed SPIRIT IP-XACT representa-
tions as MARTE models. This leaves open the possibility to
extend the formalism with timing aspects, while it provides
graphical editing functionalities and a way to experiment
on extensions.

1. Introduction

Reuse and integration of heterogeneous Intellectual
Property (IP) from multiple vendors is a major issue of
System-on-Chip (SoC) design. Existing tools attempt to
validate assembled designs by global co-simulation at the
implementation level. This fails more and more due to the
increasing complexity and size of actual SoCs. Thus, there
is a clear demand for a multi-level description of SoC, with
verification, analysis and optimization possibly conducted
at the various modeling levels. In particular, analysis of
general platform partitioning based on coarse (extra func-
tional) abstraction of IP components is highly looked after.
This requires interoperability of IP components described
at the corresponding stages, and the use of traceability to
switch between different abstraction layers. Although this is
partially promoted by emerging standards, it is still insuffi-
ciently supported by current methodologies. Such standards
include OCSI SystemC, SPIRIT Consortium IP-XACT, Sil-
icon Integration Initiative OpenAccess API, and also recent
Unified Modeling Language [1] (UML)-based standards like
the UML Profile for Modeling and Analysis of Real-Time

and Embedded systems (MARTE [2]) that specifically tar-
gets real-time and embedded systems.

System Modeling requires representation of both
structural/architectural/platform  aspects at different
levels of abstraction and behavioral/functional as-
pects possibly considering timing viewpoints such as
untimed/asynchronous/causal, logical synchronous/cycle-
accurate or physical/timing models. Semantics provides
behavioral meaning to full systems from the combination
of the behavior of its components. For system structure rep-
resentation, UML uses component and composite structure
diagrams, while SYSML [3] uses block diagrams. Tools
like Esterel Studio, and virtual platforms like CoWare, Syn-
opsys CoreAssembler and ARM RealView, introduce their
own architecture diagrams. IP-XACT provides some ADL
(Architecture Description Language) features for externally
visible common interfaces and recognized state encodings,
together with administrative information (ownership, tool
chains, versioning ...). It uses its own XML syntax, for
specification of IP meta-data and tool interfaces.

For component behavior representation, SystemC pro-
vides programming libraries to represent IP component
behavior at different abstraction levels, from Transaction
Level Modeling (TLM) to RTL but it requires additional
support for architecture modeling. IP-XACT relies on Sys-
temC, VHDL, and Verilog HDL to specify the actual be-
havior of components. UML behavioral diagrams provide a
support for describing “untimed” algorithms, while MARTE
also provides support for logically or physically timed be-
haviors. Generally speaking, the behavioral models in UML
are more abstract than commonly used SystemC levels,
such as TLM/PV, TLM/CC, or RTL. In fact, state, sequence
and activity diagrams can be thought as closest to TLM/CP
(Communicating Processes) models, which are still seldom
used in SystemC methods. Then MARTE could be seen as
introducing the relevant timed version at this level (like PVT
does for PV), through logical time and abstract user-defined
clock threads.

One good feature of UML is its extendability, with the



profiling mechanism. On the other hand the set of consid-
ered features should be as much as possible standardized
and agreed upon (if to allow interoperability), which is the
main goal of the SPIRIT consortium. Therefore a UML pro-
filing approach for IP-XACT based on relevant metamodels
would allow easy creation and extension of model editors
for IP-XACT as the standard evolves, as well as experimen-
tations with prototypal versions. Models can then be trans-
lated into IP-XACT syntax for tool integration. We chose
to do this by specializing the MARTE profile, which already
provides a number of modeling features for extra-functional
aspects (such as logical timing elements).

So our work goes in two steps: first we create an ad-hoc
UML profile for IP-XACT, then we study how a proper sub-
set of MARTE can be used to add modeling expressivity for
timed behaviors. The resulting profile should be upload-
able into existing graphical tools (e.g., Eclipse UML, Mag-
icDraw by NoMagic, Rational Software Architect by IBM,
Artisan).

This paper presents the details of our metamodeling
(Section 2) and profiling (Section 4) of IP-XACT in UML
reusing MARTE wherever possible. In Section 3, we give
an overview of the aspects reused from MARTE: the sub-
profiles for Generic Resource Modeling (GRM) and Hard-
ware Resource Modeling (HRM) for the structural aspects,
the TIME subprofile to provide abstract behavioral aspects
of IPs and the ALLOCATION subprofile for their mapping
onto the virtual platform itself. As a running example, we
use the IP-XACT specification of the Leon2 processor, re-
leases as part of the IP-XACT 1.4 RCI1 distribution package
(http://www.spiritconsortium.org).

Related work: UML profile dedicated to SOC mod-
eling have been proposed, such as UML4SoC [4] and
UMLA4SYSTEMC [5], but they do not consider timing as-
pects. UML/SYSML have also been proposed as repre-
sentation formalisms to support analysis and produce Sys-
temC outputs [6]. The yearly DAC satellite workshop
UML for SOC design deals with these issues (http://www.c-
lab.de/uml-soc).

2. SPIRIT IP-XACT metamodel

IP-XACT defines seven kinds of models: Component,
Bus definition, Abstraction definition, Design, Abstractor,
Generator chain, Configuration. We consider only the first
four.

2.1. Component

Component is the basic model element in SPIRIT. Every
IP is described as a component without distinction of type,
whether they represent computation cores (processors, co-
processors, DSPs), peripheral devices (DMA controllers,

timers, UART), storages (memories and caches), or inter-
connects (simple buses, multi-layer buses, cross bars, net-
works on chip).

Figure 1 shows the main features of components as con-
sidered in IP-XACT, their interface and their memory hierar-
chy. A component identifier is unique, it specifies its name,
the containing library, the vendor and the version number. A
textual description may comment its intended role. A com-
ponent also contains a precise description of the memory
hierarchy: addressSpaces and memory mappings.
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Figure 1. IP-XACT Component metamodel.

The hardware model of a component describes its phys-
ical ports, the different views available (RTL, TLM, docu-
mentation) and a set of parameters.

The view mechanism is a provision for having several
models of the same component at different levels of abstrac-
tion. The ports can be wire ports (for RTL) or transactional
(for TLM) ports. The formers only allows purely binary
values or vectors of binary values.

Buslnterface allows for grouping together ports that col-
laborate to a single protocol. Components communicate
with each other through their bus interfaces tailored for a
specific bus. The bus interfaces map the physical ports of
the component to the logical ports of the abstraction defi-
nition. They also identify the interface mode (master, mir-
rored master, slave, mirrored slave). The mirroring mecha-
nism guarantees that an output port of a given type is con-
nected to an input port of a compatible type.

Channels describe multi-point connections between
components when the interfaces are not directly compati-
ble and require some adaptation.

2.2. Abstraction and Bus Definition

A BusDefinition describes the high-level attributes of the
interfaces connected to a bus. For instance, it defines a max-
imum number of masters and slaves, and whether a master
interface can be directly connected to a slave interface or
should rather go through mirrored master/slave interfaces.
A bus definition can extend another bus definition, thus
allowing the definition of compatibility rules with legacy



buses. For instance the AHB (Advanced High-performance
Bus) definition extends the AHBIite definition. When ex-
tending another bus definition, some constraints must be
enforced. For instance, an extending bus definition must
not declare more masters and slaves than the extended one.

An AbstractionDefinition gives lower-level attributes for
a given BusDefinition. There can be several abstraction
definitions for the same bus definition, like AHB_rtl and
AHB _tlm. In the same way, an abstraction definition can ex-
tend another one with also some compatibility constraints to
enforce. The abstraction definition defines the ports, which
have to be defined by the bus interfaces, and constrains them
(type, direction ... ).
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Figure 2. IP-XACT BusDefinition metamodel.

2.3. Design

A Design represents a system or a sub-system, it de-
fines a set of component instances and their interconnec-
tions. Ad-hoc connections connect two ports directly, wire
ports but also transactional ports, without using a bus in-
terface. Interconnections are point-to-point connections of
bus interfaces from two siblings components, whereas hier-
archical connections connect components at different hier-
archical levels (e.g., a parent to one of its children).

3. The UML MARTE Profile
3.1. General overview

The new OMG UML profile for MARTE supersedes and
extends the former UML profile for Schedulability, Perfor-
mance and Time (SPT[7]). MARTE adresses new require-
ments: specification of both software and hardware model
aspects; separated abstract models of applications and exe-
cution platforms; modeling of allocation of the former onto
the latter; modeling of large domains of Time and Non-
Functional properties.

MARTE consists of three packages. The first package de-
fines the foundational concepts used in the real-time and
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Figure 3. IP-XACT Design metamodel.

embedded domain. These foundational concepts are refined
in two other packages to respectively support modeling and
analysis concerns of real-time embedded systems.

The second package addresses model-based design. It
provides high-level model constructs to depict real-time
embedded features of applications, but also detailed soft-
ware and hardware execution platforms.

The third package addresses model-based analysis. Tt
provides a generic basis for quantitative analysis sub-
domains.

3.2. Highlights of MARTE parts relevant to
1P-XACT profiling

Our profile for SPIRIT reuses several model elements
from the first and second packages. This subsection briefly
describes these borrowings.

The central concept of resource is introduced in the
Generic Resource Modeling (GRM) package of MARTE. A
resource represents a physically or logically persistent en-
tity that offers one or more services. A Resource is a classi-
fier endowed with behavior (a BehavioredClassifier in UML
terminology), while a ResourceService is a behavior. Re-
source and ResourceService are types of their respective
instance models.

Several kinds of resources are proposed in MARTE
like ComputingResource, StorageResource, Communica-
tionResource, TimingResource. Two special kinds of com-
munication resource are defined: CommunicationMedia and
CommunicationEndPoint. The communication endpoint
acts as a terminal for connecting to a communication media;
typical associated services are data sending and receiving.

For structural modeling, MARTE enriches the concepts
defined in the UML composite structures. StructuredCom-
ponent defines a self-contained entity of a system, which



may encapsulate structured data and behavior. An inter-
action port is an explicit interaction point through which
components may be connected. There exist two kinds of
ports: MessagePort and FlowPort. MessagePort supports
a request/reply communication paradigm, whereas Flow-
Port enables flow-oriented communication paradigm be-
tween components. Thus, MARTE supports both message
and flow oriented communication schemas.

The MARTE Allocation associates functional application
elements with the available resources (the execution plat-
form). This comprises both spatial distribution and tempo-
ral scheduling aspects, in order to map various algorithmic
operations onto available computing and communication re-
sources and services.

Both Resource and Allocation refer to 7ime. In MARTE,
Time can be chronometric (refering to physical time) or log-
ical. The time model is defined in the Time package of
MARTE and it supports concepts as timed events, timed be-
haviors, timed values. Details about the MARTE Time and
Allocation models are presented in a previous paper[8].

The Detailed Resource Modeling (DRM) package of
MARTE specializes these concepts. It consists of two sub-
packages: Software Resource Modeling (SRM) and Hard-
ware Resource Modeling (HRM). Only the latter is used
and described in the following.
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Figure 4. MARTE hardware resource meta-
model.

HW_ResourceService

As shown in Figure 4, HW_Resource (HW_Re-
sourceService, resp.) specializes Resource (Resource-
Service, resp.) defined in the GRM package. A hard-
ware resource provides at least one resource service (hence
the prefix ‘p_” in the role name) and may require (‘r_’
prefix) some services from other resources. Note that a
HW_Resource can be hierarchical. The HRM package is
further decomposed in two sub-packages: HW_Logical and
HW_Physical. The former provides a functional classifica-
tion of hardware entities, the latter defines a set of active
processing resources used in execution platform modeling
and close to several SPIRIT concepts.

HW _Resource are specialized in the same way as the
generic resources of the GRM package. Figure 5 is an ex-
cerpt of the GRM class hierarchy.
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Figure 5. MARTE HRM metamodel.

4. Our UML profile for SPIRIT IP-XACT

Our UML profile for IP-XACT is defined by mapping the
IP-XACT concepts identified in the metamodel (see Sec-
tion 2) to UML metaclasses. Following B. Selic [9], we
have tried to define stereotypes with parsimony and to cre-
ate new ones when no equivalent concepts were available in
UML or in MARTE. In addition to the stereotypes we have
also defined a model library to provide a set of data types
equivalent to IP-XACT primitive types.

In Section 4.1 we describe our mapping of the IP-XACT
concepts to the UML world. In Section 4.2 we study how a
proper subset of MARTE can be used to add modeling capa-
bility for timed behavior.

4.1 Structural description

As we have seen in Section 2, there are two phases in the
definition of an IP-XACT model. During the first phase, the
components and the buses are defined. The second phase
integrates component instances into a design and specifies
the interconnections. Contrary to other approaches that use
component diagrams for both phases we recommend the use
of class/component diagrams for the first phase and the use
of composite structure diagrams for the integration phase.
Our approach eases the reuse of already defined compo-
nents and allows for having several parts (component in-
stances) of the same classifier without corrupting the classi-
fier itself. This also results in very simple composite struc-
ture diagrams while maintaining all the detailed information
on the classes themselves. Figure 6 shows a partial compos-
ite structure diagram of the Leon2 design. The Leon2 pro-
cessor is connected to a memory through a AHB-bus compo-
nent. The connector hides the bus definition and interfaces.

Figure 7 represents the first phase with a detailed view of
these components and buses along with an expanded view
of the bus interfaces connected to the ports.

In the following we describe our mapping of IP-XACT
concepts to UML keywords. These mapping rules, summa-
rized in Table 1, allowed the automatic generation of IP-
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Figure 6. The Leon2 design in UML.

XACT from the UML model of the Leon2 processor. The
model transformation was performed using an XSLT (eX-
tensible Stylesheet Language Transformation) description.

SPIRIT IP-XACT UML

Component «hwResource»

VLNV Versionedldentifier

CPU «hwProcessor»

Port «wirePort», «transactionalPort»
Bridge «hwBridge»

Clock Driver «hwClock»

Timing Constraints Model Library

«busDefinition»
«abstractionDefinition»
«buslinterface»
InterfaceModeKind

Bus Definition
Abstraction Definition
Bus Interface

Bus Interface Mode

Design Composite Structure
Component Instance Part
Connection Connector

Table 1. Mapping IP-XACT concepts to UML

4.1.1 Component

To distinguish hardware components (which must be trans-
formed into IP-XACT components) from software compo-
nents, we use the MARTE HwResource stererotype and its
specializations. IP-XACT considers all IPs equally without
distinction of type, however, existing MARTE models us-
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Figure 7. Component and bus definitions in
UML.

ing specialized stereotypes (like HwProcessor) can also be
transformed into IP-XACT components.

IP-XACT objects are uniquely identified by their identi-
fier VLNV (Version, Library, Name, Vendor). Our model
library introduces a custom data type called Versionedlden-
tifier to represent these identifiers.

Components use ports to interact with the communica-
tion media. UML ports are extended by the MARTE HwEnd-
Point stereotype. We further specialize this stereotype with
two new stereotypes WirePort and TransactionalPort to add
IP-XACT specific features, like the direction and width.

In components, bus interfaces map physical ports of
the component to logical ports of an abstraction definition.
Such a mechanism does not exist in MARTE, so we extend
the UML Interface metaclass with a stereotype called Busin-
terface to represent this concept. Master ports usually ini-
tiate the transactions, thus they require services from other
components. In our profile, interfaces associated with the
master ports are represented as sockets, a usage dependency
in UML. Figure 7 shows an example with the initor_port of
the leon2Proc_PV component. Interfaces associated with
slave ports are represented as balls (a realization depen-
dency in UML), since slave ports provide services to other
components. In Figure 7, the target_port of the ahbram_PV
component is such an example. The stereotype Businterface
refers to a BusDefinition and an AbstractionDefinition with
its properties busType and abstractionType. It also has an
enumeration literal to set its mode (master, slave or system)
and a Boolean property to identify whether it is a direct or a
mirrored interface. The enumeration InterfaceModeKind is
defined in our model library.

We reuse the MARTE stereotype HwBridge to represent
IP-XACT bridges. Finally, the port clock drivers are mod-
eled with the MARTE stereotype HwClock.



4.1.2 Bus and Abstraction Definition

There is no equivalent neither in UML nor in MARTE for
the IP-XACT important concepts of BusDefinition and Ab-
stractionDefinition. Our profile introduces two stereotypes
for this purpose. Figure 7 illustrates that with the example
of the BusDefinition ahb.

When a BusDefinition (or an AbstractionDefinition) ex-
tends another one, this extension is modeled by the MARTE
Refinement mechanism. MARTE refinement is very similar
to UML refinement but makes explicit the constraints im-
plied by the refinement. We can use these constraints to
specify the IP-XACT compatibility constraints, for instance.

4.1.3 Design

The design component represents a system or a subsystem.
It contains component instances and interconnects them.
No additional stereotypes are required for this level. We rec-
ommend the use of structured classifiers (UML hierarchical
classifiers) with a composite structure diagram. The compo-
nent instances become the parts of the structured classifier,
both the interconnections and the ad-hoc connections are
modeled as UML connectors. The hierarchical interconnec-
tions are represented with a delegate dependency between
the port of the parent and one port of one the children.

4.2 Behavioral description

Neither IP-XACT nor SYSTEMC provide any support to
model at an abstraction level higher than SYSTEMC PV
(Programmer View). However, combining UML state ma-
chines and activities with the MARTE time model gives the
opportunity to make models at a timed CP (Communicat-
ing Processes) level. Figure 8 shows a timed activity that
describes a timer at a much higher level than the equivalent
PV description, not to mention the RTL description. Us-
ing such activities or SYNCCHARTS [10] (the synchronous
version of UML state machines) enables formal validation
of composite models at the system level and gives a golden
timed model from which lower level descriptions can be de-
rived or at least compared.

« clockPort » clk
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d:Integer

« timedProcessing »
{ ] {duration =d on clk}
Count

timeout

|
' /
/

disarm

Figure 8. Timed Activity.

5 Conclusions

We have demonstrated how the UML MARTE could be
used to represent the various IP-XACT features. We focused
on four top-level elements, but plan to extend it to the full
IP-XACT standard. The main interest of this work in our
view is that it allows the of MARTE for possible extensions
of IP-XACT with timing representations.
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