
Hardware Architecture Modelling using an Object-oriented Method

Frédéric MALLET*, Fernand BOERI* Senior Member IEEE, Jean-François DUBOC**
*Laboratoire I3S, UPRES_A 6070 CNRS,Université de Nice-Sophia Antipolis,41 Bd Napoléon 3
06041 Nice Cédex France. Tel : (+33) 4 93 21 79 58 e-mail : fmallet@i3s.unice.fr, boeri@unice.fr

** VLSI Technology inc., 505 Route des Lucioles, Sophia-Antipolis 06560 Valbonne.
Tel : (+33) 4 92 96 11 81 e-mail : jean-francois.duboc@sophia.europe.vlsi.com

Présenté à : Euromicro’98 à Västeras, Suède, 25-27 Août 1998
Workshop : System Level Design : Architectures, methods and tools.

Hardware Architecture Modelling using an Object-oriented Method

Frédéric MALLET*, Fernand BOERI* Senior Member IEEE, Jean-François DUBOC**
*Laboratoire I3S, UPRES_A 6070 CNRS,Université de Nice-Sophia Antipolis,41 Bd Napoléon 3
06041 Nice Cédex France. Tel : (+33) 4 93 21 79 58 e-mail : fmallet@i3s.unice.fr, boeri@unice.fr

** VLSI Technology inc., 505 Route des Lucioles, Sophia-Antipolis 06560 Valbonne.
Tel : (+33) 4 92 96 11 81 e-mail : jean-francois.duboc@sophia.europe.vlsi.com

Abstract
The very high integration rate and the increasing
complexity of digital hardware architectures and
embedded applications lead designers to search for new
tools and methods. In order to reduce the time-to-market
it becomes essential to allow designers to evaluate
performances of a given application with the targetted
architecture very soon in the design phase. So we have
decided to build a modelli ng simulation environment in
order to evaluate the requisite number of cycles for
processing a given application with a simple model of a
digital hardware architecture.
Then, our main objective and the greatest part of our
work is to describe this environnement with an example
based on the Pine DSP and some classical digital signal
processing applications : FIR, FFT butterfly, Viterbi’s
Butterfly.

1. Introduction

With VLSI incorporation, we aim at evaluating digital
signal processor (DSP) performances in relation to
specific applications. So we have decided to build a
modelli ng simulation environment in order to evaluate
the requisite number of cycles for processing a given
application with a simple model of a digital hardware
architecture. Then, we can design a new prototype
architecture.

Our main objective and the greatest part of our work
is to develop methods and tools to achieve this objective.
In order to present results, we will expose the developed
framework with an example based on the Pine DSP and
some classical digital signal processing applications :
FIR, FFT butterfly, Viterbi’s butterfly. The application is
presented in section 2.

With this objective we designed a generic object-
oriented model for digital hardware architectures. This

model has been designed using the Object Modelli ng
Technique (OMT) and is presented in section 3.

Then, we designed a graphical interface with the Java
language in order to optimize the use of this model. This
interface is presented in section 4.

Finall y, the obtained results and conclusions are
presented in section 5.

2. The targetted application

2.1 Introduction

We choose the Pine which is the simplest DSP from
VLSI, because it contains almost all techniques used in
other processors and its behaviour is completly known.
Its detailed documentation was done using the user’s
manuals [10] [5]. This processor is designed to compute
eff iciently applications with multipli cation and
accumulation sequences as FIR; so this classical
transformation is well processed by the Pine.

Nevertheless, FFT butterfly and Viterbi’s butterfly are
very used but the Pine isn’ t very eff icient for those
transformations. Our aim was to validate the Pine model
and to improve its design using those three test
algorithms.

PINE
Cor e

VVF 3000
clock

reset Program
ROM

PPAN

IDP

read

16

16 (25)

Figure 1 - PINE extended Core « combo »

PPAN : Program Address Bus
IDP : Program Data Bus

2.2 Modelled system overview

For our purpose, we present the following abstraction
of the modelled system that is suff icient to ill ustrate our
modelling method.

Figure 1 presents the extended core and Figure 2
presents the core.

PCU
Program

Control Unit

CU
Computation

Unit

DAU
Data

Addressing
Unit

clock

clock

RYDP 16

16

SR_out

reset

IDP 16 (25)

GDP

PPAN 16

M et codeop

read

control 1

25:Callr et Brr sur 65535

SR_in

clock

Figure 2 - PINE Core - VVF3000

GDP : Global Data Bus
RYDP : Y Data Bus
SR_in : from status registers
SR_out : Toward status registers
M : Modulo status register bits
codeop : code representing the function to be executed by
DAU

3. The generic model

3.1 An object-oriented method

Object-oriented techniques are more and more used
for designing software systems, but not for designing
complex hardware systems li ke digital signal processors
[9]. Meanwhile, hardware system problems are often
closed to software system one’s. Nevertheless, object-
oriented techniques have several good properties
(abstraction, hierarchy, inheritance, polymorphism,
encapsulation).

Therefore, main objectives for hardware system
designers are to increase component and model
reusabilit y with a lowest cost and a highest abstraction
level. These objectives should be achieved using good
properties from object-oriented techniques [7].

So, our idea is to adapt object-oriented techniques
from software systems to hardware architectures and to
construct adapted tools. With similar objectives, RASSP
[6] and POLIS [4] projects introduced an object-oriented
layout upon VHDL.

3.2 Object-Oriented VHDL

Let us note that other designers have looked for such a
method based on object-oriented VHDL (OO-VHDL) [2]
[1] [3]. Indeed, VHDL is a well -known very used
normalised hardware description language and does not
include all object-oriented mechanisms.

The RASSP program and the POLIS system are
considered by some industrials li ke very completed but
too much complex solutions. Indeed, they propose
solution to any problems in a general way, but theirs
frameworks become too much complex. We only aim at
analyzing performances for a modelled architecture
relatively to a specific application. Our proposed
framework is more specific so it is smaller but more
efficient.

Nevertheless, the proposed tool has to be integrated
into a design process fixed by other industrial tools
(analysis, design or synthesis tools). All of these tools use
VHDL, so we should offer solution for the integration.
Possible way to achieve this objective could be the
translation from our model to VHDL or the
encapsulation of a VHDL architecture into our material
Components. A priori, this could raise some
implementation problems even if there are lots of
similarities between the two approachs.

We have not choosen OO-VHDL, because VHDL is a
procedural specification and synthesis language with
ADA-li ke hard types, so it contains lots of useless
mechanisms for our purpose. Consequently, adding all
object-oriented concepts to VHDL would have resulted
into a too much loud solution. Moreover, this could raise
technical problems [8].

It seems as if it is a good idea to choose a completly
objected-oriented method specificall y designed to
performance analysis. So we have choosen to use the
Object Modelli ng Technique (OMT) defined by James
Rumbaugh as a design technique and Java as a
development language. Let us consider our proposition.

3.3 Our proposition

We propose a generic object-oriented model for digital
hardware architectures. This model allows us to generate
simulable models. Before presenting you with it, we first
ill ustrate it with a simpli fied presentation of the selected
architecture (cf. Figure 1).

3.3.1. Simulation context For simulating the Pine, we
need some external components (reset, clock, ROM) in
addition of the Pine core. These components constitute
the simulation context for Pine (cf. Figure 3).

Simulation

clock
Pine

reset ROM

Figure 3 - Simulation context for Pine

For representing this context we constructed a Java
application named Simulation. In this class, each
component (reset, clock, Pine, ROM, Signal) is
represented by another Java class. We just need to
instantiate these classes and to make links between
components as shown by the following source code.

class Simulation extends Frame {
public static void main(String arg[]) {

Pine pine = new Pine();
ROM mem = new ROM ();
Actuator rst = new Actuator ("reset");
Actuator clk = new Actuator("clock");
Signal reset = new Signal();
reset.linkToPort (rst.getPort("out"));
reset.linkToPort(pine.getPort("reset"));
Signal clock = new Signal();
clock.linkToPort(clk.getPort("out"));
clock.linkToPort(pine.getPort("clk"));
Signal ppan = new Signal();
ppan. linkToPort(pine.getPort("ppan"));
ppan. linkToPort(mem.getPort("addr"));
Signal idp = new Signal();
idp. linkToPort(pine.getPort("idp"));
idp. linkToPort(mem.getPort("out"));
Signal read = new Signal();
read. linkToPort(pine.getPort("readInstr"));
read. linkToPort(mem.getPort("read"));

}}

Si mul ati on :
materi al Contai ner

Pi ne :
materi al Contai ner

Cl ock :
EdgeComponent

ROM :
EdgeComponent

Reset :
EdgeComponent

cl ock : Signal

ppan : Si gnal

i dp : Signal

read : Si gnal
reset : Si gnal

Figure 4 - OMT static object diagram

This context is also described using the OMT static
object diagram (cf. Figure 4).

3.3.2. Basic classes for the model It appears that we
need to define several classes in order to represent
different parts of the modelled system. So we consider
digital hardware architectures as material components.

The description of these components can be a
behavioural description or a structural description. In the
example above, we distinguish three material
components, one with a structural description (Pine) and
two with a behavioural description (Actuator, ROM). The
communication with other components is done across
some por ts. These ports are connected by signals which
transport different values. These values can be
speciali sed into several sub-classes (assembly
instructions, integers, events, bit values, hardware
levels).

In the example, the ROM component can easil y be
represented with a behavioural description language. In
the other hand, the Pine component should be
represented with a structural description.

Components whose description is behavioural are
called elementary material components and constitute the
leafs in our hierarchy. Other components are represented
with the materialContainer class.

3.3.3 The material container According to this, in what
follows we give a rough sketch of the current Java
implementation for the Pine component which is a
material container.

class Pine extends materialContainer {
public Pine() {

/* variables declaration ... */
/* components instantiation */
addMaterialComponent(new PCU());
addMaterialComponent(new CU());
addMaterialComponent(new DAU());
/* signal connections */
addSignal(GDP = new Signal());
GDP. linkToPort(pcu.getPort("gdp"));
GDP. linkToPort(cu.getPort("gdp"));
GDP. linkToPort(dau.getPort("gdp"));
/* others */

}}

A material container only serves to encaspulate
material components and signals; it allows a structural
description for material components. These components
could either be elementary material components or
material containers. So the materialContainer class has
to inherit from the materialComponent class.

3.3.4. Elementary material components We said before
there are components with a simple behaviour li ke the
ROM component. The ROM code is not very interesting
to ill ustrate our behavioural model so the following Java
code presents the description of an edge-triggered
register (cf. Figure 5) with an asynchronous reset.

com

reset

in outRegister

Figure 5 - Edge-triggered Register

class Register extends EdgeComponent {
public Register () {

addRisingEdgePort("com");
addFallingEdgePort("reset");
addPort("in"); addPort("out");

}
void report (Value v, String sender) {

if (sender.equals("reset"))
value = new IntValue(0);

else if (sender.equals("com"))
value = getPort("in").read();

emit("out", value);
}}

The EdgeComponent class inherits from the
materialComponent class. It describes material
components the behaviour of which is commanded when
an edge event occurs on one of the ports. Each port can
be responsible for the component sensiti vity. Considering
the Register component case, the builder declares ‘ in’
and ‘out’ ports as unsensiti ve ports, ‘com’ port as
sensiti ve on rising edge event and ‘ reset’ port as sensiti ve
on falli ng edge event. So, when an event occurs on a
sensiti ve port, the report method of the component is
executed.

3.3.5. Using a library The preceding example shows
how we can use existing components and how we can
create new components. After the study of several
examples of digital architectures, it appears some
components which are often used. These components
have been implemented and added to a library of
standard components (multiplexer, ALU, register,
multiplier, memory). Moreover, in order to construct the
model of the Pine processor more components were
needed (decoder, PC, DAU, PCU, CU). So we give some
terminal components which can be reused because they
are objects inheriting from the materialComponent class.

But for each new studied system, the user will have to
construct its own elementary component library.

3.4 The generic object-oriented model

Until now we have shown how we can deduce some
properties for digital hardware architectures. In a more
general way, we studied digital architectures and we
deduced some general properties most of which are
described in section 3.3. These properties have been
modelled using the Object Modelli ng Technique
(represented in Figure 6).

digital hardware
architectures

properties
OMT

Pine

Oak
Network

ARM

Register

models
simulable

properties model

Java code

specifications

Generic object-
oriented model

for digital
architectures class model

Figure 6 - Representing genericity with OMT

Following this method, we construct a generic object-
oriented model for digital hardware architectures. This
model is presented by the Figure 7 and contains every
deduced properties.

Using this unique model we are able to construct
simulable models from specifications of each particular
architecture. The application of this generic model to a
specific architecture can be boring so we have built a
graphical interface ables to apply it in a semi-automatic
way.

Simulable

materialComponentPor tLi st

parent

1-4
ports

Por t li st

Value

defaultValuevalue

is owned by owner

materialContainer

sons

Acti ve

EdgeComponentLevelComponentSignal

EdgePor t LevelPor t Vi r tualPor t

owner

{ is owned by
}

EdgeSimulable LevelSimulabl
e

owner owner

{ is owned by }{ is owned by }
Out

Figure 7 - Generic object-oriented model

4. The framework

4.1 Objectives

The framework aims at allowing hardware
architecture designers to make the structural description
of the selected digital hardware architecture and to have

a given application simulated by the architecture model.
Components with behavioural description has to be
constructed and compiled separately. With the graphical
interface, the designer can add all components, make
links between them, add input/output components and
start the simulation. He can proceed in an incremental
way and choose an adapted abstraction level. The
graphical interface can also be used to edit an existing
material container by removing or replacing some of the
components or links. The modelled architecture could be
mono-core or multi -core. The simulated architecture is
supposed to be modelled using the proposed generic
object-oriented model.

4.2 Applying the model

The Figure 8 shows the graphical interface of the
framework.

When the designer want to model a new architecture,
he firstly has to identify all elementary material
components, to implement their behaviours in Java and
to add them to a new library using the "custom" button of
the library bar. Most of the needed components should
yet be present in the standard library. Then he can build
a new material Container with the "Module" menu. He
just has to drag and drop existing components from the
library bar to the editing zone. If he thinks that the
abstraction level is not adapted, he just has to add a new
level by inserting a new material container.

Figure 8 - graphical interface

With the mouse, the designer can also add some new
signals or ports to the material containers.

4.3 Describing the targetted application

If the architecture has to process an application, it
contains in its design an instruction memory. When the
designer model a processor he has to describe the

instruction-set of the targetted processor. This could be
done in any language from binary description to
assembly language or high-level language.

The graphical interface only permits designers to
construct every components of the architecture. If the
designer wants the model to use a high-level description
language, he has to describe in detail the instruction-set
and the mean by which the architecture will i nterpret the
application.

We will present now, two possibiliti es that we have
tried, but each designer can use its own method.

4.3.1. Application binary description For a very
simple processor, we have described the entire
application with a binary description. The instruction
memory was loaded with data (Values) corresponding to
binary instructions, and the decoder was described with
all l ogic gates. The controller was sending read events to
memory and the program counter was generating the
right address. When the sequence of bits (instruction)
comes to the decoder, all l ogic gates send the right data
values on the data path and generate the right control
signals for other components.

4.3.2. Application assembly description For the Pine
model, we did not have modelled all l ogic gates
constituting the decoder, because it contains thousand of
gates. So we decided to use an assembly description for
applications.

We have implemented an elementary material
component which is an abstract model of the instruction
decoder. This component read instructions from the
instruction memory and generate all control and data
values (cf. Figure 9). It can be considered as a micro
interpreter for assembly instructions.

decoder
instruction

control

data_out

PROM
read address

output

clock

reset PC rdPC

data

pcclock

reset

sel

Figure 9 - decoding instructions

So it has been defined an Instruction class which
inherits from the Value class. This instruction is
transmitted as a normal Value by a Signal. Several
subclasses (ALU_Instruction, Branch_Instruction,

Address_Instruction) of the Instruction class have been
defined in order to model all the Pine processor
instruction-set. Each addressing mode has been modelled
too. For each of the three selected algorithms, the
instruction memory has been loaded with an assembly
program as shown by the memory viewer included in the
framework (cf. Figure 10).

4.4 Simulation

When the architecture and application description
have been done, the simulation can immediatly be started
without any compilation phase. Indeed, the designer can
send clock or reset events using the input/output
components (cf. 4.4.1). The clock events can be sent
manually in order to debug or to look in detail each step
of the simulation. They can also be sent automaticall y
until the entire application is executed. The tool does not
allow to verify that execution times are good, it just
permits designers to verify that the design of the
architecture does not forbid the execution of the
application with respect to constraints described in terms
of number of cycles. If results are not satisfying, the
designer can immediatly add or replace a component and
measures the modification consequences.

Figure 10 - instruction memory with FIR

He can also change the abstraction level by replacing
a component with a behavioural description with a new
material container.

4.4.1. The Input/Ouput components We can make a
difference between input and ouput components. Input
components generate events towards the modelled
architecture and output components display some static
results. We will describe now, each input/output
component.
• Input : Field used to get all digital type inputs.
• Actuator : When this button is cli cked, a LOW value

followed by a HIGH one are sent on the output port.
• Bin : This is a check button. When it is checked,

HIGH value is maintained on the output port. When it
is not checked, a LOW value is maintained.

• Clock : This entry is composed by a ‘ r st’ button, a
‘ clk’ button, a ‘aut.’ button and a counter field. The
‘ r st’ button make a reset of the clock counter (not the
clock component). When ‘aut.’ check button is not
checked, this is the normal mode, when it is checked
this is the automatic mode. The ‘ clk’ button send
ONE edge event (LOW then HIGH) on the clock port
in the normal mode. In the automatic mode, this
button starts or pauses the automatic sent of edge
events on the clock port each 250 ms.

• Sensor : Display Values as plain text. Digital values
are laid out in a decimal base format.

• Hexa sensor : Idem than sensor, but digital values are
laid out in an hexadecimal base format.

4.4.2. Automatic Java code generation The constructed
model can be saved and add to a library. The Java code
corresponding to the material container is automaticall y
generated by the framework and has to be compiled. By
example, the code present in section 3.3 has been
generated with the interface.

4.4.3. Observing results and tools Several tools have
been developed and included in the framework.

The console window (Figure 11) displays last
executed instructions with comments and error messages.

Figure 11 - console screen

At any time, the number of cycle needed to process the
application is laid out into the clock input component.

The memory viewer shows the content of each
memory during the simulation. It can display data
memories as well as instruction memories (cf. Figure 10).

With the register viewer, the designer can have at
any time the state of each register during the simulation.

With the por t status viewer, the designer knows the
value present on a selected port. Using this tool, he can
determine when a data path is obstructed by following
the path used by a specific data.

In the next release of the tool, an historic of each
event will be displayed as a wave form.

5. Results and conclusion

With the proposed method and the graphical
framework we have modelled the selected architecture
(Pine). The simulation with the selected applications has
given exactly right results according to real tests. This is
not surprising because of the knowledge we have of the
architecture. But we think that with a totall y unknown
architecture the designer can have reali stic estimations of
real results. And especiall y, the designer will be able to
improve in an interactive way its architecture and to
make quick modifications on its design. As an evidence,
the simulation does not allow designer to make any
proof, but it gives a good support to improve
architectures.

Moreover, good object-oriented properties are
conserved and useful:
• inheritance : A component can easil y inherits from

another one. By example, the RAM inherits from the
ROM, or the accumulator inherits from the register.

• polymorphism : Very simply used. It permits not to
duplicate source code the software maintenance is
made easier. So the model can be upgraded in an
easier way.

• encapsulation : Each materialComponent is
independent from the others and a function can be
encapsulated into a material container. Then the
reusabilit y is better because we can reuse a function
just inserting a material container. Moreover, once
the function is done, external components only see
the external ports, they are not interested in the
internal description. So the user can choose the
abstraction and modelli ng level for each block in the
hardware architecture.

In a future work, we will t ry to model an entirely
asynchronous network with this method.

6. References

[1] Object-Oriented High-Level Modeling of System
Components for the Generation of VHDL Code.
Karlheinz Agsteiner, Dieter Monjau, Sören Schulze. 0-8186-
7156-4/95. IEEE, 1995.

[2] A proposed Design Objectives Document for Object-
Oriented VHDL.
David L.Barton, Jean Michel Berge. The RASSP Digest - Vol.
3, September 1996.
http://rassp.scra.org/newsletters/96sep/news_18.html.

[3] Object Oriented Extensions to CHDL, The LaMI proposal.
Judith Benzakki, Bachir Djaffri. IFIP 1997. Chapman & Hall .
p. 334-347.

[4] A Framework for Harware-Software Co-Design of
Embedded Systems : POLIS.
http://www-cad.eecs.berkeley.edu/Respep/
Research/hsc/abstract.html.

 [5] DSP Training.
VLSI Technology Inc.

[6] The Rapid prototyping of Appli cation Specifi c Signal
Processors (RASSP) Program.
http://eti.sysplan.com/ETO/RASSP.

[7] Object-Oriented Techniques in Hardware Design.
Sanjaya Kumar, James H.Aylor, Barry W.Johnson, Wm. A.
Wulf. Computer, Juin 1994, p. 64-70.

[8] Inheritance Concept for Signals in Object-Oriented
Extensions to VHDL.
Guido Schumacher, Wolfgang Nebel. Proceedings of the
EURO-DAC’95 with EURO-CHDL ‘95. IEEE Computer
Society Press 1995.

[9] Object-Oriented VHDL Provides New Modeling and Reuse
Techniques for RASSP.
Dr. Sowmitri Swamy, Vista RASSP Program Manager. The
RASSP Digest - Vol. 2, No. 1, 1st. Qtr. 1995
http://rassp.scra.org/newsletters/95q1/news_6.html.

[10] VVF3000 DSP Core user’s manual r2.0.
VLSI Technology Inc.

