
SEP: SIMULATION FRAMEWORK TO EVALUATE DIGITAL HARDWARE
ARCHITECTURES.

Frédéric Mallet, Fernand Boéri
Laboratoire Informatique, Signaux et Systèmes (I3S)

UPRES_A 6070 du CNRS
Les Algorithmes - bât. Euclide B – BP 121

06903 Sophia Antipolis Cedex France.
Frederic.Mallet@unice.fr, boeri@unice.fr

Jean-François Duboc
DSP Architect – Embedded Processor Group

Phili ps Semiconductors
505 route des Lucioles - Sophia Antipolis

06560 Valbonne France.
Jean-Francois.Duboc@vlsi.com

KEYWORDS

Performance evaluation, Architecture design, Rapid-
prototyping, Simulation, Object-oriented modell ing.

ABSTRACT

Know-how is the most useful mean for designing new
processors before a complete hardware description. The
integration rate is increasing very quickly and the time-
to-market has to be dramatically reduced because of the
rapid evolution of technology. Therefore, reuse and
rapid-prototyping are definitely a major issue to
integrate existing architectures and to design new ones.
SEP is an object-oriented framework which attends
these problems. This paper intends to show major
problems and solutions in simulation due to our
simplification choices and in particular due to a not
typed specification. It also presents the service feature
which is a major enhancement to SEP and allow some
validation of static properties about the rapid-
prototyped model and its associated instruction-set. In
this paper some examples related to the modell ing of an
industrial bi-core architecture from VLSI Technology –
a subsidiary of Phili ps Semiconductors – are used to
ill ustrate our method.

INTRODUCTION.

Nowadays, paper and know-how are the only useful
tools for designing new processors before a complete
hardware description. The normal designing way is to
highlight restrictions of existing architectures. Then,
designers specify new functional and time requirements
to perform new manageable applications. Most of the
time, these new requirements consist in the integration
of several existing architectures. When designers think
they solved every problem of integration, they make a
hardware description using a classical hardware
description language (VHDL, VERILOGHDL). Finally
some tools allow simulation and benchmarking to
validate the hardware model.
Until now the integration of existing architectures and
resolution of problems were manageable with paper
simulations because of the relative simplicity of
computer architectures. However, the integration rate is
increasing very quickly and the time-to-market has to

be dramatically reduced because of the rapid evolution
of technology. Moreover every processors have
superscalar capabiliti es. Therefore, reuse and rapid-
prototyping are definitely a major issue to design the
next architectures.
Then we defined in collaboration with VLSI Technology
– a subsidiary of Philips Semiconductors - the
specification of a tool able to fix those problems. The
basic principle of this tool called SEP has been
presented in a previous paper (Mallet & al. 1998).
Based on an object-oriented method, SEP allows a rapid
prototyping of architectures (including both applications
and hardware) and performs evaluations by simulation.
This paper intends to show major problems and
solutions in simulation due to our simplification choices
and in particular due to a not typed specification. It also
presents the service feature which is a major
enhancement to SEP and allow some validation of static
properties about the rapid-prototyped model and its
associated instruction-set. These mechanisms are due to
our object-oriented method and give to the designer
some confidence in the built model as a first step
toward behavioural and structural proof.
We firstly give an overview of SEP as an object-oriented
framework and introduces what we called service of
hardware components. Then we point out the extension
of the service concept to the description and
simplification of logic in structural components. Then,
we show the extension of the service feature to describe
the instruction-set of architectures and properties that
can be deduced. In this paper we will give some
examples related to the modell ing of an industrial bi-
core architecture from VLSI Technology.

THE SEP COMPONENTS.

Our method shows that object-oriented and component-
based techniques may be useful for digital architectures
modelling and simulation. This model demonstrates
good reusabili ty and flexibilit y properties. Autonomy of
components may guaranty the reuse and protection of
intellectual-property components (see 4.4). Other
approaches consist in adding the object-oriented
paradigm into already existing hardware description
languages: OO-VHDL (Benzakki and Djaff ri 1997;
Schumacher and Nebel 1995), Objective-VHDL (Putzke
& al. 1998). We think that classical hardware
description languages were designed with synthesis
goals and most of them are strong-typed languages.



Then adding object-orientation should result in a
diff icult to handle (Schumacher and Nebel 1995) and a
very constraining language. As a consequence we think
that a good approach consists in adding some hardware
description capabiliti es to already existing object-
oriented languages like we proposed in (Mallet & al.
1998).

Our graphical framework is based on its abili ty to
manage components and links described by our generic
object-oriented model. By generic, we mean that the
proposed model is not on dependency of some
architecture specific features. So, we should be able to
model every architecture types (RISC, DSP, CISC, VLIW)
as well as control systems, multiprocessors or
distributed architectures. By now, SEP was used to
successfully model and evaluate a DSP, a RISC, a bi-
core ASIC and a software sprinkler controller.
The generic model consists in the definition of the
minimal communication interface between different
autonomous components (SEP-Components). This
interface imposes some rules for event propagation and
data transfers independently with the operating system
or programming language. This generic model allows
the internal description of basic components as well as
the gathering of existing components connected by
communication lines (control signals, data busses).
Then, each component is designed independently from
the others. Thus, it becomes definitively reusable.

A ‘SEP-Component’ is a set of ports and an internal
behaviour. The behaviour can be described in two
different ways. The first solution is the structural
representation by gathering some components.
Components can also be described with a behavioural
description. A sensitivity can be added to ports of
behavioural components. Sensitivity describes the
sequence of events needed to make the component
reacting. The reaction consists in the execution of the
attached service (method). The composition of several
services constitutes the behaviour of the component.

The preceding example shows the load/store register
behaviour described with a Java description.

The remaining problem is to be sure that asserted
component constraints remain in other architectures. As
we can see in this example, there is no type associated
to SEP ports and there is no constraint on links between
ports. As a consequence, each port and each component
may receive any data type. Each data inherits from the
abstract class Value and has the abili ty to mute to match
another attempt type. This property increases reusabili ty
of components. In order to avoid dangerous
connections, an attempt type is inferred for each
connection from the Java code. If the � � � � � � � � � � � 	 	 � 


then no constraint are deduced. If the ⊥ is inferred, then
the connection is rejected.

For instance the load/store register has some
constraints. The ‘ in’ port needs a producer to serve
some values, so the ‘ in’ port cannot be connected to a
data bus where no potential producer may emit some
data. In the same way, system will deduce that load and
store ports have to be connected to ports able to provide
some level values since they are edge sensitive ports.

This is the first step of the structural verification. Then,
since we use inheritance and sub-typing  to describe
values more than one operator may apply for a specific
operation. The arithmetical and logical unit (ALU) is
just defined as a component owning two input data
ports (in1, in2), one input control port (cop) and two
output ports (out, flag), which represent the result and
the flag result. Then, whatever effective driven data
types are (string, integer, float, instruction), the
components has to compute the required operation
(addition, multiplication). By example, an addition can
be seen as integer addition, float addition, string
concatenation or others. Data have the abili ty to mute in
accordance to the defined sub-type relation. And the
right operator must be inferred dynamically in
simulation. This is done quite easily parsing the sub-
type tree selecting the lowest operator which matches
parameter requirements. If no operator can be inferred
then the NONE Value is computed and a message is
sent to designer. This can be due to the lack of an
adapted description for the concerned operator and the
description must be completed. Or this can also indicate
that some data paths are wrong and should be corrected.

STRUCTURAL COMPONENT
SERVICES AND INHERITANCE.

Since a component is a set of ports and a set of services,
inheritance of hardware components means inheritance
of communication ports and inheritance of services
which can be overridden. The service concept is
extended to structural components by the way of the
service port. In a structural component, a service port is
a sequential and parallel composition of services
provided by contained components. This composition is

Example – Load/Store Register :

package component.basic;
public class LSRegister extends

modele.simulation.EdgeComponent {
public LSRegister() {

addInactivePort ("in", LEFT);
addInactivePort ("out", LEFT);
addRisingEdgePort("load",TOP).setService("load");
addRisingEdgePort("store",TOP).setService("store");

}
public void load() {

setPriority(1);
emit("out", read ("value"));

}
public void store() {

setPriority(0);
emit("value", read ("in"));

}
}



abstracted by a textual identifier which can then be
considered as a higher level service. By the way, it also
makes sense to inherit behaviour from a structural
component. This extension is more powerful than the
simple structural inheritance as soon as in this way
behavioural components may inherit behaviour from a
structural one.

Moreover, a service port allows the abstraction of every
control ports in a structural component. Management of
numerous ports and signals is diff icult and number of
not interesting signals increases quickly in hierarchical
descriptions. So, this abstraction greatly reduces
complexity of models since it reduces the number of
ports and signals. Most of ports in hardware
components just allows the implementation of low-level
communication protocols. There are lots of enabling or
chip-select signals, configuration signals as well as
compatibility signals with previous architectures. Most
of those do not intervene in performance evaluation
(except in area and consumption calculus).

For instance, let us imagine we want to model a
multiplication unit (MU) for the Oak processor – a DSP

Group trademark. The MU contains two input
load/store registers X and Y, and a multiplier 16x16.
Allowed operations with this MU are storing values in
each of the registers. There are two input busses GDP
and XYDP. The multiplier performs the multiplication
with the X and Y current values and drives the result on
the ‘p’ port. At any time, one must be permitted to read
X or Y values. Moreover some chip-select signals are
required to reduce consuming or to implement bus
communication protocols. A structural SEP model for
this MU could be as shown by Figure 1 or a much more
complex one.

Figure 1 – MU SEP model (1).

This model uses four control signals (loadX, storeX,
loadY, storeY). Since this component is included in

three description levels and since the decoder is
included in two description levels, there are three
intermediate components, which have to drive those
four signals. Then, it must appear 16 (4*4) signals and
20 (4*5) ports relative to these control signals.

Figure 2 – MU SEP model (2).

Therefore, service ports were created. They allow
multiplexing those control signals as soon as we do not
want to evaluate performances about them. Indeed,
using service ports do not let external components to
see differences between multiplexed signals. Figure 2
shows the resulting MU model with SEP using a
service-port. Then, MU is an entity providing four basic
services.

Using that model, paths are dynamically built
depending on required services. To use the ‘ loadX’
service, decoder has to send a “ loadx” string value to
the ‘com’ port. And a rising-edge event is automatically
sent to the ‘ load’ port of the ‘Registre X’ component
(see Figure 3). In the same way, decoder can drive the
‘storeY’ service as shown by Figure 4.

Figure 3 – Driving the ‘loadX’ service.



Figure 4 – Driving the ‘storeY’ service.

The SEP graphical interface allows a graphical
description of services.

SEP SERVICES TOWARD A GENERIC
INSTRUCTION DECODER.

Using SEP, data paths can be constructed very quickly.
They only consist in gathering some of the on-the-
shelves components and connecting them with busses
and signals. But this is not enough. Indeed, designers
also have to construct control paths and decode block.
The control part can greatly be simplified using service
ports.

This chapter intends to show that the description of the
decoding part can also be simplified. There are many
ways to perform this task and each solution has its own
complexity. The decoding part of RISC (Reduced
Instruction-Set Component) processors is very simple to
implement. But the decoding part of CISC (Complex
Instruction-Set Component) and DSP (Digital Signal
Processor) are much more complexes. There are lots of
other methods, and they are more or less complexes:
VLIW (Very Large Instruction Word) or micro-
programmed processors. But they all have the same
objective, they are supposed to transform an assembly
or machine-specific instruction into some concurrent
control orders.

The service concept can be extended to the core of a
processor, then services are still sequential and parallel
composition of a set of low-level services. At this level
those services can be considered as pseudo assembly
instructions. Then, a MAC instruction is the parallel
composition of both addition and multiplication. Using
this technique we model a decoder for a DSP (OAK+)
and for a RISC processor (ARM 7 from ARM Limited,
inc.) in about a week. In that way, instruction-set can be
built i ncrementally just adding graphically some new
services.

The first benefit of this mechanism is obviously to
increase reusabili ty. Using SEP we modelled both the
PINE and the OAK processor. The OAK processor is the

successor of  the Pine processor from DSP group. In that
case data paths  were almost the same, and the
instruction-set of the OAK includes Pine’s one.

In addition, this mechanism is not only a wizard but
also a verification tool in order to produce a valid
instruction-set. Indeed, when a new pseudo-instruction
is created material dependencies are checked in order to
verify if physically the both services can be called
concurrently or sequentially. By example, with the MU
component, all of its four services can be called
concurrently at the first sight. But into the OAK  core
both the ‘Xout’ port and the ‘Yout’ port are connected
to the same global bus GDP. As a consequence, the
parallel composition of loadX and loadY services is
strictly forbidden. This checking may detect lots of
problem about material dependencies and in particular,
dependencies due to the pipeline structure. The
construction of physically bad instructions is forbidden.
This method will never prove the functional rightness of
the composition. But this is a first step for the designer
to detect missing data paths or invalid prototyping.

Finally, information about pipeline structure can easily
be taken into account since we can add some delays
which represent pipeline stages between a sequential
execution of several services. Then we can combine
information from instruction-set and information from
structural constraints to perform a cycle-accurate
simulation.

CONCLUSION.

As a conclusion, SEP is a method to increase reusability
and abstraction of hardware architecture models. A
user-friendly graphical interface allows designers to
easily use this method and gives them a simple tool to
quickly model hardware architectures. It was often said
to be a good pedagogical tool to teach hardware
architectures to beginners. However, it has the power to
model completely industrial architectures (DSP core
with standard signal processing applications, bi-core
architecture: RISC processor controlli ng a DSP processor
to perform a multimedia application). A high-level
description of the DSP core to obtain cycle-accurate
simulation took less than one week and the high-level
description of the RISC processor took three days. These
cores were interacting through a communication
interface with several communication protocols.

SEP is not just another simulation tool, it is mainly a
computer-aided design tool for computer architectures.
Since designers need to evaluate performances of the
designed architecture as quick as possible, SEP
provides simulation features from a flexible and
reusable model. However simulation tools cannot
completely validate a model, because tests might never
been exhaustive. It is very difficult to apply theorem-
proving techniques to complete industrial problems.
Then, model checking seems to be the most promising



way to perform some property verifications about a
given model. Nevertheless, simulation and validation of
properties are complementary approaches and will both
be useful in tools for the next architectures generation.
It seems to be quite easy to generate some VHDL code
from SEP components but since the abstraction level is
not the same, this operation can only be semi automatic.
The generation of synthesisable code from a
behavioural description is completely out of the scope
of SEP by now. Obviously, some parts of an architecture
described with SEP are very closed from a VHDL

description. The generation of synthesisable VHDL

description of the decoding part of a processor seems to
be possible and detailed researches will be performed.

As we showed in (Mallet and Boéri 1999), the
abstraction power of SEP allows the integration of an
execution machine into SEP components, then we are
able to integrate some ESTEREL (Berry 1998)
descriptions into our model. This is a good beginning in
the way of validation. Actually increasingly model-
checking tools use synchronous languages as
specification languages of reactive control systems and
they use temporal logical as specification of properties
to be validated. Many of those tools use the
synchronous reactive language ESTEREL and provide
some property validation features (safety, fairness,
reachabili ty and equity). Then, we are able to have
confidence in some of our components. We have to
investigate a way to propagate deduced properties to the
entire model and to validate other components and
composition of those components in order to complete
the information about misuse of physical resources by
an information about good scheduling of service
execution to perform a specified behaviour.

REFERENCES.

Putzke-Roming W.; Radetski M. and Nebel W.
1998.“Modeling communication with Objective VHDL”,
Proceedings of International Verilog HDL Conference and
VHDL International Users Forum Santa Clara, CA, USA 16-
19 March 1998.

Berry G. 1998. “The foundations of Esterel”
http://www.inria.fr/meije/esterel .

Mallet F.; Boéri F. and Duboc J-F. 1998. “  Hardware
Modell ing and Simulation using an Object-oriented Method “ .
Proceedings of the European Simulation Multiconference,
June 98. 166-168.

Benzakki J. and Djaffri B. IFIP 1997. “Object-Oriented
Extensions to CHDL : The LaMI Proposal.“ . Chapman &
Hall .  334-347.

Schumacher G. and Nebel W. “ Inheritance Concept for
Signals in Object-Oriented Extensions to VHDL“.
Proceedings of the EURO-DAC’95 with EURO-CHDL’95.

Mallet F. and Boéri F. 1999. "Esterel and Java in an
Object-oriented framework for Heterogeneous Software

and Hardware system Modelli ng and Simulation. The
SEP approach." Proceedings of the 25th Euromicro
conference. Vol I, 214-222.


