
European Simulation Multiconference – ESM ‘2001, pp. 139-145.
6-9 juin 2001, Prague, République Tchèque. Society for Computer Simulation (SCS) International.

ARCHITECTURES VALIDATION IN AN OBJECT-ORIENTED
FRAMEWORK

Frédéric Mallet
Fernand Boéri

Laboratoire Informatique, Signaux et Systèmes (I3S)
UMR 6070 CNRS-UNSA

Les Algorithmes – bât. Euclide B – BP 121
06903 Sophia Antipolis Cedex France.

Frederic.Mallet@unice.fr, boeri@unice.fr

KEYWORDS
Validation, hardware architectures, object-oriented
modelling, simulation, CAD.

ABSTRACT

This work presents a new method to validate hardware
architecture models in an object-based modelling and
simulation framework. Our incremental method called SEP

consists in simulating high level models to evaluate
performances of new hardware architectures relatively to
critical digital signal processing applications. Efficient
architecture models built early in the design process due to
this high-level assessment are refined until they can be used
as references helping the design of RTL models. We
introduce two of the object-based mechanisms allowing
reusable modelling : dynamic binding and module service.
We advocate these both mechanisms were efficiently used
to take complex types – such as binary decision diagrams
(BDD) representing algebraic expressions – into account;
and those types are used to validate architecture models,
verifying the functional accuracy of high-level services
relatively to the specification.

THE PROBLEM

A collaboration with VLSI Technology – a subsidiary of
Philips semiconductors – leads us to design an object-
oriented simulation framework to evaluate performances of
digital signal processing hardware architectures very early
in the design process, long time before synthesis.
In order to fulfil increasing time-to-market constraints and
to adapt themselves to reducing market-life of specialised
hardware architectures, chip designers need retargetable
methods and tools which will fit design requirements of
future architectures.
In the field of processors, tools and simulators must take
into account both micro-architecture and instruction-set
(see Figure 1). These tools are absolutely necessary during
qualification process by potential customers, that is to say,
earlier they are available, lower the design costs .
Due to its generic object-oriented model of architectures
(Mallet et al. 1998), our proposed method (SEP) is able to
incrementally create models with an abstraction level
adapted to evaluation requirements.

incremental specification

SEP

validation / help

architecture

µ-architecture instruction set

generic instruction
decodersynthesis & manufacturing

RTL(Verilog, VHDL) assembly

binary

IS simulator

Figure 1 – Designing an architecture

Firstly, with the graphical tool, high-level models of both
instruction-set and micro-architecture are created. Some
critical sections of digital signal applications (GSM, TDES)
are simulated and the resulting execution is analysed :
number of cycles to completion and utilisation ratios of
components. Secondly, the model is incrementally refined
until we get satisfying evaluation criterions. Finally, the
model is used as a design reference to produce RTL code in
VHDL or Verilog.
Concurrent approaches (Peterson 1999; Benzakki and
Djaffri 1997; Barton and Berge 1996; Sowmitri 1995),
convinced by object-oriented advantages, enhance
hardware description languages with object-oriented
paradigms. These approaches are, according to several
authors (Benzakki 2000; Mallet et al. 1998; Schumacher
and Nebel 1995), difficult to use and reuse, they are very
constraining in the very first steps of the design process
because of their primary goals as synthesis languages.
Instead, our approach is based on the object-oriented
language Java and adds upon it necessary concepts to
describe hardware architectures. It looks like Jester
(Antoniotti & Ferrari 1999) or JavaX (Benzakki 2000)
languages. SEP however includes mains of the major
characteristics of Architecture Description Languages
(ADL) following criterions given by (Medvidovic and
Taylor 2000) SEP is an ADL to design specialised hardware
architectures.

From our generic object-oriented model of hardware
architectures, we have built a modelling and simulation
framework which does not depend on a specific
architecture. Then, we wished we had some validation
techniques in order to restrict needed tests to qualify our
models.
This article introduces our method to include validation
techniques into a simulation framework and advocates our
model qualities which allow such an inclusion. The
dynamic binding mechanism simplifies models and
increases component reuse as shown by next section Then,
we recall meaning and use of module services in SEP to
increase model readability. Finally, we advocates the use of
our dynamic binding mechanism – specific to object-
oriented approaches – to verify functionality accuracy of
high-level services. The whole method is illustrated with an
industrial example from VLSI Technology.

DYNAMIC BINDING APPLIED TO
ARITHMETICAL AND LOGICAL
OPERATIONS

Due to the SEP structural model, modules can be built by
gathering some components and connecting them. Each of
those components throws data to other components through
a connector. The receiver-component uses that data
depending on its sole specification, that is modularity.
Those data could either trigger a service execution or be
used as parameters to complete a service. In the latter case,
the service to complete may depend on types of every data
parameters. Introducing polymorph operators for that kind
of services is very helpful, especially to efficiently model
components using some arithmetical or logical operations.
Essentially components such as ALU, shifting or
normalising units, and multipliers. Polymorph operators are
operators which with a sole naming (e.g. addition) may
represent different operations. The choice of the accurate
operation is made according to operand types.
Using that mechanism, the modelling of a powerful ALU
becomes very simple. Our ALU model is unique for every
architectures we have modelled (RISC, DSP). It does not
depend on data types, bus length or operation arity and then
can be systematically used each time a component able to
perform some arithmetical or logical operations has to be
modelled. The graphical interface has to be specified in
such a manner designers can forbid operations the
architecture does not need.

This section briefly shows limitations of the basic dynamic
binding mechanism of classical object-oriented languages
such as Java or C++. A more detailed study can be found in
(Mallet 2000). Then our mechanism is introduced. The last
section presents the use of this mechanism to validate
models with SEP, this constitutes the main contribution of
this article.

DoubleValue

negation() : DoubleValue
addition(DoubleValue) : DoubleValue

IntValue

negation() : IntValue
addition(IntValue) : IntValue

Figure 2 – Basic modelling of polymorph operators with
inheritance

It is difficult to implement polymorph operators with every
programming languages. And object-oriented languages
allows and enforces use of polymorphism by the
inheritance paradigm. This increases the lack of
mechanisms to correctly implement such operators.
Let us take a simple example to illustrate that discussion.
We want to define the negation and addition operations for
integers – represented by the IntValue Class – and for real
numbers – represented by the DoubleValue class–. A basic
object-oriented modelling of these operators leads us to the
definition of classes presented by the Figure 2. But, using
polymorphism, we will not get the right result with the Java
language. Subtype polymorphism is an ability from
variables typed τ to contain references to objects which
type is τ’ , a sub-type of τ : τ’ ≤ τ.
There are two main reasons explaining this phenomenon.
Firstly, it is not allowed to modify the return type of a
redefined method. A method in an heir class is said to
redefined a method in its parent class if and only if the
method signature (method name, ordered list of parameters’
types) is conserved. Thus, in the IntValue class, the
negation method must return the same type as the redefined
negation method from the DoubleValue class, that is to say
a DoubleValue. The accurate method is dynamically
chosen, due to the dynamic binding process, depending on
dynamic type of concerned operands. Without a dynamic
binding mechanism, the choice would have been done
depending on the static types of references used.
The second problem comes from the addition method
defined in the DoubleValue class and overloaded in the
IntValue class. In Java, overloading is statically resolved
depending on static type of effective parameters. One can
say that the method µ2 is overloading µ1 if and only if µ1
and µ2 are defined in the same inheritance relation, have
the same name, different signatures and eventually different
return types. This induces an non symmetric behaviour
between the implicit parameter upon which the dynamic
binding mechanism acts, relatively to effective parameters
upon which a static resolution is applied.
During invocation of an instance method, object upon
which the method is applied, is implicitly present in the list
of effective parameters and can be referenced as ‘ this’ . At
runtime, everything works has if the invoked method have a
supplementary parameter called ‘ this’ and with the type of
the class declaring the invoked method. ‘ this’ is called the
implicit parameter.

As a concrete example, the 12 (IntValue) + 15,5
(DoubleValue) operation is not treated in the same way as
the 15,5 (DoubleValue) + 12 (IntValue) operation. In the
first case, one invokes a method from the IntValue class
with a DoubleValue parameter. In the second case, one

invokes a method from the DoubleValue class with a
IntValue parameter. In the latter case, the dynamic binding
process will eventually select a more precise definition of
the statically selected method in a class inheriting from the
DoubleValue class (e.g. IntValue).

sep.type

Value

isUndefined () : boolean
equals (Object) : boolean
getType () : Type
opAdd(Value []) : Value

- value : String

Caster

upCast () : Value
downCast() : Value

superTypes

DoubleValue

opNeg (DoubleValue) : DoubleValue
opSub (DoubleValue, DoubleValue)
opDiv (DoubleValue, DoubleValue)
opGt (DoubleValue, DoubleValue)
opLt (DoubleValue, DoubleValue)
opAdd (DoubleValue [])
opMul (DoubleValue [])
 : DoubleValue

-value : double

IntValue

opShr (BitValue, IntValue) :
BitValue

opAdd(IntValue []) : IntValue

- value : long

superTypes
Double2Bit

superTypes

Int2Double

superTypes

Int2Bit

BitValue

opNot (BitValue) : BitValue
opShr (BitValue) : BitValue
opShl (BitValue) : BitValue
opLsr (BitValue) : BitValue
opAnd (BitValue []) : BitValue
opOr (BitValue []) : BitValue
opXor (BitValue []) : BitValue

set : BitSet
undef : BitSet
size : int
- inverse : boolean

Figure 3 – The subtyping tree (Value, DoubleValue, BitValue)

 SEP proposes a general, dynamic, symmetric mechanism to
choose the accurate method to execute depending on
operands’ types. To do so, SEP must manipulate notions of
type, subtyping relations and operators. This is made
concrete by the definition of a meta-model for SEP types.
Furthermore, extending the subtyping tree (see Figure 3)
and due to this meta-model, one can define new types and
new operations upon types. As an essential constraint, we
have imposed ourselves to be able to add new sub types
without any modifications of the super type. In (Mallet
2000), we show that several modifications are forced with
the classical dynamic binding mechanism of the Java
language.
To add a new type in SEP, one must define a class inheriting
from the Value class or one of its subclasses. He defines
operations as static methods, then the respective role of
parameters is symmetric. Let us note as a consequence that
dynamic binding is never and could not have been applied
upon static methods. Furthermore, the designer has to
defined super-types of the newly defined type and explicit
casting operators. As showed by the Figure 3, this
subtyping relation is not necessarily implemented using the
inheritance mechanism. At runtime and as soon as a new
type is firstly used, SEP invokes the getSuperTypes method
to upgrade its own registry database about existing types
and to build the subtyping tree. Let us note, casting

operations are not transitives although the subtyping
relation is. So, casting operations between DoubleValue and
BitValue have to be defined, although casting operations
have been defined between DoubleValue and IntValue, and
between IntValue and BitValue. Transitivity may depends
on coding algorithm used.
This mechanism is completely detailed in (Mallet 2000).
To illustrate the extremely simple specification description
we need to model a very complete ALU, let us see the Java
code used by SEP:

import sep.type.Value;

public class Alu
implements sep.model.ServiceProvider {

 public Value execute(Value[] values, String cop)
{
 return sep.type.Type.perform(cop, values);
 }
}

The sep.type.Type.perform method parses the subtyping
tree looking for the most specific applicable method taking
into account dynamic types of data carried into the values
array. The cop entry is a string which represents the
operation to be executed (here : add).
Then 12+15.5 or 15.5+12 operations are symmetric, in both
case the DoubleValue opAdd(DoubleValue []) method is

selected, 12 is represented by an object from the IntValue
class and 15.5 by an object from the DoubleValue class.
Such an operation concerning both an IntValue and a
DoubleValue has to be defined in the IntValue (the lowest
common subtype between IntValue and DoubleValue).
There are no applicable method is that class so we have to
recursively look into lower super-types. We finally find the
DoubleValue opAdd(DoubleValue []) method as an
applicable method. 12 (IntValue) must be converted into
12.0 (DoubleValue) then, the method is invoked.
Instead, additioning two IntValue objects, we would have
selected the IntValue opAdd(IntValue []) applicable
method from the IntValue class. Java would have only
taken into account static types of parameters and would
have induced above-mentioned problems.

HIERARCHICAL MODELS AND MODULE
SERVICES

Gathering elementary components and due to our
hierarchical model, we can perform structural models called
modules. The behaviour of elementary components is
defined as a composition of services which can be
described as Java methods or Esterel modules (Mallet
2000).
Furthermore, we can define high-level services into
structural modules. These high-level services are sequential
or concurrent compositions of services of elementary
components constituting the module. This construction
increases model readability and makes possible use of
powerful mechanisms such as behaviour inheritance
(Mallet 2000).

MU

ALBsign
36

RYDP

GDP

clk codeopcom

com

com

Figure 4 – Calculation unit : CU

Let us have an introduction to the specification of those
services using as an example the modelling of a calculation
unit extracted from a digital signal processor (DSP) core.
The Figure 4 presents this calculation unit. It is mainly
composed of a multiplication unit (MU) and of an
arithmetical and logical block (ALB). The sign component
is a combinatory component which performs sign extension
to 36-bit for immediate incoming data. Data paths are
represented with plain lines while control paths are
represented with dotted lines. The inheritance UML symbol
is used here to indicate that control is inherited from sub-
modules MU and ALB.

Now, we want to more precisely introduce MU and ALB
modules in order to advocate the benefice of using module
services.
The Figure 5 shows a detailed description of multiplication
unit data paths. This is an high-level structural
representation of something supposed to implement some
functions concerned with a multiplication purpose. It
mainly aims at multiplying values contained into X and Y
registers. The result has to be assigned to the P register. The
P register is synchronous with the processor clock.
The first objective for module services is not to overload
models with the description of control paths. The second
objective is to make the description richer presenting
services performed rather than a list of typed input signals
which have to be triggered at the right time. Furthermore,
the creation of module services makes a module description
closer from an elementary component description. With
those both objectives, model readability is increased.

*
32

16

16
16

32 P
PL

PH

GDPout

RYDP

GDPin

com

sel
sel

X

Y

load

load

store

store

P

clk

Figure 5 – Multiplication unit: MU

We have defined four basic services. The loadX, storeX,
loadY services are inherited from the load and store
services of register X, and from the load service of register
Y. The storeY service is a little bit more complex. The
mux1 multiplexer has to be selected in order to connect the
GDP entry (port GDPin), the store service of Y register can
be executed afterwards. That is a sequential composition of
services. X and Y registers are then used as standard
registers (read from and write to general bus GDP); the
multiplier unit always performs a multiplication with values
contained in those registers.
In addition, the p := X * Y service is defined as mux2.sel
<= 0 ; (storeY || storeX). It selects mux1 and mux2
multiplexers and loads X and Y registers.
Finally, there is also the ph := GDP service which assigns
the highest part of the register P with the value set on the
GDP bus – to obtain such a behaviour one has to correctly
select the mux2 multiplexer.

comcodeop

p

imm

sel

sel

UAL

a0

load

a1

load

flags

GDP

sel

16

16

a1L

a1H

a1E

16

16

a0L

a0H

a0E

Figure 6 – Arithmetical and logical block : ALB

The Figure 6 presents data paths of the arithmetical and
logical block. This module is composed of an arithmetical

and logical unit (ALU) already presented in the previous
section. Results from ALU can be assigned to one the two
accumulators (load service) a0 or a1. Operands are selected
by two mux1 and mux2 multiplexers. In SEP, accumulators
are able to memorise any data whatever its length is. In that
case, they must memorise 36-bit data. They can be
decomposed into three parts; the both lowest are 16-bit
length (a0H, a0L, a1H, a1L) and can be sent to the GDP
bus across the saturation unit (sat : sequential unit). The 4-
bit length highest part is concatenated into a status register.
The ALB module defines the write_a0 and write_a1
services to write into accumulators; the GDP := a0H,
GDP := a0L, GDP := a1H, GDP := a1L services to trigger
the saturation unit and send a 16-bit part of one of the two
accumulators to the GDP bus (a0H, a0L, a1H, a1L); and the
read_a0, read_a1, read_p, read_imm services to select
appropriated operands for ALU via multiplexers.
To conclude the description of the calculation unit, the both
ALB and MU modules are gathered (see. Figure 4), and the
mulacc_a0, mulacc_a1 services are defined. They
simultaneously realise, a multiplication with data loaded
from GDP and RYDP busses, and an operation between the
P value and either a0 or a1 accumulator, the result is
accumulated into the selected accumulator. The operation
to perform – used to be addition or subtraction – depends
on the operation code (codeop) sent to the ALU.
Thus, we realised an hardware unit which is supposed to be
able to realise a multiplication-accumulation operation.
This operation is enough complex to want it to be validated.
So, the next section presents how the use of our dynamic
binding mechanism has allowed to validate that the built
service realised the accurate wished function.

MODEL VALIDATION AND BINARY
DECISION DIAGRAM

The Principle

We aim at validating the function accuracy for a module
service. The previous section shows how complex the
creation of such a service could be. Our tool automatically
verify, that a module service implements a given function.
To fulfil this requirement, we compare the algebraic
expression really computed by the created module service
with an algebraic expression of the function the designer
would like to perform.
The method is very simple, but computers cannot easily
manipulate algebraic expressions. This is mainly, because
the canonical form is extremely complex to be obtained. So,
automatic comparison between algebraic expressions is not
so easy to reach and could be time-expensive. Then, we
have decided to use binary decision diagrams (BDD :
Binary Decision Diagram were introduced in 1978 by
Akers, to represent boolean functions (Βn → Β) in a
reduced form.). More precisely, we have chosen a form of
decision diagram which easily expresses expressions we
used to manipulate. BDD have an easy to obtain canonical
form that makes linear, relatively to the number of nodes in
diagrams, the cost of a comparison. The chosen form is
called K*BMD (Kronecker Multiplicative Moment

Diagram.) and has been previously introduced in (Drechsler
& al 1996). This form is very efficient to represent words
(Βn → Ζ function), to associate an integer at n bits.
Elementary forms of BDD needs n diagrams to represent a
n-but words, arithmetical operations on words are then very
expensive.

For any module and any command we have to perform the
four following steps (see Figure 7):
1. Build the K*BMD from the n-bit entry words;
2. Apply commands to be validated : call a module

service or sequences of basic services. We obtain on
outputs ports a K*BMD which represents the algebraic
expression of the processed function ;

3. Express the function we wished we have processed and
convert it into a K*BMD ;

4. Compare both expressions (resulted and wished) to
deduce functional accuracy of the applied service.

Expression
→

K*BMD

n- bit
words(1)

X

Y

Module

entries

Apply commands to
validate (2)

output

X*Y

specification (3) Expression
→

K*BMD

Comparing

Functionally accurate
or not. (4)

Figure 7 – Schematic of functional validation mechanism in
SEP.

Using K*BMD With SEP

The major problem now is to introduce the K*BMD type
into SEP framework. K*BMD are quite complexes, they are
directed graphs. There are two main extensions from BDD
which are based on Shannon decomposition of boolean
functions. The first extension consists in mixing multiple
decompositions (Shannon, positive Davio and negative
Davio), this makes description more compact. The other
extension consists in adding a pair-value (a, m) ∈ Q2, on
edges. If the leaf represents the function, then the valued
graph represents the a + m × f.
The main interesting point on pair-valued graph is that the
translation from a BDD represention to a K*BMD
representation is as simple as selecting right values and
restraining to the use of the Shannon decomposition. This
equivalence is not quite so simple with others forms of
BDD.
Finally, the last point is that every arithmetical and logical
operations we often used for description languages can be
efficiently processed with K*BMD : ALU operations,
multiplication, shifting, bit-selection and bit-concatenation.
The two last are in general more complexes, but some
heuristics allows good time results most of the time
(Höreth and Drechsler 1999).

A complete description on BDD can be found in (Bryant
1992). K*BMD are detailed in (Höreth and Drechsler
1999).
Due to our dynamic binding mechanism, we can introduce
the K*BMD type in SEP, without any modification neither
of the tool, nor of models. We just have to get a K*BMD
implementation, to define the new type K_BMD and to add
it into the subtyping tree (see Figure 8). The K_BMD class

inherits from the Value class, SEP components will be able
to send and receive data of K_BMD types.
K_BMD is defined as a subtype of the IntValue type
because every operation applicable on integers can be
applied on K_BMD. Let us remind that K_BMD are
function from Βn → Ζ. Basic operations on words are
defined to operate on K_BMD.

IntValue

sep.type

Caster

upCast () : Value
downCast() : Value

WLDD

opAdd(WLDD 2) : WLDD
opMul(WLDD 2) : WLDD
opCat(WLDD 2, IntValue) :

WLDD
opSlice(WLDD, IntValue 2) :
 WLDD

superTypes

Int2WLDD

Value

BitValue
superTypes

Int2Bit

Figure 8 – Defing K_BMD type.

Then, K*BMD operations will be called when a module
manipulates K*BMD data, and normal operations will be
used when the same module manipulates IntValue. Just the
simulation entries has to be modified. We can observe the
manual application of this mechanism on a simple example.

An Example

Let us take the calculation unit presented in previous
sections. We would like to validate the codeop=Add ;
mulacc_a0 ; clk service where clk is the synchronous
loading of p register with the system clock. We have to
assert that when those services are sequentially applied, the
accurate multiplication-accumulation behaviour is
processed with two clock cycles.
To reach that objective, the CU module is instantiated into
the SEP simulation framework. The accumulator a0 is set
with a K*BMD representing a 36-bit word :

()∑
=

×=
35

0

20
i

i
iaA . Both RYDP and GDPin inputs are

initialised with ()∑
=

×=
35

0

2
i

i
irydpRYDP and

()∑
=

×=
35

0

2
i

i
iin gdpGDP K*BMD. Then, the

codeop=Add ; mulacc_a0 service is invoked on th CU
module. The p register is triggered to simulate the clock
cycle (clk). The resulting K*BMD, obtained as an input for
the accumulator, is compared to the K*BMD obtained
from the A0+RYDP×GDPin, expression. Those both
K*BMD match to confirm the accuracy of the service.

codeop

sel

sel

ALU a0

load*
32

16

16
16

32
PL

PHRYDP

GDPin

com

sel
sel

X

Y

load

load

store

store

P

clkMU

ALB

ADD (1)

RYDP (2)

GDP (3)

RYDP (3)

GDP×RYDP (3)

(GDP×RYDP) % 216 (3)

(GDP×RYDP) / 216 (3)

GDP×RYDP (5)

A0 (4)

A0 + GDP×RYDP (5)

Figure 9 – A validation scenario.

To be convinced, we can manually look at the evolution of
the computation (see Figure 9) at each instant.

First instant : the code operation Add is set as an input for
the ALU.
Second instant : MU.mux1.sel<=0 || MU.mux2.sel <= 0 ||
ALB.mux1.sel=2 || ALB.mux2.sel=0. Multiplexers are
selected.
Third instant : MU.Y.com=store || MU.X.com=store. Both
X and Y registers are loaded and output expression are
multiplied. The multiplication result is decomposed into the
highest part (GDP*RYDP)/16 and the lowest part
(GDP*RYDP)%16. Then both parts are concatenated back.
Fourth instant : ALB.a0.load. The a0 is activated, the a0
value is transmitted towards the second ALU input.
Fifth instant : the p register is activated, the GDP×RYDP
expression is transmitted toward the first ALU input. The
calculated result is then A0 + GDP×RYDP.

As an example, we manually obtained the result reasoning
on algebraic expressions. SEP can obtain it in simulation
using K*BMD. Due to the dynamic binding mechanism,
such a process can been introduced with no additional cost
except the implementation of a library to manipulation
K*BMD. One just has to include a new type into the
subtyping tree.

CONCLUSION

We have presented a technique based upon use of decision
diagrams to validate hardware architectures models. We
aim at building high-level, expressive, reusable models to
describe hardware architectures. The proposed mechanism
are coming from the field of object-oriented modelling and
allows a deep modelling of complex types such as decision
diagrams. In this case, BDD are used to validate high-level
object-based models.
This general method may be reused in any simulation
framework where designers want add some validation
features. The dynamic binding mechanism presented may
be used to take into account other types depending on
needs. We will continue our modelling effort and try to
apply our method to some higher-level applications in the
field of the system-level modelling of multi-core chips.

REFERENCES
Antoniotti, M. and Ferrari, A. 1999 “Jester : a Reactive Java
extension proposal by Esterel Hosting.”
http://www.parades.rm.cnr.it/projects/jester/jester.html.

Barton, D. L. and Berge, J-M. 1996 “A proposed Design
Objectives Document for Object-Oriented VHDL.”

The RASSP Digest - Vol. 3, september 1996.
http://rassp.aticorp.org/newsletter/html/96sep/news_18.html

Benzakki, J. and Djaffri, B. 1997 “Object-Oriented Extensions to
CHDL : The LaMI Proposal”
IFIP 1997. Chapman & Hall, 334-347.

Benzakki, J. 2000 “ Objets pour la modélisation de Systèmes
Matériels : intérêts, évolutions et tendance.”
Habilitation à diriger des recherches, d’Evry Val d’Essonne
University, january 2000.

Bryant, R.E 1992 “ Symbolic boolean manipulation with ordered
binary-decision diagrams”
ACM Computing surveys, 24(3) :293-378, 1992.

Drechsler, R; Becker, R. and Ruppertz, S. 1996 “ K*BMDs : A
new Data Structure for Verification”
IEEE European Design & Test Conference (ED&TC’96), Paris
1996, 2-8.

Höreth, S. and Drechsler, R. 1999 “ Formal Verification of Word-
Level Specifications”
IEEE Design, Automation and Test in Conference (DATE’99),
Munich, 1999.

Mallet, F. 2000. “Modélisation et Evaluation de Performances
d’architectures matérielles numériques.”
PhD thesis, Nice-Sophia Antipolis University, december 2000.

Mallet, F.; Boéri, F. and Duboc, J-F.. 1998 “Hardware
Architecture Modelling using an Object-oriented Method.”
24th Euromicro conference, september 1998, vol I, 147-153.

Medvidovic, N. and Taylor, R.N. 2000 “ A classification and
comparison Framework for Software Architecture Description
Languages.” ,
IEEE Transactions on Software Engineering, Vol.26, No. 1,
january 2000.

Peterson, G.D. 1999 « Proposed Language Requirements for
Object-Oriented Extensions to VHDL. »
Proceedings of Forum on Design Languages, FDL’99, France,
september 99.

Schumacher, G. and Nebel, W. 1995 “ Inheritance Concept for
Signals in Object-Oriented Extensions to VHDL.”
EURO-DAC’95 with EURO-CHDL’95.

Sowmitri, S. 1995 “Object-Oriented VHDL Provides New
Modeling and Reuse Techniques for RASSP.”
Vista RASSP Program Manager. The RASSP Digest - Vol. 2, No.
1, 1st. Qtr. 1995
http://rassp.aticorp.org/newsletter/html/95q1/news_6.html

