SEp: SSIMULATION FRAMEWORK TO EVALUATE DIGITAL HARDWARE
ARCHITECTURES.

Frédéric Mallet, Fernand Boéri
Laboratoire Informatique, Signaux et Systemes (13S)
UPRES_A 6070 di CNRS
Les Algorithmes - bét. Euclide B —BP 121
06903 Sophia Antipalis Cedex France
Frederic.Mall et@unicefr, boeri@unicefr

KEYWORDS

Performance evaluation, Architecture design, Rapid-
prototyping, Simulation, Objed-oriented modelling.

ABSTRACT

Know-how is the most useful mean for designing new
processors before a omplete hardware description. The
integration rate is increasing very quickly and the time-
to-market has to be dramatically reduced becaise of the
rapid evolution of technology. Therefore, reuse and
rapid-prototyping are definitely a major isue to
integrate eisting architectures and to design new ones.
SEP is an objed-oriented framework which attends
these problems. This paper intends to show major
problems and solutions in simulation due to aur
simplificaion choices and in particular due to a not
typed spedficaion. It aso presents the service feature
which is a major enhancement to SEP and allow some
validation of dtatic properties about the rapid-
prototyped model and its associated instruction-set. In
this paper some examples related to the modelling of an
industrial bi-core achitedure from VLsI Technology —
a subsidiary of Philips Semiconductors — are used to
ill ustrate our method.

INTRODUCTION.

Nowadays, paper and know-how are the only useful
toadls for designing new procesors before a omplete
hardware description. The normal designing way is to
highlight restrictions of existing architedures. Then,
designers gedfy new functional and time requirements
to perform new manageable gplicaions. Most of the
time, these new reguirements consist in the integration
of several existing architedures. When designers think
they solved every problem of integration, they make a
hardware description uwsing a dasdcal hardware
description language (VHDL, VERILOGHDL). Finaly
some todls alow simulation and benchmarking to
validate the hardware model.

Until now the integration of existing architedures and
resolution of problems were manageable with paper
simulations becaise of the relative simplicity of
computer architedures. However, the integration rate is
increasing very quickly and the time-to-market has to

Jean-Frangois Duboc
DSP Archited — Embedded Processor Group
Phili ps Semiconductors
505route des Lucioles - Sophia Antipadlis
06560 Valbonne France
Jean-Francois.Duboc@vlsi.com

be dramaticdly reduced because of the rapid evolution
of tednology. Moreover every processors have
superscdar capabiliti es. Therefore, reuse and rapid-
prototyping are definitely a major isie to design the
next architedures.

Then we defined in collaboration with VLSl Technology
— a subsidiary of Philips Semiconductors - the
spedfication of a tod able to fix those problems. The
basic principle of this tod cdled SEP has been
presented in a previous paper (Malet & al. 1998).
Based on an objed-oriented method, SeP allows a rapid
prototyping of architedures (including both appli caions
and hardware) and performs evaluations by simulation.
This paper intends to show major problems and
solutions in simulation due to our simplificaion choices
and in particular due to a not typed spedfication. It also
presents the service feaure which is a maor
enhancement to SEP and all ow some vali dation of static
properties about the rapid-prototyped model and its
assciated instruction-set. These mechanisms are due to
our objed-oriented method and give to the designer
some onfidence in the built model as a first step
toward behavioural and structural proof.

We firstly give an overview of SEP as an objed-oriented
framework and introduces what we cdled service of
hardware components. Then we point out the extension
of the service mncept to the description and
simplificaion of logic in structural components. Then,
we show the extension of the service fegure to describe
the instruction-set of architedures and properties that
can be deduced. In this paper we will give some
examples related to the modelling of an industrial bi-
core achitedure from VLS| Technology.

THE SEP COMPONENTS.

Our method shows that objed-oriented and component-
based techniques may be useful for digital architectures
modelling and simulation. This model demonstrates
good reusabili ty and flexibility properties. Autonomy of
components may guaranty the reuse axd protedion of
intelledual-property components (see 4.4). Other
approaches consist in adding the objed-oriented
paradigm into alrealy existing hardware description
languages: OO-VHDL (Benzakki and Djaffri 1997
Schumacher and Nebel 1995, Objedive-VHDL (Putzke
& a. 1998. We think that classicd hardware
description languages were designed with synthesis
goas and most of them are strong-typed languages.



Then adding objed-orientation should result in a
difficult to handle (Schumacher and Nebel 1995 and a
very constraining language. As a consequence we think
that a good approach consists in adding some hardware
description capabilities to aready existing objed-
oriented languages like we proposed in (Malet & al.
1998).

Our graphicd framework is based on its ability to
manage mmponents and links described by our generic
objed-oriented model. By generic, we mean that the
proposed model is not on dependency of some
architedure spedfic feaures. So, we should be ale to
model every architedure types (Risc, DsP, Cisc, VLIW)
as well as control systems, multiprocessors or
distributed architedures. By now, SEP was used to
successfully model and evaluate aDspP, a Risc, a bi-
core AsIc and a software sprinkler controller.

The generic model consists in the definition of the
minimal communication interface between different
autonomous components (SEP-Components). This
interfaceimposes me rules for event propagation and
data transfers independently with the operating system
or programming language. This generic model allows
the internal description of basic components as well as
the gathering of existing components conneded by
communicaion lines (control signals, data busss).
Then, ead component is designed independently from
the others. Thus, it becomes definitively reusable.

A ‘Sep-Component’ is a set of ports and an internal
behaviour. The behaviour can be described in two
different ways. The first solution is the structural
representation by gathering some  mponents.
Components can also be described with a behavioural
description. A sensitivity can be alded to ports of
behavioural components. Sensitivity describes the
sequence of events needed to make the @mponent
reading The readion consists in the execution of the
attached service (method). The composition of several
services consgtitutes the behaviour of the cmponent.

Example— L oad/Store Register :

padkage comporent.basic;
public dassL SRegister extends
modele.simulation.EdgeComponent {
public LSRegister() {

addlnactivePort ("in", LEFT);
addinadivePort ("out", LEFT);
addRisingEdgePort("load", TOP).setService("load");
addRisingEdgePort("store", TOP).setService(" store”);

}

public void load() {
setPriority(1);
emit("out", read ("value"));

}
public void store() {
setPriority(0);
emit("value', read ("in"));
}
}

The preceding example shows the load/store register
behaviour described with a Java description.

The remaining problem is to be sure that asserted
component constraints remain in other architedures. As
we @n seein this example, there is no type asociated
to SEP ports and there is no constraint on links between
ports. As a mnsequence, each port and ead component
may recave any data type. Each data inherits from the
abstrad classVaue and has the aili ty to mute to match
another attempt type. This property increases reusabili ty
of components. In order to avoid dangerous
connedions, an attempt type is inferred for ead
connedion from the Java wde. If the T type is inferred
then no constraint are deduced. If the O is inferred, then
the wnnedion isrejeded.

For instance the load/store register has me
congtraints. The ‘in’ port neals a producer to serve
some values, so the ‘in’ port cannot be mnneded to a
data bus where no pdential produce may emit some
data. In the same way, system will deduce that load and
store ports have to be mnneded to pats able to provide
some level values sncethey are edge sensitive ports.

Thisisthe first step of the structural verificaion. Then,
since we use inheritance and sub-typing to describe
values more than one operator may apply for a spedfic
operation. The aithmeticd and logical unit (ALU) is
just defined as a mmponent owning two input data
ports (inl, in2), one input control port (cop) and two
output ports (out, flag), which represent the result and
the flag result. Then, whatever effedive driven data
types are (string, integer, float, instruction), the
components has to compute the required operation
(addition, multiplicaion). By example, an addition can
be seen as integer addition, float addition, string
concaenation or others. Data have the aility to mutein
acordance to the defined sub-type relation. And the
right operator must be inferred dynamicdly in
simulation. This is done quite easily parsing the sub-
type tree seleding the lowest operator which matches
parameter requirements. If no operator can be inferred
then the NONE Value is computed and a message is
sent to designer. This can be due to the lack of an
adapted description for the amncerned operator and the
description must be completed. Or this can aso indicae
that some data paths are wrong and should be correded.

STRUCTURAL COMPONENT
SERVICES AND INHERITANCE.

Since acomponent isa set of ports and a set of services,
inheritance of hardware components means inheritance
of communicaion ports and inheritance of services
which can be overridden. The service @ncept is
extended to structural components by the way of the
service port. In a structural component, a service port is
a sequential and paralel composition of services
provided by contained components. This compasition is



abstraded by a textual identifier which can then be
considered as a higher level service By the way, it also
makes snse to inherit behaviour from a structura
component. This extension is more powerful than the
simple structural inheritance @& on as in this way
behavioural components may inherit behaviour from a
structural one.

Moreover, a service port allows the astradion of every
control portsin a structural component. Management of
numerous ports and signals is difficult and number of
not interesting signals increases quickly in hierarchicd
descriptions. So, this abstradion gedaly reduces
complexity of models snce it reduces the number of
ports and signals. Most of ports in hardware
components just all ows the implementation of low-level
communicdion protocols. There ae lots of enabling or
chip-selea signals, configuration signals as well as
compatibility signals with previous architedures. Most
of those do not intervene in performance evaluation
(except in area and consumption caculus).

For instance, let us imagine we want to model a
multi pli cation unit (MU) for the Oak procesor — a DSP
Group trademark. The MU contains two input
load/store registers X and Y, and a multiplier 16x16.
Allowed operations with this MU are storing values in
ead of the registers. There ae two input busses GDP
and XYDP. The multiplier performs the multiplication
with the X and Y current values and drives the result on
the ‘p’ port. At any time, one must be permitted to read
X or Y values. Moreover some chip-seled signals are
required to reduce onsuming or to implement bus
communicdion protocols. A structural SEP model for
thisMU could be & down by Figure 1 or a much more
complex one.

[ Simulation and Performance: evaluation of Digital Architectures
Module BEdit iew Cotrolfoel Femocics Rep'sbers Help

| MU
ﬂl loads  ghoreX
~aue  WEN Tl Tl  Kout e
- il o Yout me
. 0 A
B

igady  store¥

Restines | Fainst | Mot | omrmtar Coneat ||| Buz AL
IftRegi m -?- {:FEI‘II’QI: E i:l- w daluny E- 3

Ping | io | misc | Oak | Bip | Aam7 | ussrlhni:|
Every operations axecuted

Figure 1 — MU SEp model (1).

This model uses four control signals (loadX, storeX,
loadY, storeY). Since this component is included in

three description levels and since the decoder is
included in two description levels, there ae three
intermediate cmponents, which have to drive those
four signals. Then, it must appea 16 (4*4) signals and
20 (4*5) portsrelative to these mntrol signals.

Figure 2 — MU SEP model (2).

Therefore, service ports were aeaed. They alow
multi plexing those mntrol signals as on as we do not
want to evaluate performances about them. Indeed,
using service ports do not let external components to
see differences between multiplexed signals. Figure 2
shows the resulting MU model with SEP using a
service-port. Then, MU is an entity providing four basic
services.

Using that model, paths are dynamicdly built
depending on required services. To use the ‘loadX’
service, demder has to send a “loadx” string value to
the ‘com’ port. And arising-edge event is automaticdly
sent to the ‘load’ port of the ‘Registre X' component
(seeFigure 3). In the same way, decder can drive the
‘storeY’ service & shown by Figure 4.

Hout
ot

Figure 3 — Driving the ‘loadX’ service.



_Haut
Yout

Figure 4 — Driving the ‘storeY’ service.

The Sep graphicd interface #ows a graphicd
description of services.

SEP SERVICES TOWARD A GENERIC
INSTRUCTION DECODER.

Using SEP, data paths can be @nstructed very quickly.
They only consist in gathering some of the on-the-
shelves components and conneding them with busses
and signals. But this is not enough. Indeed, designers
also have to construct control paths and deade block.
The mntrol part can gedly be ssimplified using service
ports.

This chapter intends to show that the description of the
deaoding part cen also be simplified. There ae many
ways to perform this task and ead solution has its own
complexity. The dewding part of Risc (Reduced
Instruction-Set Component) procesorsis very simpleto
implement. But the demding part of Cisc (Complex
Instruction-Set Component) and Dsp (Digital Signal
Proces=r) are much more mmplexes. There ae lots of
other methods, and they are more or less complexes:
Viw (Very Large Instruction Word) or micro-
programmed processors. But they al have the same
objedive, they are supposed to transform an assembly
or machine-spedfic instruction into some @ncurrent
control orders.

The service oncept can be extended to the core of a
processor, then services are still sequential and perall el
composition of a set of low-level services. At this level
those services can be mnsidered as pseudo assembly
instructions. Then, a MAC instruction is the parallel
compaosition of both addition and multiplication. Using
this techniqgue we model a decoder for a DsP (OAK+)
and for a Risc processor (ARM 7 from ARM Limited,
inc.) in about aweek. In that way, instruction-set can be
built incrementally just adding gaphically some new
services.

The first benefit of this mechanism is obvioudy to
increase reusability. Using SEp we modelled bah the
PINE and the OAK processor. The OAK processor is the

successor of the Pine processor from DsPgroup. In that
case data paths were dmost the same, and the
instruction-set of the OAK includes Pine’s one.

In addition, this mechanism is not only a wizard but
also a verification tod in order to produce avalid
instruction-set. Indeed, when a new pseudo-instruction
is creaed material dependencies are chedked in order to
verify if physicdly the both services can be cdled
concurrently or sequentialy. By example, with the MU
component, all of its four services can be cdled
concurrently at the first sight. But into the OAK core
both the ‘Xout’ port and the ‘Yout’” port are mnneded
to the same global bus GDP. As a mnsequence, the
paralel composition of loadX and loadY services is
strictly forbidden. This chedking may deted lots of
problem about material dependencies and in particular,
dependencies due to the pipeline structure. The
construction of physicaly bad instructions is forbidden.
This method will never prove the functional rightnessof
the compaosition. But thisis a first step for the designer
to deted misdgng data paths or invalid prototyping.

Finally, information about pipeline structure can easily
be taken into acount since we can add some delays
which represent pipeline stages between a sequential
exeadtion of several services. Then we @an combine
information from instruction-set and information from
structural constraints to perform a cycle-acarate
simulation.

CONCLUSION.

Asa mnclusion, SEP is a method to increase reusability
and abstradion of hardware achitecture models. A
user-friendly graphicd interface #ows designers to
easily use this method and gives them a simple tod to
quickly model hardware achitedures. It was often said
to be a good pedagogicd tod to tead hardware
architedures to beginners. However, it has the power to
model completely industrial architedures (DsSP core
with standard signal processng applications, bi-core
architedure: RIsC processor controlling a DSpPprocesor
to perform a multimedia gplicaion). A high-level
description of the DsSP core to oltain cycle-acarate
simulation took less than one week and the high-level
description of the Risc processor took threedays. These
cores were interading through a @mmunication
interfacewith several communication protocols.

SEP is not just another simulation todl, it is mainly a
computer-aided design tool for computer architedures.
Since designers neal to evaluate performances of the
designed architedure & quick as posdble, SEP
provides dmulation fedures from a flexible and
reusable model. However simulation toos cannot
completely validate amodel, because tests might never
been exhaustive. It is very difficult to apply theorem-
proving techniques to complete industrial problems.
Then, model chedking seems to be the most promising



way to perform some property verifications about a
given model. Nevertheless simulation and validation of
properties are complementary approaches and will both
be useful in tods for the next architedures generation.

It seems to be quite e&y to generate some VHDL code
from SEP components but since the astradion level is
not the same, this operation can only be semi automatic.
The generation of synthesisable w®de from a
behavioural description is completely out of the scope
of SEP by now. Obviously, some parts of an architedure
described with SEP are very closed from a VHDL
description. The generation of synthesisable VHDL
description of the deaoding part of a procesr seems to
be posdsble and detail ed researches will be performed.

As we showed in (Mallet and Boéi 199), the
abstradion power of SeP alows the integration of an
exeadtion machine into SEP components, then we ae
able to integrate some ESTEREL (Berry 1998
descriptions into our model. Thisisagood keginning in
the way of validation. Actualy increasingly model-
cheking tods wuse synchronous languages as
spedficaion languages of readive cntrol systems and
they use temporal logicd as gedficaion of properties
to be vdidated. Many of those toods use the
synchronous readive language ESTEREL and provide
some property validation feaures (safety, fairness
readability and equity). Then, we ae ale to have
confidence in some of our components. We have to
investigate away to propagate deduced properties to the
entire model and to validate other components and
composition of those cmponents in order to complete
the information about misuse of physicd resources by
an information about good scheduling of service
exeaution to perform a spedfied behaviour.

REFERENCES.

Putzke-Roming W.; Radetski M. and Nebe W.
1998.“Modeling communicaion with Objedive VHDL”,
Procealings of International Verilog HDL Conference and
VHDL International Users Forum Santa Clara, CA, USA 16-
19 March 1998.

Berry G. 1998. “ The foundations of Esterel”
http://www.inriafr/meij e/esterel .

Mallet F.; Boé&i F. and Duboc JF. 1998. “ Hardware
Modelling and Simulation using an Objed-oriented Method “.
Proceadings of the European Smulation Multiconference,
June 98. 166-168.

Benzakki J. and Djaffri B. IFIP 1997. “Objed-Oriented
Extensions to CHDL : The LaMI Proposal.“. Chapman &
Hall. 334-347.

Schumadier G. and Nebel W. “Inheritance Concept for
Signas in Objed-Oriented Extensions to VHDL".
Proceedings of the EURO-DAC’ 95 with EURO-CHDL'95.

Mallet F. and Boéri F. 1999. "Esterel and Java in an
Objeda-oriented framework for Heterogeneous Software

and Hardware system Modelling and Simulation. The
SEP approach.” Procealings of the 25" Euromicro
conference Vol |, 214-222



