
JavaHase: Automatic Generation of Applets from Hase

Simulation Models

F. Mallet and R.N. Ibbett

Institute for Computing Systems Architecture
School of Informatics - University of Edinburgh

Keywords: Simulation Applets, Computer Architec-
tures, Object-oriented Modelling.

Abstract

Hase is a design and simulation environment that al-
lows for rapid development and exploration of com-
puter architectures at multiple levels of abstraction.
The great ßexibility of the graphical display has en-
abled the creation of models (Tomasulo�s algorithm,
DLX architecture, etc.) which have proved to be use-
ful in their own right, particularly for teaching and
demonstration purposes. In order to make the models
widely accessible, two different ways of exporting them
via the WWWhave been investigated,WebHase and
JavaHase. WebHase uses a viewer applet to visu-
alise pre-run Hase simulations whilst JavaHase al-
lows existing simulation models to be translated into
fully interactive simulation applets.

INTRODUCTION

Hase is a Hierarchical computer Architecture de-
sign and Simulation Environment [1]. It allows for
rapid development and exploration of computer ar-
chitectures at multiple levels of abstraction, encom-
passing both hardware and software. The architec-
ture structural description (and where appropriate the
instruction-set) are speciÞed using the Entity Descrip-
tion Language (EDL), an architecture description lan-
guage [2] designed as part of the Hase project. An
EDL Þle contains the description of entities� general
properties, instances, connections and the types of
data to be exchanged by entities through the connect-
ing links. The screen layout is described by an Entity
Layout File (ELF) and the behaviour is implemented
in Hase++, a C++-like programming language with
primitives to manage discrete-event simulations.

Once models are built, they may be used either to
evaluate the performance of the architecture in re-
sponse to speciÞc inputs (data and programs) or for
educational or training purposes, e.g. to demonstrate
the internal mechanisms of the architecture. In this
context, distributing the models widely is important,
so that they can be extensively used, validated and
extended. One way to do this would be to distribute
Hase. The Hase design and simulation environment
currently runs on Linux and earlier versions also ran
on Solaris and Windows NT; some simulations were
also successfully run on a Cray T3D. However, instal-
lation is not always straightforward and updating with
new releases implies the use of a versioning system by
the user. In any case, the design environment is not
really required by the user who only really needs an
executable simulation model and the animator. More
importantly, designers may not want to release the
source code of their models.

Currently, the most efficient distribution medium is
the World Wide Web. Markup Languages (HTML,
XML) are an easy way to provide up-to-date docu-
mentation and explanations, whilst Java applets are
an efficient and secure way to provide interactive exe-
cutable models. This explains the huge number of sim-
ulation packages available over the web [3, 4, 5, 6, 7].
We therefore decided to investigate systems which
would allowHasemodels to be displayed in a browser.
This paper presents two solutions: WebHase and
JavaHase.

Neither WebHase nor JavaHase is itself a Web
simulation environment. WebHase allows existing,
pre-run Hase simulations to be viewed with a Web
browser whilst JavaHase is a process that allows ex-
isting simulation models to be translated into active
simulation applets. As a consequence of this trans-
lation process, JavaHase is virtually independent of
the simulation engine and so allows submodules writ-
ten in different languages (C++, Java), with different

ISBN: 1-56555-268-7 659 SCSC '03



underlying simulation engines, to be integrated into
the same model. This process has been successfully
applied to a number of existing Hase models. Java-
Hase offers the users the advantage of being able to
create models using a well developed support envi-
ronment (Hase) and the choice of running the same
model as either a Linux application or as an applet.

HASE, HASE++ AND WEB-
HASE

Hase has four modes of operation, each one corre-
sponding to a phase in the development life-cycle of
a project: Design, Build, Simulate and Experiment
(Figure 1). Each mode provides the designer with a
different set of menu options allowing different oper-
ations to be performed. The operations available to
the designer in Design mode include add/remove com-
ponent, adjust connections between components and
add/remove parameters/ports from individual compo-
nents.

Figure 1: A typical Hase project

Build mode is used to create an executable simu-
lation of the architecture. Simulate mode allows the
simulation to be run and the graphical display of the
design to be animated. The animator shows packets
moving between entities, entity state changes and, in
separate pop-up windows, changes to the contents of

arrays (e.g. registers and memories). Simulate Mode
also allows system parameters to be changed and tim-
ing diagrams for system components to be viewed. Ex-
periment mode allows automatic multiple executions
of the simulation to be performed, with different pa-
rameter settings used in each execution.
After deÞning the properties of the entities in

EDL, the designer deÞnes their behaviour in Hase++.
Hase++ is a library for C++ which provides discrete
event simulations, with entities running in separate
threads. It is part of the Hase simulation environ-
ment, but may be used by itself. The interface is
based on that of Jade�s SIM++. Hase++ can be run
on Sun Solaris running Solaris threads, on Linux us-
ing g++ and the REX threading library and has also
been run on a Cray T3D.
EDL and Hase++ information are compiled to-

gether to produce an executable Þle. This Þle reads in-
puts from external Þles, allowing the simulation model
to be run with different inputs. Hase++ primitives
write events to a trace Þle which can subsequently be
used by the Hase animator to show the results of the
simulation in the design window (Figure 2).
Figure 2 also shows how Hase, WebHase and

JavaHase are interrelated. WebHase was devel-
oped as an undergraduate project which aimed to al-
low Hase simulations to be viewed with an Internet
browser. The WebHase converter parses the EDL
Þle, the EL Þle and the simulation trace Þle so as to
produce a summary Þle described in XML. This XML
Þle contains all the information required to display
and animate a simulation.
Originally, users were allowed to alter model param-

eters (e.g. the instructions in the memory of a com-
puter), then to send these parameters back to a servlet
engine which would re-run the simulation using the
new parameters. When the simulation was complete,
the servlet would create a new XML Þle which was re-
turned to the viewer applet to be animated. Partly be-
cause the servlet engine proved unreliable and partly
because of concerns over the potential for overloading
the server, the interactive facilities ofWebHase were
disabled and an alternative interactive system, Java-
Hase, developed instead. WebHase has nevertheless
been retained for use as a demonstration system, al-
lowing pre-run simulations to be viewed over the Web,
since it requires less sophisticated browser facilities.

JAVAHASE

JavaHase allows Hase projects to be translated into
applets containing fully ßedged simulation models

ISBN: 1-56555-268-7 660 SCSC '03



Figure 2: Hase, Simjava,WebHase and JavaHase

based on simjava [3]. simjava is a process based dis-
crete event simulation package for Java, derived from
Hase++, with animation facilities. Since simjava has
the same origin as Hase++, it is able to produce com-
patible trace Þles (Figure 2) and all Hase++ prim-
itives have a direct equivalent in simjava. Conse-
quently, using simjava greatly simpliÞes the transla-
tion process. The JavaHase system is composed of
three packages: javahase.meta, javahase.model, java-
hase.view.

The javahase.model package is responsible for pro-
viding classes allowing for the building of a hierar-
chical model which interacts with simulation entities.
Actually, it conceals the simulation engine internal
mechanisms to guarantee the complete independence
of JavaHase from the underlying discrete-event sim-
ulation engine.

The javahase.meta package is used to contain all the
information which makes up a Hase project. A part
of this package (javahase.meta.generator) is responsi-
ble for generating new representations of the project,
either an XML Þle to be given to aWebHase applet
or Java Þles to be executed in a JavaHase applet or
as a JavaHase application.

The javahase.view package is composed of two kinds
of class. The Þrst kind provides a simple way to dis-
play aspects of the entities. The second kind controls
the interaction between the classes of the Þrst kind,
the model and user requests. This is done according
to the Model/View/Controller pattern [8].

The JavaHase model and the transla-
tion process

When the user decides to generate a fully autonomous
JavaHase applet, three kinds of java Þles are gener-
ated for each project. These Þles are generated in the
package javahase.<project>, where <project> is the
name of the project converted to lowercase and in a
format dictated by the Java syntax.

First, for each basic class called EntityClass, the
Hase++ description is parsed and translated into a
simjava compatible Java class. The resulting class is
assigned to the javahase.<project>.sim package. Ac-
tually, JavaHase Þrst looks for an existing simjava-
compatible description in a .sjava Þle. If that descrip-
tion is not found, it looks for the Hase++ description
in a .hase Þle. This mechanism allows Java to be used
directly to specify the behaviour of all or some of the
entities. This can be very useful when the user wants
to add some remote or network-oriented features to an
existing model. Furthermore, it is not always possible
to translate some of the C++ libraries which could
be used by speciÞc Hase projects, and in these cases
it can be simpler to implement some features directly
in Java. This means that some entity descriptions
may be in C++ while others are in Java depending
on which language is more suitable.

At the end of the translation process, the gener-
ated class will inherit directly or indirectly (the inher-
itance relation is transitive) from the simjava.Entity

java files
Simjava−compatible

design & simulation tools result repository animatorsmodels

Trace files

xml file

Hase++ files

SimJava simanim

HASE animator

WebHase converter

JavaHASE

EDL, EL

.sjava JavaHASE applet

WebHASE applet

jar & html files

JavaHASE application

HASE

ISBN: 1-56555-268-7 661 SCSC '03



class, which is the basic class to represent simulation
entities in simjava. Such a class will be instantiated
automatically for each instance of the corresponding
entity, but could also be used as a normal simjava
class, in another independent project.

During the translation process, pointers are trans-
lated into references and calls to the string.h library
are translated into calls of corresponding methods of
the java.lang.String class. For each type (structure,
instruction-set, link) deÞned in the EDL description,
a Java class is generated and references to these types
are translated within the generated classes. Finally,
calls to Hase++ discrete-event primitives are replaced
by more generic calls which are separately associated
with some speciÞc simjava equivalent methods. They
could quite easily be associated with primitives of
other simulation languages. The only constraint is
to generate a compatible trace output.

Second, for each entity, including basic enti-
ties, library entities and compound entities, a java-
hase.model.AEntity is generated and associated with
the javahase.<project>.model package. This class
conceals the simulation language from the rest of the
system. When applicable, the simjava-compatible
javahase.<project>.sim is embedded into this entity.
This simulation entity could be replaced by another
one written in another simulation language. This ad-
ditional level also allows the hierarchy information
to be maintained as well as some information about
speciÞc components such as meshes. It is quite rare
to Þnd hierarchy management facilities in currently
available simulation languages. Neither Hase++ nor
simjava contain such information. However, this in-
formation can be very useful since it allows a complete
part of a system (module) to be reused without re-
building the hierarchy and the communications within
the module.

The model.AEntity classes do not contain any infor-
mation about the layout. They only provide a trans-
parent way to access a set of parameters shared by a
hierarchical system of simulation entities. Each Sim-
javaEntity instance will be associated with a speciÞc
Entity object and will access its parameters on de-
mand. A new class inheriting from the AEntity class
can easily be added, allowing a different simulation
language to be used.

Third, a controller class is generated for each AEn-
tityClass. These classes deal with the layout at-
tributes and with initial parameters. For each in-
stance, the control class selects a default view ac-
cording to the entity type. For example, the EDL
format provides a macro-instruction to automatically

generate n-dimensional meshes of a basic entity. The
controller associated with a MeshEntity looks at the
entities and connections from which the mesh is con-
structed and generates drawing properties according
to a predeÞned scheme. The resulting layout allows
the dynamic information about each node of the mesh
to be accessed during the simulation.

Finally, a main class is generated so as to instantiate
the controllers and provide either a Java applet or a
Java application, depending on the user�s choice.

During the Þrst execution of the main class, the En-
tity behaviours are executed (the body method) and
a trace of events is saved in memory. If the user wants
to replay the simulation, the saved events will be an-
imated again. The user may also want to run a new
simulation; this can be done by modifying the param-
eters and then running the new simulation. In this
case, the Entities are used again to compute the cor-
rect behaviour.

In Hase itself, simulation and animation are sep-
arate activities: when a simulation is run, a trace
Þle is produced for subsequent use by the animator.
Animation is appropriate during model development
and testing or for teaching and demonstration pur-
poses, but not when the user wants to produce per-
formance information as quickly as possible. This ef-
fect can also be achieved when running a JavaHase
model as an application by having two modes of oper-
ation: normal and fast. In fast mode, an alternative
main class is generated which uses the the simulation-
speciÞc classes but not the layout controllers. A trace
Þle is still produced and this can be used either by
the JavaHase application or by the Hase animator
(Figure 2).

JavaHase display mechanism

In Hase, an executable Þle is generated according to
the contents of the project�s EDL Þle and the be-
havioural (.hase) description Þles of its entities. For
performance reasons, this executable Þle does not con-
tain any information about the graphical on-screen
layout. In order to be able to analyse the simula-
tion and the model, the Hase designer must include
some dump state() statements in the .hase Þles. These
statements dump, into a trace Þle, the current values
of an entity�s parameters, as declared in the EDL Þle.
When the simulation is Þnished, the Hase animator
reads the trace Þle and produces an animation. The
animation can be run repeatedly to explore different
part of the simulation. Alternatively, with large sim-
ulations, some data mining techniques can be used on

ISBN: 1-56555-268-7 662 SCSC '03



Figure 3: The JavaHase applet for the DLX model.

the trace Þle to extract the right information accord-
ing to speciÞc criteria.

In JavaHase, simjava-compatible Þles are gen-
erated according to the .hase descriptions. The
dump state() statements are converted so as to emit
events to the external world. When running a Java-
Hase model as an application, this information is also
written into a trace Þle. When using a JavaHase
applet, however, these events are caught by graphical
components, the layout of which is deÞned by the ELF
Þle. At each instant, the applet shows the state and
the parameters of the entities at the current simula-
tion time. Any time a new simulation step is executed
in Java, the graphical layout is updated in the applet
(Þgure 3) while parameters (e.g. memories) are dis-
played in pop-up windows (Þgure 4).

A direct beneÞt of updating the layout after each
step is that it allows interactive applets to be built
in which parameters, and thus the behaviour, can be
modiÞed according to external inputs (e.g. mouse
clicks). This interactive facility makes JavaHase
suitable for robotics-oriented applications; this facility
is currently being explored.

Figure 4: The memory view with JavaHase.

CONCLUSION

We have presented the JavaHase system which al-
lows us to translate Hase projects into Java applets
which can be displayed in Java-compatible Internet
browsers.

The major restriction of the JavaHase approach
comes from the translation processes, from Hase++
to Simjava and from C++ to Java. Since Hase++
and simjava are very similar, however, the correspon-
dence is quite straightforward. But, the Java compiler
being more constraining than the GNU g++ compiler,
we now have to take great care during the design of
new projects to avoid some C-speciÞc mechanisms (as-
signments between enumerated types, extensive use of
pre-processor directives, etc.).

So far, we have successfully translated nine of the

ISBN: 1-56555-268-7 663 SCSC '03



projects implemented in Hase (e.g [9, 10]) and any
posterior modiÞcations have been automatically re-
ported to the applets.
We believe that the JavaHase approach has ad-

vantages over the WebHase approach. Even with
a reliable servlet engine, the amount of data to be
transferred for each newWebHase simulation would
be prohibitive and the server would certainly be over-
loaded because it would have to run every simulation
for each client. However,WebHase is still suitable for
demonstrations in lectures, etc, and has the advantage
of being less demanding in its browser requirements.
Obviously, Hase projects which make extensive use

of external libraries will not be automatically translat-
able, they will require partial manual recoding. But,
since we are able to mix C++ (.hase) and Java (.sjava)
descriptions, some parts of the project may be rewrit-
ten directly in Java and use equivalent Java libraries.
All JavaHase applets are accessible from

http://www.icsa.inf.ed.ac.uk/research/groups/hase/
where an access control mechanism allows us to
quantify their usage.

Acknowledgments

JavaHase is being developed as part of a simula-
tion study of the UKQCD computer architecture sup-
ported by the UK EPSRC under grant GR/R27129.
WebHase was developed by Stuart Buchanan.

Biographies

Frédéric Mallet (fmallet@inf.ed.ac.uk) received his
MEng and MSc degrees from the University of Nice in
France in 1997 and his PhD in 2000. In 2001, he was
Assistant Lecturer at the University of Nice. Since
2002, he has been Research Associate at the ICSA;
he develops methods and tools based on the object-
oriented paradigm to model and simulate computer
systems architecture.
Roland Ibbett (rni@inf.ed.ac.uk) received his BSc

and MSc degrees from the University of Manchester
and his PhD from the University of Hull. From 1967
to 1985 he was a Lecturer, Senior Lecturer and then
Reader at the University of Manchester. Since 1985
he has been a Professor of Computer Science at the
University of Edinburgh. He is a Fellow of the Royal
Society of Edinburgh and of the British Computer So-
ciety. His research interests are in computer architec-
ture and in the simulation and visualisation of those
architectures. While at Manchester he was a major
contributor to the design of the MU5 computer. His

use of the MU5 logic simulator, and involvement in the
use of ISPS during a semester at Carnegie-Mellon Uni-
versity, identiÞed a need for a higher level architecture
simulator and thus led to the design and development
of HASE.

References

[1] P.S. Coe, F.W. Howell, R.N. Ibbett and L.M.
Williams: A Hierarchical computer Architecture de-
sign and Simulation Environment, ACM Transactions
on Computer and Modelling Simulation, Vol. 8 No.4,
1998, pp. 431-446.

[2] N. Medvidovic and R.N. Taylor: A classiÞcation and
comparison Framework for Software Architecture De-
scription Languages, IEEE Transactions on Software
Engineering, 26(1), Jan. 2000.

[3] F.W. Howell and R. McNab: Simjava - a discrete
event simulation package for Java with applications
in Computer Systems Modelling, Int. Conf. on Web-
based Modelling and Simulation, SCS, Jan. 1998.
http://www.dcs.ed.ac.uk/home/simjava/

[4] EECS, University of Berkeley: Ptolemy2
- Heterogeneous Concurrent Modelling
and Design in Java, available at
http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[5] Silk inc.: Silk - a Java-based modelling tool,
http://www.threadtec.com.

[6] A.H. Buss and K.A. Storh: Discrete-event simulation
on the world wide web using Java., proc. of the 1996
Winter Simulation Conference, pp. 780-785.

[7] B.A. van Halderen and B.J. Overeinder: Fornax:
Web-based discrete-event simulation in Java, ACM
98 workshop on Java for High-Performance Network
Computing.

[8] G.E. Karsner and S.T. Pope: A cookbook for using
the model view controller user interface paradigm in
Smalltalk-80, Journal of Object-Orientated Program-
ming, 1(3):26-49, Aug./Sep. 1988.

[9] L. Williams and R.N. Ibbett: Modelling the DASH
architecture in Hase, 29th annual Simulation sympo-
sium, New Orleans, July 1996.

[10] R.N. Ibbett: Hase DLX Simulation Model, IEEE, Vol
21, pp 24-33, Jan-Mar 1999.

ISBN: 1-56555-268-7 664 SCSC '03

mailto:fmallet@inf.ed.ac.uk
mailto:rni@inf.ed.ac.uk
http://www.icsa.inf.ed.ac.uk/research/groups/hase/
http://www.dcs.ed.ac.uk/home/simjava/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.threadtec.com/

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	JavaHase: Automatic Generation of Applets from Hase Simulation Models
	Keywords: 
	Abstract
	INTRODUCTION
	HASE, HASE++ AND WEB- HASE
	JAVAHASE
	The JavaHase model and the transla- tion process
	JavaHase display mechanism

	CONCLUSION
	Acknowledgments
	Biographies
	References




