
Session F1C

COMPUTER ARCHITECTURE SIMULATION APPLETS FOR USE IN
TEACHING

Roland Ibbett and Frederic Mallet'

Abstract - visualisation ofthe activities which occur inside
a computer is an important aspect of coniputer
architecture education. A t the University of Edinburgh we
are using a Hierarchical Computer Architecture design
and Simulation Environment (HASE) to build a number of
architectural models for use in research and teaching. A
new facility within HASE, JavaHASE. ollows models to be
translated into applets which can be accessed via the
WWW. JavoHASE opplets are programmable simulation
models in which the code and data memory contents can
be altered, the simulation re-run in the applet and the
results used to visualise the activities taking place within
the model (data movements, state changes.
regisledmemory content changes, etc). These applets are
being used in various ways in teaching.

Index Terms - applets. computer architecture. simulation.
visualisation

INTRODUCTION

Visualisation of the activities which occur inside a
computer system is an important aspect of computer
architecture education. At the University of Edinburgh we
are using a Hierarchical Computer Architecture design and
Simulation Environment (HASE [I]) to build architectural
models foruse i n research and teaching [I], [SI, [6] . A
new facility within the HASE application, JavaHASE,
allows models to be translated into applets which can be
accessed via the WWW. JavaHASE applets are
programmable simulation models in which the code and
data memory contents can be altered, the simulation re-run
in the applet and the results used to visualise the activities
taking place within the model (data movements, state
changes, registerlmemory content changes, etc).

Models currently available include a demonstration of
Tomasulo's algorithm, several versions of the DLX
architecture [3] and models of the Stanford DASH
architecture [7]. Each model is supported by a web site
describing the architecture and the model. The DLX
models include a version with a simple (integer arithmetic)
pipeline, a version with multiple arithmetic units and a
scoreboard and a version with two pipelines and a
predication mechanism. The DASH models, which
include a single node version with primary and secondary
caches and a single cluster version with four nodes
interconnected by a snoopy bus, are used to demonstrate

cache protocols. A multiple cluster, directory protocol,
version is being developed.

HASE, WmHASE AND JAVAHASE

Architectural models in HASE arc described using an
Entity Description Language (EDL), designed as part of
the HASE project. An EDL file contains the description of
entities' general properties, instances, connections and the
types of data to be exchanged by entities through the
connecting links. The screen layout is described by an
Entity Layout File (ELF) and the behaviour is
implemented in Hase++, a C++-like programming
language with extensions to manage discrete-event
simulations. Hasec+ primitives write events to a trace file
which can subsequentiy be used by the HASE animator to
show the results of the simulation in the design window.
At the start of a simulation, HASE automatically loads
arrays within entities (representing e.g. register or memory
contents) from appropriately named source tiles, and the
contents of arrays can be viewed in windows launched
from the main display.

HASE currently runs on Linux and is being used in a
number of research and student projects to develop new
architectural models. For many teaching purposes,
however, students only need access to the simulation
models, not the full facilities offered by HASE, and several
mechanisms for offering HASE over the WWW have been
explored. The first of these was simjava [4], a process
based discrete event simulation package for Java based on
Hase++ with animation facilities. simjava has become
successful in its own right but from a HASE perspective it
offers an alternative way of creating models, rather than a
way of presenting existing HASE models over the WWW.
WebHASE was therefore developed (originally as a
student project) to allow HASE simulations to be viewed
with a browser.

WebHASE takes a s its input the HASE files used for a
project and produces an X M L tile containing a viewer
applet and all the information required to display and
animate the simulation. This file can then be accessed via
the WWW. Originally, users were allowed to alter model
parameters (e.g. the instructions in the memory of a
computer) and send the new parameters back to a servlet
engine which would launch a servlet and re-run the
simulation using the new parameters. When the simulation
was complete, the servlet would return the results of this

'Institute for Computing Systems Architecture, University of Edinburgh, Edinburgh, EH9 3JZ. mi@inf.ed.ac.uk, fmallet@inf.ed.ac.uk
0-7803-7961-6/03/$17.00 0 2003 IEEE November 5-8,2003, Boulder, CO

33'd ASEE/IEEE Frontiers in Education Conference
FIC-20

mailto:mi@inf.ed.ac.uk
mailto:fmallet@inf.ed.ac.uk

Session F1C

simulation back to the viewer applet to be animated.
Partly because the servlet engine proved unreliable and
partly because of concerns over the potential for
overloading the server, the interactive facilities of
WebHASE were disabled and an alternative interactive
system, JavaHASE, developed instead. WebHASE is still
being used as a demonstration system, allowing pre-run
simulations to be viewed over the Web, since it requires
less sophisticated browser facilities (JDK 1.2, compared
with JDK 1.3 for JavaHASE).

JavaHASE allows HASE projects to be translated into
applets containing fully fledged simulation models based
on simjava. Since simjava was derived from Hase++, it is
able to produce compatible trace files and all Hase++
primitives have a direct equivalent in simjava. JavaHASE
applets can be downloaded via the WWW and simulations
run on client machines, rather than on a server. In order
for students to be able to carry out exercises using the
models, the applets require access to cut and paste
facilities, using the clipboard, on the client machine.
Although standard security managers for applets do not
allow access to the clipboard, the security manager can he
configured using a Java policy file to allow clipboard
access to applets from specified URLs.

TOMOSULO'S ALGORITHM

Tomasulo's Algorithm was first used in the 1BM
Systed360 Model 91 Floating-point Unit 191. Just like
the CDC 6600 Scoreboard [8], Tomasulo's Algorithm was
designed to control the flow of data between a set of
programmable registers and a group of parallel arithmetic
units. Bath are designed to ensure that constraints imposed
by instruction dependencies are satisfied. Tomasulo's
Algorithm is different in that it systematically attempts to
minimise delays between the production of a result by one
operation and the start of a subsequent operation which
requires that result as an input. I t i s still in use today in
processors such as the PowerPC 620 and is frequently
taught in courses on computer architecture.

The algorithm works by using additional registers,
known as Reservation Stations, at the inputs to the
arithmetic units and a system of tags which direct result
operands to where they are next needed, rather than
necessarily to where they would have gone when the
instructions which produced them were issued. The
algorithm is difficult to explain to students without a
dynamic demonstration.

The HASE simulation model built to demonstrate
Tomasulo's Algorithm (Figure 1) closely follows the
design of the Model 91 Floating-point Unit. The 360
processor and memory are represented in the model by an
InstructiodData Source Unit which stores a sequence of
instructions and a set of data values,

FIGURE. 1
HASE TOMASULO'S ALGORITHM MODEL

As in the Model 91, the instructions are converted into
pseudo register-register instructions before being sent to
the Floating point Operation Stack (FLOS). For
instructions which specify a storage address, the
corresponding operands are sent via a queue within the
Source Unit (equal in length to the assumed memory
latency) to the Floating point Buffers (FLBs). These
buffers are allocated c yclicly and the corresponding FLB
number is entered into the pseudo-instruction issued to the
FLOS. Tags are represented in the model by different
coloured icons; each FLB is displayed with the colour of
its tag next to it and the reservation stations have their tag
colours as background.

Demonstration P rogram

The demonstration program loaded into the applet forms
the scalar (dot) product of two &element vectors. Table 1
lists the program instructions in the form in which they are
held in the Source Unit's jnstruction memory and the
corresponding pseudo-instructions which the Source Unit
sends to the FLOS. The instruction format is two-address,
ofthe form F u n c t i o n S i n k S o u r c e , so the result of
an arithmetic operation such as ADD, for example, is

As the simulation proceeds, the user can observe the
various actions which occur in the model as the program
executes. The first instruction (LD FO FLBl) , for
example, sets the tag register associated with FLRO to the
tag value of FLBI; when the data arrives in FLBI it is
copied into FLRO. L ikewise, t h e second instruction (LD
F1 FLB2) sets the FLBZ tag in FLRI, but before the data
arrives, the third instruction (MUL F1 FLB3), has copied
the FLBZ tag from FLRI to the Sink register of Multiply
Reservation Station I (RS I) and set the Multiply RSI tag
in FLRI. The FLB2 data therefore goes directly to
Multiply RSI and never appears in FLRI.

Sink = Sink + Source

0-7803-7961-6/03/$17.00 Q 2003 IEEE
~.

November 5-8,2003, Boulder, C O
33'' ASEEIIEEE Frontiers in Education Conference

F1C-21

Session FlC

accessing a source or destination register, the Instruction
Decode Unit reads the relevant Use bit in the Registers
entity. If the Use bit for a Register required as a source
operand is set, a RAW hazard occurs and the Scoreboard
shows which register is causing the hazard; if the Use bit
for a destination Register is set, the Scoreboard displays a

TABLE I
P R O G M INSTRUCTIONS

LOAD FO 0
LOAD F I 2 LD FI FLB2 WAW hazard.
MULRS F I 3

PSEUDO INSTRUCTIONS

LD FO FLBl

MUL FI FLB3
ADDRR FO FI
LOAD F2 4
MULRS FZ 5

ADDRR FO F2
STORE FO I
STOP 0

ADD F O F I
1.D F? FLOJ
MUI. FZ Fl.Bi ' I

ADD FO FZ
ST FO SDBl
STOP 0

Towards the end of the simulation the store
instruction (ST FO SDB1) copies the Add RSI tag from
FLRO into SDBI, and when the result from Add RSI
appears on the Common Data Bus, it is copied into SDBl
and sent from there to the Source Unit.

DLX APPLETS

Two DLX applets are currently being used for student
exercises, one with a simple integer pipeline and one with
multiple arithmetic units and a Scoreboard. Using the
simple model, students are asked to write two programs
which achieve the same effect by two different methods.
Both programs are to reverse the order of four bytes of

FIGURE. 2
DLX SCOREBOARD APPLE1

. -
data taken from one word in memory and return the results

In this model a structural hazard can occur when two to a second memory word. The first program is to use byte
load and store instructions whilst the second i s to load the instructions try to use the Same pipeline stage
word a register and then use shift and logical simultaneously (the Registers, and thus the Write Back and
operations to reorder the bytes before returning the Memory Access units c a n Only accept one instruction per

clock) or when a branch or j ump instruction could overtake

different memory such that, i n performance an arithmetic instruction. T o control these situations, the
terms, the first program is better in one case, the second in Scoreboard a When an
the other, students are asked to on the instruction is issued, its latency value is entered into the
advantages and disadvantages of the two methods. Latency Pipeline. A s an instruction moves through the

The HASE simulation ~ ~ d ~ l of the DLX with a Execution Unit pipeline, its latency value moves through
Scoreboard i s shown in figure 2. The model contains the Latency Pipeline, decremented by 1 at each move.

representing each of the components i n the DLX Thus amult iply instruction has a l a t e n c y o f 3 when it i s
architecture, the memory, the registers and the pipeline and issued, but in the next clock its remaining latency is only 2.
execution units, together with three other entities which aid Whcn the h t ruc t ion Decode Unit is ready to issue an

o f t h e in the ,-lock, the instruction, the Scoreboard checks its Latency Pipeline for
Scoreboard and the pipeline D ~ ~ ~ I ~ ~ , The pipcline ~ i ~ ~ l ~ ~ the presence of an instruction with a remaining latency
shows the inSt rUCt ion current ly i n stage of the valueequal to that of the new instruction. If there is one,
pipe l ine whi le the Scoreboard shows when data and the instruction is held up and the Scoreboard displays a

structural data hazard. structural hazards occur.
D~~~ hazards are handled i n the model through use In order to show the deleterious effects of branches,

whcn an instruction that will write to the register is issucd and so this is where branches are executed. T?
and reset when the result is written to the register. Before Prevent a branch from Overtaking a Previously issued

0-7803-7961-6/03/$17.00 0 2003 IEEE

to memory, ~h~~~ programs are both run

bits. Each r e g i s t e r has an associated use bit which is set thc Program Counter is contained in the Memory Access

November 5-8.2003, Boulder, CO
33" ASEE/IEEE Frontiers in Education Conference

FIC-22

Session F1C

instruction in one of the execution units, the Scoreboard
uses i t s Latency Pipeline to monitor the presence o f a n y
instruction in the execution units and if a branch has to be
held up as a consequence, this is dsplayed as a structural
control hazard.

This model has recently been modified to accept
assembler output code more easily. In previous models
users were obliged to work out the branch distance and
include this as an integer in the instruction. In the revised
model, program addresses have two fields, one being a
label (initially 'main', at memory address 0) and the second
an offset. In figure 2 the Program Counter (PC) has just
been updated to labell,O whilst the Prefetch Program
Counter (PPC) has just fetched the instruction at main,l2
and will be updated to the new PC value at the next clock.

As a practical exercise, students are given an assembly
code sequence representing a simple implementation of a
scalar (dot) product loop and are asked to run the
simulation and note where hazards occur. They are then
asked to reorder the code to eliminate or at least reduce the
effects of these hazards. As a further optimisation they arc
asked to unroll the loop to include two iterations of the
algorithm in one program loop. Finally they are asked to
note the contents of the pipeline (as shown in the Pipeline
Display) in each clockperiod for one iteration of one of
their programs and from this information draw a pipeline
space-time diagram showing the progress of the
instructions through the pipeline.

PREDICATION

Predication is a technique which allows branches to be
removed from the code by processing both the ifand else
parts of a branch in parallel, removing the problem of
mispredicted branches. Instructions in lhe lntei IA-64, for
example, can have predicate tags appended to them by the
compiler and an instruction will only be allowed to write
its result if the corresponding predicate is true [2]. A
branch construct can be rewritten using predication by
making the ifpart predicated on one predicate register and
the else part predicated on a complimentary register. Since
only one of the pair of predicate registers holds true, only
one of the paths through the branch will write its result.

Predication can be illustrated by the following
example taken from [2]:

if a[i].ptr != 0 {
b[i] = a(i1.l;

! else I
b[i] = a[i].r;

i = i + l ;

In a conventional architecture the value of a[i].ptr is loaded
from memory and used as the condition for a conditional
branch (figure 3(a)). The code is scheduled as four basic
0-7803-7961-6/03/$17.00 0 2003 IEEE

blocks; the compare, the ifpart, the e k e part, and the add
instruction which follows the conditional statement.
Clearly, the result of the compare is difficult to predict.
Even if a prediction scheme is used, it cannot correctly
predict which path will be taken every time, and the
penalty for an incorrect prediction is a pipeline stall
costing several clock cycles.

fa1 Traditional archiiecbrre
FIGURE. 3

CODE EXECUTION MODELS

Figure 3(b) shows the rescheduled code. After the load
instruction, a compare instruction, cmp, compares the
loaded value with zero, and sets the pair of predicate
registers. The true predicate (p l) is set if the compare was
true, and the false predicate (p2) is set if it was false. Only
the path with the true predicate is allowed to write its result
to memory, the other instruction being ignored.

The JAVAHASE Predication Applet

The JavaHASE Predication applet (Figure 4) is based on a
modified DLX model originally developed as a student
project. It has a dual pipeline with two simple Integer
Execution units and dual data paths (A and 8) in all the
other units. The instruction set is essentially the same as
that of the standard DLX but instructions arc always
accessed in pairs, simulating the effect of a double length
VLIW, and each instruction in the pair also has an extra
Predicate Tag field which is used to select one of 8
Predicate Registers. Predicate register 1 is permanently set
to I . Branches can only appear as the first instruction of a
pair with the second being the equivalent of the delay slot
in a conventional DLX.

The Instruction Fetch unit sends the instructions i t has
accessed from Memory along the two data paths to the
Instruction Decode unit. The Instruction Decode unit
accesses the registers for the required opcrands and sends
one instruction to each of the two Execution units. The
Execution units send their results to the Memory Access
unit which accesses the Predicate Registers to determine
whether or not each instruction is to complete. If the
predicate for an instruction is true, the instruction may
proceed as normal; if the predicate is false, the instruction

November 5-8,2003, Boulder, CO
33'd ASEE/IEEE Frontiers in Education Conference

F1C-23

Session FlC

is t erminated, i.e. it does not read or write memory or
update a register.

FIGURE. 4
THE PREDICATION APPPLET

New versions of the DLX compare instructions are
required to setlreset the Predicate Register values. The
standard DLX architecture has six instructions which
compare the values in two registers and set the result in a
third. The DLX-Pred instruction set includes a second set
of compare instructions which set a pair of specified
predicate registers, one to true and one to false, depending
on the result of the comparison.

Demonstration Program

The Demonstration program pre-loaded into the applet
illustrates the execution of the code fragment shown in
figure 3(b). The input data for the program consists of
eight triplets of data, the pointer (0 = left, 1 = right) and the
left and right hand values, stored as a 24-element array. As
the program runs, the selected data values of the a array,
left or right according to the pointer, are copied to
successive locations i n the b array. As in the other DLX
applets, the model also contains display entities showing
the occurrence of data hazards and the contents of each
stage of the pipeline. Alongside the display line for the
Memory Access unit are the values of the relevant
Predicate Registers so students can see which instructions
will be executed and which not. The Predicate Registers
themselves can be displayed in a separate pop-up window.

THE DASH APPLETS

Applet models of parts of the Stanford DASH (Directory
Architecture for Shared Memory) Architecture [IO] have

proved valuable in helping students to understand the
complexities of what might at first sight seem quite simple
cache structures. The single node applet (figure 5) includes
a (MIPS) processor, a Primary Cache, a Secondary Cache,
the Bus used to interconnect multiple nodes, and Main
Memory. The processor is modelled very simply as a
source of memory addresses which are emitted in
sequence. For the purposes of the exercise the cache sizes
are set at 8 lines in the Primary Cache and 16 lines in the
Secondary Cache. Both caches are direct mapped and each
line contains 4 addresses. The Primary Cache operates a
Write Through, No Write Allocate policy, the Secondary a
Copy Back, Write Allocate policy.

I4~u.cwles12~7
<wiO< n ., . .

FIGURE. 5
THE DASH NODE APPLET

As part of a coursework assignment, students arc asked to
create files (which they can copy and paste into the
processor's "memory") containing (i) the smallest number
of read accesses that will create valid entries in all 8 lines
in the Primary Cache (ii) the smallest number of read
accesses that will create valid entries in all 16 lines in the
Secondary Cache (iii) a sequence of accesses which will
exercise all the possible actions which can occur in the
caches.

The first two exercises are straightfomard, though not
all students observe that once the Primary Cache is full in
the second exercise, it will then be overwritten as he
second half of the Secondary Cache is filled. In the third
exercise there are 12 possible actions arising from
interactions between the caches and main memory;
typically, o.iy a few students find all of them.

Figure 6 shows the DASH Cluster applet which has
four nodes attached to t h e Multi-Processor Bus. The bus
displays infc .mation about actions occurring as each
request is received from one of the nodes. The processors
are preloaded with sequences of access patterns designed
to demonstrate how the snoopy cache coherency protocols
used in a DASH cluster operate.

Students are asked to display the contents of the
processors and the secondary caches and, by running the
animation in single shot mode, to observe what happcns as
the simulation proceeds. They are then asked to submit
listings of the contents of each the four MIPS files,

0-7803-7961-6/03/$17.00 0 2003 IEEE
33* ASEE/IEEE Frontiers in Education Conference

F1C-24

November 5-8.2003. Boulder. CO

Session F1C

annotated to show the responses of the caches to each
access, the source of the data in the case of a cache miss
and any protocol actions which occur.

".*ryd.t. 100

FIGURE. 6
THE DASH CLUSTER APPLFT

DINER0

Dinerolll is a cache simulator developed by Mark D. Hill
and distributed for instructional use with a computer
architecture textbook [3]. Dinerolll evaluates a
uniprocessor cache and produces performance metrics. It
allows a variety d cache design options to be varied:
copy-back v. write-through, LRU v. random replacement,
demand fetching v. prefetching, etc. Although Dinero is a
very fast simulator, it has a command I ine interface and
produces text as its output. We have therefore built a
JavaHASE Dinero applet which has similar functionality
to the original Dinero but with a graphical interface more
suited to pedagogical use. Obviously, there would be no
point in animating large traces with the applet, so the
applet contains predefined tutorial sessions that include
default cache configurations along with small preloaded
traces. Each trace has been selected to emphasise the
benefits and weaknesses o f a specific cache design option.

CONCLUSION

considered. Some operational difficulties were encountered
initially but these have mainly been due to browser
compatibility and plug-in installation problems. Webstart
technology is being investigated as a way to avoid these
difficulties. The existing JavaHASE applets can be
accessed from the HASE website at
www.icsa. informatics.ed.ac. uklresearchigroupslhase
Creating applets and their associated websites make
interesting student projects and new applets are continually
being developed.

ACKNOWLEDGMENT

The development of HASE has been supported by the UK
EPSRC through grants GWJ43295 and GRIK19716 and
among the many people who have been involved in the
HASE project, Stuart Buchanan, John Hawkins, Mark
Sawyer and Lawrence Williams contributed particularly to
the work described here.

REFERENCES

[I] Coe P.S., Howell F.W., lbben R.N. & Williams L.M., "A
Hierarchical Computer Architecture Design and Simulation
Environmenl', ACM Tronrocrionr on Modeling and Compuler
Simulalion, Vol8, No 4, October 1998, pp 431 446.

[2] Dulang C., 'The IA-54 Architecture at WorY: IEEE Compufer, Val
31,No7,July 1998,pp24-32.

[3] Hennesry J.L. & Patterson D.A., "Computer Architecture: A
Quantitative Approach", Morgon Koylmann. San Fronckco.
Calfomia, 1996.
Howell F.W. & McNab R., "Simjava - a discrete went simulation
package for Java with applications in Computer System
Madelling", Inl. CO$ on Webdased Modelling and Simulation.
SCS, Jan. 1998.

lbben R.N., "Computer Architecture Visualisation Techniques",
Micmprocessors andMicmsymm, Elsevier, Vol23, 1999, pp 291-
300.

I61 Ibben R.N., "HASE DLX Simulation Model", IEEEMicro, VoI 20,
no 3, M a y h n e 2002, pp 5765.

171 Lenoski D., Laudon J., Joe T., N a b h i m D.. Stevens. Let al 'The

[4]

[SI

..
DASH prototype: Implementation and Performance", Proc ICSA,
1992, pp 82-103.

Simulation applets offer (a) a means of demonstrating
visually the actions which occur inside a computer system
as programs are executed and (b) virtual laboratory
facilities in which students can undertake exercises which
will both test and reinforce their understanding of
computer architecture concepts. Several of the applets
described here have been used both locally within the
University of Edinburgh and remotely in the delivery of an
MSc program at the Institute for System Level Integration,
a joint venture between four Scottish universities and
situated at Livingston, some 20 miles from Edinburgh.
Students have also been able to use these applets from
home and their use in distance learning is being
0-7803-7961-6/03/$17.00 0 2003 IEEE

181

[9]

p om ton I.E., "Design of a Computer: The Conlrol Data 66W,
S o n Foresmnn & Co. Glenview, IU, 1970.
Tomarulo R.M., " An Efficient Algorithm for Exploiting Multiple
Arithmetic Units", IBM Journal of Research & Development Vol
I I , January 1967, pp25-33.

[IO] Williams L.M. & lbben R.N., "Simulating the DASH Architecture
in HASE', 29lhAnnunlSimulnlion Symposium, KS, 1996, pp 137-
146.

November 54,2003, Boulder, CO
33'' ASEE/IEEE Frontiers in Education Conference

FIC-25

