
ACM / Crossroads / Xrds9-3 / Simulation of a Computer Architecture for Quantum
Chromodynamics Calculations

Simulation of a Computer Architecture for
Quantum Chromodynamics Calculations
by Sadaf Alam, Roland Ibbett, and Frederic Mallet

Introduction
The study of Quantum Chromodynamics (QCD), a branch of Particle Physics, is considered a
Grand Challenge application [2]; a Grand Challenge is a fundamental problem in science
and engineering, with broad applications, whose solution would be enabled by the application
of high performance computing resources [1]. Commercial and custom-built high-
performance parallel computers have been used around the world for QCD research for the
past 20-30 years. Custom-built massively-parallel QCD machines have a better
cost/performance ratio compared with commercial high performance computers and are
therefore more attractive to academic researchers . The success of special-purpose parallel
computers has paved the way for research and development in many computer science
disciplines including parallel architectures, processor design and high-performance compiler
design.

This article outlines design steps of a recent state-of-the-art QCD computer called QCDOC
(QCD On-a-Chip) [3] and presents an overview of its simulation model in HASE [9]. HASE
is a Hierarchical computer Architecture design and Simulation Environment that allows rapid
prototyping of both uniprocessor and multiprocessor architectures. Furthermore, the HASE
visualization mechanism permits the graphical display of an architectural model to be
animated, thus enabling the model designer to validate the model operations. The primary aim
of this research is to explore the hardware and software factors that can influence the
performance of the QCD computer.

Background

Quantum Chromodynamics

Figure 1: QCD Computation Process.

Particle physicists believe that when the universe began it was composed of particles, and that
it is still a large particle system. Consequently, particle physics researchers attempt to
discover what the tiniest particles are and how they interact. QCD (Quantum means discrete
amount, Chromo for color) is the theory of quarks and gluons and their strong interactions.
Quarks and gluons are the widely believed to be the fundamental particles of an atom. A
proton, found in the nucleus of an atom, is composed of three quarks and is a hadron.
Altogether there are six different types of quarks. Gluons are the carrier particles of strong
interactions. There are many QCD theories that describe these quark masses and their
interactions[10]. These theories are normally presented in a series of equations that cannot be
solved analytically. Consequently, to validate these theories and compare their predictions
with experimental results, computers are employed. Figure 1 shows the QCD computation
process on a parallel machine where a QCD theory, formulated as a series of equations, first
gets transformed into parallel software and is then run on parallel hardware.

Figure 2: Example of a Coarse Lattice (left) and a Fine Lattice (right).

QCD calculations are commonly performed as lattice QCD simulations [6]; the space-time
calculations are discretized and mapped on to a four dimensional space-time grid or lattice.
Ideally, discretization error is minimized. For example, discretization errors can be minimized
by reducing the distance between lattice points (called lattice spacing); a lattice spacing close
to the continuum limit is ideal. Figure 2 shows a path integral in two three-dimensional
lattices; one with a large spacing containing a small number of lattice points (called lattice
sites) per volume, and the second, a fine lattice with small spacing and a considerably large
number of lattice points. Finer lattices tend to approximate the path integral with minimum
discretization errors. The size of a QCD calculation depends on the number of lattice points.
Typically, a lattice size of N4 may involve solving a multiple of N4-dimensional integral
where N is, for most calculations, greater than 16. In practice, these integrals are solved using
Monte Carlo methods on a parallel computer.

On a parallel computer, a lattice is evenly divided among the number of processing nodes
available in each dimension. For instance, if lattice dimensions are Nx, Ny, Nz and Nt and the

dimensions of the machine are nx, ny, nz and nt, then the number of lattice points mapped on to
a node will be Nx/nx * Ny/ny * Nz/nz * Nt/nt.

Multiprocessor Simulation Models

A variety of techniques can be used to explore design tradeoffs in a computer architecture and
to evaluate its performance. Evaluating the performance of an existing system is, in principle,
straightforward as benchmarks can be run to measure the execution time. However, without
extensive instrumentation (possibly involving both hardware and software), this provides little
insight into the causes of performance limitations. Moreover, it offers very little opportunity
to measure the effects of varying architectural design parameters. One alternative is to use
analytical modeling. This has been done effectively for a variety of multiprocessor system
components but the models are usually driven by workload models rather than benchmarks or
real applications and the results can be unreliable, particularly if attempts are made to model
complex systems containing a variety of components. Another approach is to build a
prototype of the machine with relatively few processors. In practice, a 2-4 node prototype is
constructed for a target machine of well over a 1000 processing nodes and hence is not an
effective way to study the overall behavior of large parallel systems. Furthermore, this stage
cannot be started until most of the design considerations are made final and therefore the
designers are unlikely to explore a wider design space. Simulation has therefore become a
popular approach to analyze dynamic behavior and to predict performance of complex
systems.

Correctness and level of detail are the key considerations for a simulation model designer. In
addition, the model should be flexible enough to explore and to investigate the design space
of the target system. Multiprocessor simulation models are challenging to model because one
must model not only their memory requirements, dimensions, and interconnection network
topology, but also the interactions between the parallel software and hardware. Scalability of a
system is one of the most sought-after characteristics of a parallel system. Experiments to
measure the scalability of a parallel system can only be performed by providing a flexible way
to increase the size of machines. Altering dimensions and size of a parallel machine is not
straightforward, as an increase in the size of the simulation system not only multiplies its
hardware requirements but also affects the interaction between parallel software and
hardware. The representation of the parallel workload can be used to categorize computer
system simulations [5,7]. Four categories of computer system simulations are briefly
described as follows:

• Distribution-driven simulation - The workload is modelled stochastically by the
distribution of memory references. These models are extremely efficient but limited to
overall performance measures and unable to provide insight into the system. Also, it is
difficult to identify stochastic models representative of the dynamic behaviour of a
parallel machine.

• Trace-driven simulation - Central to this mode is a trace file. A trace of memory
references is generated once by executing the workload on a machine similar to the
target system or by using a functional simulator. Results from simulations can be very
effective and accurate as long as the properties of modelled machine and the machine
from which the traces are obtained remain similar. In other words, these types of
simulation are not particularly suitable to explore wide design spaces.

• Program-driven simulation - This method is generally considered as a complete
simulation scheme because both the processors and the memory system of the target

system are simulated. The workload is executed on simulated processors where each
machine instruction of the target processor can take many machine cycles of the host
computer. This is an extremely accurate technique but is not practical for large
multiprocessor simulators due to speed and memory constraints.

• Execution-driven simulation - This scheme was proposed to address the
inefficiencies of the program-driven simulations. The workload in this mode is
executed on a host computer rather than on the simulated processor. At events of
interest, for example, shared memory references, control is transferred to the
simulation software, which simulates the memory system. Although this scheme is
fast, it provides little insight into microprocessor-level parameters like Instruction
Level Parallelism (ILP).

Which simulation technique to use depends on the hardware features of interest. For instance,
for shared-memory multiprocessor coherency protocols, memory references are the critical
values and what happens in the execution pipes is not as significant. On the other hand, when
studying execution pipeline utilization, each pipeline stage has to be modelled accurately. For
the former example, an execution-driven simulation is a suitable candidate, for the latter, a
program-driven simulation model is necessary.

HASE

The Hierarchical computer Architecture design and Simulation Environment (HASE)
developed at the University of Edinburgh allows rapid development and exploration of
computer architectures at multiple levels of abstraction, encompassing both hardware and
software. The main features of the HASE environment include an Entity Description
Language (EDL), an Entity Layout (EL) file, a discrete-event simulation engine HASE++, a
visualization mechanism, and results gathering tools [4].

The EDL definitions of the architectural components provide information about architecture
parameter definitions, component parameters and ports, hierarchical on-screen structure,
global system parameters, and component interconnect. Predefined multiprocessor topology
templates are also included in EDL to aid in the rapid development and exploration of
multiprocessor networks. The EDL description when combined with the Entity Layout file
containing display information completely describes the architecture to be simulated.

Once the architecture is loaded into HASE from an EDL file, the simulation executable can be
generated by combining the architecture information and user defined parameters with the
individual component behavioural descriptions. The behaviour of entities is described in
HASE++, a C++-based discrete event simulation language. This simulation executable can
then be executed with various input parameters specified in the architecture descriptions.

The visualization mechanism allows the graphical display of an architectural model to be
animated by reading in trace files generated by the simulation execution, thus enabling the
designer to inspect the model for correct operation. The hierarchical nature of HASE controls
the displayed complexity of the simulation, according to the areas of the model being
concentrated on.

This paper highlights only those features of HASE that are being included and extended for
the simulation of the QCDOC model. But first, we give a brief description of a parallel QCD
software and the key design features of the QCDOC architecture.

QCD Software and Hardware

QCD Programming Model

QCD application programs follow a Single Program Multiple Data (SPMD) style
programming paradigm and are therefore suitable for SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data) parallel machines. In an SPMD-style
programming model each processing node effectively performs the same set of calculations
on different sets of data elements. According to the Caltech Concurrent Computation Group
classification of parallel applications [8], QCD simulations are considered as Synchronous
applications. Synchronous applications have a regular structure, and in general, are the
simplest to code and parallelize. These applications are characterized by a basic algorithm that
consists of a set of operations, which are applied identically at every point in a data set. The
structure of the problem is typically very clear in such applications, and they can be
considered as parallel in nature.

Like any other parallel application, the total execution time of a QCD application depends on
the amount of time spent in computation communication. Communication in QCD
calculations can be further divided into nearest-neighbour communications and global sum
routines. This is because nearly all communications in lattice QCD calculations involve
access to nearest-neighbour points apart from a few floating-point global sum operations.
These global sums have to be performed in the same order on each and every node so that all
nodes have the same floating-point value (no rounding errors). Due to the extremely
deterministic nature of the calculation, nearest-neighbour communications can be overlapped
with computation. It is possible to send requests for neighbouring data in advance before that
data is needed in a calculation. On the other hand, the infrequent global sums operations
cannot be overlapped.

The Conjugate Gradient algorithm is one of the most well-known and the most frequently
used iterative algorithms for solving the large sparse linear system of Lattice QCD [12]. The
execution times for the algorithm can be expressed as:

Texe = scale_factor * (Tcomp + Tnncomm) + Tglbsum

Where, Texe is the total execution time, Tcomp is the computation time, Tnncomm is time taken for
the nearest-neighbor communications, and Tglbsum is the time required for the floating point
global sums. scale_factor is used to represent the scaling of the application execution time
with respect to the number of sites mapped on a node. As long as the dimensions of a parallel
machine remain the same, the time required for the global sum remains the same, as the
scaling factor does not apply on Tglbsum.

Ideally, hardware for a QCD software must have fast processing nodes with high-performance
floating-point execution units and support for low latency high-bandwidth four-dimensional
nearest-neighbor communications and global sums. Most mainstream commercial high-
performance computers are not optimized for the QCD software requirements and their costs
are out of reach for many research groups. Therefore, Particle Physics researchers have
decided to build cost-effective custom-designed computers from commodity components.
This phenomenon has been very successful. The QCDOC architecture is a recent example
which is currently under construction in a collaboration between a number of universities and
IBM. Its design is highly optimized for QCD calculations.

QCDOC Architecture

QCDOC is a 10 Teraflop-scale massively-parallel distributed-memory MIMD architecture
with over 8000 processing nodes. The main components of the architecture are the processing
nodes and the communication network[14].

The Processing Node

A QCDOC node consists of a custom-built Application Specific Integrated Circuit (ASIC)
and an externally connected memory called Dual-In Module Memory (DIMM) Synchronous
Dynamic Random Access Memory (SDRAM). It is called QCDOC (QCD On-a-Chip)
because a node is effectively an ASIC plus an external memory module.

The ASIC is a complex piece of hardware built with mainly IBM library components. It
contains a high-performance embedded PowerPC 440 core with co-processor Floating Point
Unit (FPU), on-chip memory called Embedded DRAM (EDRAM), a high-performance bus, a
Direct Memory Access (DMA) controller for on-chip and external memory transfers, a Serial
Communication Unit (SCU) to support QCD specific communication routines, and additional
IBM components to support the ASIC design. The custom-designed blocks are Prefetch
EDRAM Controller (PEC) to support high-bandwidth and low-latency core and on-chip
memory transfers and the SCU for four-dimensional nearest-neighbour and global
communications.

The IBM PowerPC 440 [15] core contains a dual-issue seven-stage out-of order issue,
execution, and completion pipeline. It has separate highly-associative (a 32K cache is 64-way
set associative) instruction and data caches. A Translation Look-a-side Buffer (TLB) supports
multiple-sized pages and is responsible for other access and user-defined features. The cache
mechanism has a powerful feature of being further sub-divided into locked, transient, and
normal regions for optimization. In the PEC block, there is a Level 2 (L2) prefetch cache. The
L2 cache maintains a set of prefetched data and buffer writes from the processor, and is also
capable of delivering read data at the processor clock frequency.

Communication Network

There are two networks in the system. One is dedicated to the QCD calculations while the
other is for boot, general input/output, and other system support features. The QCD network is
a six-dimensional torus for inter-node communications, while a tree of standard Ethernet
connections is used for system support. Out of the six dimensions, two are for software
partitioning of the system and four are dedicated for the four-dimensional space-time QCD
calculations.

The architecture of the QCDOC machine is indeed highly optimized for the QCD
calculations. Now the question is, "What can be learned by modelling the QCDOC machine,
which promises to be able to solve a range of previously unsolved or impossible-to-solve
QCD calculations?" The answer follows in the next section.

HASE QCDOC Model

As the performance of massively-parallel machines is rocketing to Teraflop and Petaflop
ranges, the gap between the theoretical peak performance and application or user code
performance is getting wider. The reasons frequently cited [13] are memory bandwidth,
processor-to-memory speed ratio, and network latencies. The main motivation behind
modelling the QCDOC system is to explore the influence of these factors on the ratio of the
application code performance to the theoretical peak performance. Typically, without
optimized kernels, the performance of application code ranges between 15% to 30% of the
theoretical peak performance [16]. Because QCDOC is a custom-built parallel machine, it is
believed that a higher than normal fraction of peak performance is possible for the application
code. The custom components that can play decisive roles are the levels and bandwidths
available for cache and memories, the bidirectional four-dimensional dedicated network, and
the PowerPC core configuration. The HASE QCDOC model is designed to explore the design
space of this machine.

Model Design

Figure 3: A HASE QCDOC Node.

In designing the simulation model, the key design issue was to decide what level of detail was
necessary to model. Since this research aims to investigate the factors limiting the
performance of the QCD application code on the QCDOC computer, it was decided to model
only those components of the processing node that take part in the execution of the
application code. Figure 3 shows the design blocks of a HASE QCDOC node. Attention has
been focused on detailed modelling of the custom components because the QCD code is
written in higher level languages like C/C++, where compiler-generated output is unlikely to
utilize system resources effectively. A snapshot of a 2x2x2x2 QCDOC computer model is
shown in a HASE design window in Figure 4. The figure shows design entities, their
parameter control block and multi-frequency clocks. The figure also illustrates the
hierarchical levels of a QCDOC node. The contents of a memory module can also be viewed
in the design mode and during the animation of a simulation.

Figure 4: HASE QCDOC Model.

The second key issue was figuring out how to model many large configurations. The
aggregate memory requirement of the four-dimensional QCDOC torus restricts the modelling
of this machine to few tens of nodes. In order to be able to perform experiments with a
considerably large number of nodes, it was decided to construct more than one model for the
QCDOC computer. The first model (Figure 4) is program-driven and is constructed to identify
and explore the design space of a node. This model can be composed of no more than 32
processing nodes, mainly because each node simulates all the memory systems of a QCDOC
node. The second model will be an abstract version of the first model with no memory
contents, and it will have a relatively large number of processing elements. This model will be

trace-driven. The traces for the abstract model will be obtained from the first model. The
abstract model will be capable of simulating all the communication events including the
frequent nearest-neighbour communications. All other events will have a time stamp
associated with them, which will help to estimate the overall execution time of a QCD test
routine. The number and timings of the nearest-neighbour interactions will be the same as
long as the number of sites mapped per node remain the same. However, the global sum
timings, which depend on the size of the machine and its interconnection network topology,
have to be adjusted. These adjustments are part of the future research plans.

Figure 5: A Parameter Window.

Finally, experiments are performed for performance evaluation of the model. The test routines
for the model will be the code segments (in C++ and PowerPC assembly), which are
optimized for the QCDOC machine. Experiments will be performed by altering parameters of
HASE QCDOC model's entities to observe the dynamic behaviour of computer architectures
with a number of hardware and software combinations. Figure 5 shows a parameter window
for an entity Processor Direct Bus (PDB) that contains the Level 2 cache. When a parameter is
altered in the parameter window, the next simulation runs with new parameter values. For
example, PDB allows changing the size of prefetch register (in figure 1024 bits), number of
prefetch read registers, number of write buffer registers, and the replacement policy adopted
for the selection of a victim read register. Using this facility, experiments will be performed;
for example, with varying cache configurations, bandwidth and latency of network and
application test routines.

Simulation Results

The result of a simulation is a trace file that can be animated to observe the dynamic
behaviour of the simulation entities. In addition to the animation facilities, HASE provides a
Timing Diagram generation method that can be used to study the send and receive events
among entities over time. As the QCDOC machine simulations will be quite large, the overall

effect of various parameters cannot possibly be studied via animation of the simulation or
from timing diagrams. As part of this research, a number of graph and chart generation
facilities will be included to study, investigate, and represent the simulation results.

The performance of the model is evaluated by measuring the number of processor clock
cycles spent. The number of clock cycles is well-known as logical time or simulation time.
The time taken by a scalar host processor to simulate the model depends on the size and
dimensions of the machine. The bigger the dimensions of a machine are, the more processing
nodes and design entities it has, and therefore, the longer a host processor will take to
generate and animate its simulation trace file. However, increasing dimensions of a machine
will not effect the simulation time of individual processing nodes. For example, on a
workstation, a 2x1x1x1 model or 2 processing nodes take 3.869 seconds to run 50 processor
clock cycles, while a 2x2x2x2 system or 16 nodes take 13.855 seconds to run the same
number of clock cycles.

HASE Extensions
HASE has evolved significantly as a result of the requirements of the QCDOC simulation
model. Extensions were necessary to model the multiple dimensional meshes with a large
number of nodes. The key extensions are the library clock mechanism and memory model
options. The HASE mesh mechanism has also been extended from three-dimensional meshes
to n-dimensional meshes with an option of with or without wrap-around links.

The Library Clock Mechanism

Like any complex ASIC, the QCDOC ASIC operates on a range of clock frequencies. The
fastest block is the PowerPC core and all other components run at a speed relative to the
processor's clock frequency. For example, the Processor Local Bus (PLB) operates at one-
third of the processor clock and its frequency is represented as (1:3) of main clock. In total
there are four different frequencies, in which the slowest is the speed of the communication
link, which is 1:8 (one-eighth of the processor clock).

In order to model the cycle-accurate behaviour of the QCDOC node, a flexible and extensible
clock mechanism has been introduced in HASE [11]. It is implemented using an object-
oriented inheritance mechanism, such that each entity that needs to be clocked should register
with an ABSTRACT Clock entity. The registering mechanism is made transparent to the user
by inheriting the synchronization behaviour from a predefined ABSTRACT clocked entity.
Inheritance from a clocked entity simplifies the behaviour specification. Such an entity is only
required to override the $pre, $phase0, and $phase1 sections of the behaviour code to specify
what should happen in the initialization phase ($pre) and during each synchronization phase
($phase0 and $phase1). For the model designer, the Clock entity is a library component,
hence there is no need to rewrite its code. This Clock entity provides only one clock
frequency, the range of frequencies is provided by another component called the PLL (phase-
locked loop) entity. A PLL operates on a ratio relative to the main clock. For the QCDOC
model, four PLLs are required for the four different clock speeds (1:1, 1:2, 1:3, and 1:8).

Memory Model Options

QCDOC is a distributed memory machine, each node has its own sets of memories.
Conventionally in HASE, each memory module requires a text file with .mem extension that
contains an array of an appropriate data structure that represents memory contents. For the
QCDOC model, this scheme was not practical because of a large number of memory modules
required per node. A QCDOC node's memory modules include an instruction cache, a data
cache, a set of prefetch read registers, write buffer registers, on-chip memory, external
memory, and send and receive registers. Because the QCDOC model is a four dimensional
mesh, a slight increase in size of one dimension can increase the total number of nodes
significantly, which will result in a huge number of memory text files being required.

In order to address this problem, two options are introduced for the HASE memory ARRAYs.
Each of these options is transparent to the simulation user. The first option is well-suited to
the SPMD programming model where all nodes share a single instruction file. The model
designer can use a single physical text file to represent the contents of the instruction cache
that will be shared among all nodes. However, in the model design window and during the
animation, the nodes will appear to have their own copy of instruction cache. The second
mechanism was introduced for the data memories. This option is quite similar to the first
method in that there will be a single physical file. Unlike the instruction caches however, the
contents of data memories need to be different. Therefore, the single .mem file in this case
contains sections, where each section belongs to a separate memory instance. These sections
are separated by a tag to identify the beginning and end of each section. Section mappings are
restricted to follow the order in which memory instances are generated by HASE.

The introduction of the library clock mechanism and memory array options have made the
project management of this and future massively-parallel system possible without
compromising any simulation, animation, and performance analysis features of HASE.

Future Directions
This research is still in progress. The goals include providing a robust mechanism to visualize
the dynamic behaviour of the QCDOC computer design blocks and evaluating performance,
which will be conducted by running the QCD code segments on the parameterized HASE
QCDOC model. It is hoped that by varying architectural parameters, an optimal machine
configuration can be explored. Furthermore, the HASE platform has become more
sophisticated and suitable for rapid prototyping of complex multiprocessor systems. It is
anticipated that HASE can provide an ideal environment for research and exploration of
future computer architectures, which are expected to be proposed for recent advancements in
theoretical Particle Physics.

Acknowledgements
The QCDOC computer simulation project is supported by the UK EPSRC under grant
GR/R27129. I wish to thank the following individuals from Physics and Astronomy
department, University of Edinburgh, for their help and support with this project. Professor
Anthony Kennedy explained, for hours, the background of QCD calculations and the QCD
programming model. Dr Peter Boyle and Dr Balint Joo, who are in QCDOC design team,
provided the technical information about the QCDOC machine and shared their invaluable
programming experience on massively-parallel QCD computers.

Bibliography
1

Bailey, F. R. and Simon, H. D. Future Directions in Computing and CFD.
Proceedings, AIAA 10th Applied Aerodynamics Conference, 1992.

2
Bowler, K. C. and Hey, A. J. G. Parallel Computing and Quantum Chromodynamics.
Parallel Computing 25 (1999) 2111-2134.

3
Chen, D. et. al, QCDOC: A 10-teraflops scale computer for lattice QCD. Nuclear
Physics Proceedings Supplement, 94 (2001) 825-832.

4
Coe, P. S. et. al, HASE: An Environment for Hardware/Software Codesign. Technical
Report CSG-41-98, University of Edinburgh, 1998.

5
Covington, R. G. et.al. The Efficient Simulation of Parallel Computer Systems.
International Journal in Computer Simulation, Vol. 1, 1991.

6
Creutz, M. Quarks, Lattices and Gluons. Cambridge University Press, 1983.

7
Ferrari, D. Computer Systems Performance Evaluation. Prentice Hall, New Jersey,
1978.

8
Fox, G. C., Williams, R. D. and Messina, P. C. Parallel Computing Works . Morgan
Kaufmann, 1994.

9
http://www.dcs.ed.ac.uk/home/hase

10
Gupta, R. General Physics Motivations for Numerical Simulations of Quantum Field
Theory. Parallel Computing 25 (1999) 1199-1215.

11
Ibbett, R. N., Mallet, F. and Alam, S. R. An Extensible Clock Mechanism for
Computer Architecture Simulations. 13th IASTED International Conference Modeling
and Simulation, 2002.

12
Isgur N. and Negele, J. W. Nuclear Theory with Lattice QCD. A proposal submitted to
the U.S. Department of Energy, unpublished(2000).

13
Lubeck, O. M., Simmons. M. L. and Wasserman, H. J. The Performance Realities of
massively-parallel Processors: A Case Study. Proceedings of the 1992 conference on
Supercomputing, 1992.

14
http://www.lqcd.org/hardware_qcdoc.htm

15
The PowerPC 440 Core, IBM Microelectronic Division, NC, 1999.

16
Sroczynski, Z. Improved Performance of QCD code on ALiCE. Contribution to
Lattice2002 (machines).

Biography

Sadaf Alam (SR.Alam-2@sms.ed.ac.uk) is a PhD student at the University of Edinburgh, UK.
She is a member of Institute for Computing Systems Architecture (ICSA), School of
Informatics.

Professor Roland N. Ibbett (rni@inf.ed.ac.uk) is the principal investigator of the HASE
QCDOC simulation model project.

Dr. Frederic Mallet (fmallet@inf.ed.ac.uk) is a post-doc at ICSA and a key contributor to the
HASE developments.

© 2004 The Association for Computing Machinery, Inc.

