Hardware Architecture Modelling using an Object-oriented Method

Frédéric MALLET*, Fernand BOERI* Senior Member IEEE, Jean-Francois DUBOC**
*Laboratoire 13S, UPRES_A 6070 CNRS,Université de Nice-Sophia Antipolis,41 Bd Napoléon 3
06041 Nice Cédex France. Tel : (+33) 4 93 21 79 58 e-mail : fmallet@i3s.unice.fr, boeri@unice.fr

** \VLSI Technology inc., 505 Route des Lucioles, Sophia-Antipolis 06560 Valbonne.
Tel : (+33) 492 96 11 81 e-mail : jean-francois.duboc@sophia.europe.visi.com

Présenté a: Euromicro’98 a Vasteras, Suéde, 25-27 Aot 1998
Workshop : System Level Design : Architectures, methods and tools.

Hardware Architecture Modelling using an Object-oriented Method

Frédéric MALLET*, Fernand BOERI* Senior Member IEEE, Jean-Francois DUBOC**

*Laboratoire 13S, UPRES_A 6070 CNRS,Université de Nice-Sophia Antipolis,41 Bd Napoléon 3
06041 Nice Cédex France. Tel : (+33) 4 93 21 79 58 e-mail : fmallet@i3s.unice.fr, boeri@unice.fr

** \VLSI Technology inc., 505 Route des Lucioles, Sophia-Antipolis 06560 Valbonne.
Tel : (+33) 492 96 11 81 e-mail : jean-francois.duboc@sophia.europe.visi.com

Abstract

The vey high integration rate and the increasing
complexity of digital hardware architedures and
embedded appications lead designers to search for new
tods and methods. In arder to reduce the time-to-market
it becomes esential to dlow designers to ewaluate
performances of a gven apgication with the targetted
architedure vey soonin the design phae. Sowe have
dedded to buld a modelling simulation environment in
order to ewvaluate the requisite number of cydes for
processng a gven apgication with a simple model of a
digital hardware architecture.

Then, our main ohjedive and the greatest part of our
work is to describe this environrement with an example
based onthe Pine DSP and some dasdcal digital signd
processng appications : FIR, FFT butterfly, Viterbi’'s
Butterfly.

1. Introduction

With VLSI incorporation, we aim at evaluating dgital
signal processor (DSP performances in relation to
spedfic applications. So we have dedded to huild a
modedlling smulation environment in order to evaluate
the requisite number of cycles for processng a given
application with a smple modd of a digital hardware
architedure. Then, we @n design a new prototype
architecture.

Our main objedive and the greatest part of our work
is to develop methods and tods to achieve this oljedive.
In order to present results, we will expose the developed
framework with an example based on the Pine DSP and
some dasdcal digital signal processng applications :
FIR, FFT butterfly, Viterbi’s butterfly. The application is
presented in sectidh

With this objedive we designed a generic objed-
oriented model for digital hardware architedures. This

model has been designed using the Objed Modélling
Technique (OMT) and is presented in secBon

Then, we designed a graphical interface with the Java
language in order to gptimize the use of this modd. This
interface is presented in sectién

Finally, the obtained results and conclusions are
presented in sectidn

2. The targetted application

2.1 Introduction

We doase the Pine which is the simplest DSP from
VLS, becuse it contains amost al tedniques used in
other processors and its behaviour is completly known.
Its detailed documentation was done using the user's
manuals [10] [5]. This processor is designed to compute
efficiently applications with multiplication and
acaumulation sequences as FIR; so this classcal
transformation is well processed by the Pine.

Nevertheless FFT butterfly and Viterbi’s butterfly are
very used but the Pine isn't very efficient for those
transformations. Our aim was to vali date the Pine model
and to improve its design using those three test
algorithms.

SR PINE PPAN /]/6 > Program
Core P/ ROM
read 16(29)
VVF3000 [~~~ T77
clock

Figure 1 - PINE extended Core « combo »

PPAN : Program Address Bus
IDP : Program Data Bus

2.2 Modelled system overview

For our purpose, we present the following abstraction
of the modelled system that is sufficient to ill ustrate our
modelling method.

Figure 1 presents the extended core and Figure 2

presents the core.

_dock (P ™
eset
S »| PCU read
SRout JPogam - [TTTTTT T >
ntrol Uni
~ omdi | eean 0
I SR in
I
I
| 16 GDP I M et codeop
I
1 !
A 4
cu 16 DAU
Computation [« RYDP Data clock
clock Unit Addressng
’ Unit

Figure 2 - PINE Core - VVF3000

GDP : Global Data Bus

RYDP : Y Data Bus

SR_in : from status registers
SR_out : Toward status registers
M : Modulo status register bits

3.2 Object-Oriented VHDL

Let us note that other designers have looked for such a
method based on ohjed-oriented VHDL (OO-VHDL) [2]
[1] [3]. Indeed, VHDL is a wel-known very used
normalised hardware description language and does not
include all object-oriented mechanisms.

The RASSP program and the POLIS system are
considered by some industrials like very completed but
too much complex solutions. Indeed, they propose
solution to any probems in a general way, but theirs
frameworks beame too much complex. We only aim at
analyzing performances for a modedled architedure
relatively to a spedfic application. Our proposed
framework is more spedfic so it is gnaller but more
efficient.

Nevertheless the proposed tod has to be integrated
into a design process fixed by other industrial tods
(analysis, design or synthesistods). All of these tod's use
VHDL, so we should offer solution for the integration.
Posgble way to achieve this objedive wuld be the
trandation from our mode to VHDL or the
encapsulation of a VHDL architedure into cur material
Components. A priori, this could raise some
implementation problems even if there are lots of
similarities between the two approachs.

We have not choosen OO-VHDL, because VHDL is a

codeop :code representing the function to be executed byProcedural spedfication and synthesis language with

DAU
3. The generic model

3.1 An object-oriented method

Objed-oriented techniques are more and more used
for designing software systems, but not for designing
complex hardware systems like digital signal processors
[9]. Meanwhile, hardware system problems are often
closed to software system on€'s. Nevertheless objed-
oriented techniques have several good properties
(abstraction, hierarchy, inheritance polymorphism,
encapsulation).

Therefore, main objedives for hardware system
designers are to increase @mponent and model
reusability with a lowest cost and a highest abstraction
level. These ohjedives should be achieved using good
properties from object-oriented techniques [7].

So, our idea is to adapt objed-oriented techniques
from software systems to hardware architedures and to
construct adapted tods. With similar objedives, RASSP
[6] and POLIS [4] projeds introduced an objed-oriented
layout upon VHDL.

ADA-like hard types, so it contains lots of useless
mechanisms for our purpose. Consequently, adding all
objed-oriented concepts to VHDL would have resulted
into a too much loud solution. Moreover, this could raise
technical problems [8].

It seams as if it is a good idea to choose a completly
obeded-oriented method spedfically designed to
performance analysis. So we have coosen to use the
Objed Modelling Tedhnique (OMT) defined by James
Rumbaugh as a design technique and Java & a

development language. Let us consider our proposition.

3.3 Our proposition

We propose a generic ohjed-oriented model for digital
hardware architecures. This model all ows us to generate
simulable models. Before presenting you with it, we first
ill ustrate it with a simplified presentation of the sdleded
architecture (cfFigure J.

3.3.1. Simulation context For simulating the Pine, we
nead some eternal components (reset, clock, ROM) in
addition of the Pine cmre. These cmponents congtitute
the simulation context for Pine (¢figure 3.

Simulation

reset —

ROM

Pine

clock

Figure 3 - Simulation context for Pine

For representing this context we nstructed a Java
application named Simulation. In this class each
component (reset, clock, Pine, ROM, Signal) is
represented by another Java class We just neal to
instantiate these dasses and to make links between
components as shown by the following source code.

classSimulation extends Frame {

public static voidnain(String arg[]) {
Pine pine =new Pin&();
ROM mem =new ROM ();
Actuator rst =new Actuator ("reset");
Actuator clk = new Actuator¢lock");
Signalreset= new Signal);
resetlinkToPort (rstgetPort("out"));
reset.linkToPort(pine.getPort("reset"));
Signalclock = new Signal();
clock.linkToPort(clk.getPort("out"));
clock.linkToPort(pine.getPort("clk™));
Signalppan = new Signal();
ppan. linkToPort(pine.getPort("ppan™));
ppan. linkToPort(mem.getPort("addr"));
Signalidp = new Signal();
idp. linkToPort(pine.getPort("idp"));
idp. linkToPort(mem.getPort("out"));
Signalread = new Signal();
read. linkToPort(pine.getPort("readInstr"));
read. linkToPort(mem.getPort("read"));

1

Simulation :

Reset : materialContainer

EdgeComponent

ROM
EdgeComponent

Clock : Pine :
EdgeComponent material Container

' reset : Signal ' Clock Signal 'ead Si r:)

idp : Signal

ppan : Signal
Figure 4 - OMT static object diagram

This context is also described using the OMT datic
object diagram (cfrrigure 4.

3.3.2. Basic dasss for the model It appears that we
neal to define several clases in order to represent
different parts of the modelled system. So we @nsider
digital hardware architectures emterial componens.

The description of these @mponents can be a
behavioural description or a structural description. In the
example abowe, we distinguish three material
components, one with a structural description (Pine) and
two with a behavioural description (Actuator, ROM). The
communication with other components is done across
some ports. These ports are mnneded by signals which
transport different values. These values can be
spedalised into several sub-clases (assembly
instructions, integers, events, bit values, hardware
levels).

In the example, the ROM component can easily be
represented with a behavioural description language. In
the other hand, the Pine @mponent should be
represented with a structural description.

Components whose description is behavioural are
called elementary material components and constitute the
leafsin our hierarchy. Other components are represented
with thematerialContainer class.

3.3.3 The material container Acoording to this, in what
follows we give a rough sketch of the aurrent Java
implementation for the Pine mponent which is a
material container.

classPine extendanaterialContainer {
public Pine() {
/* variables declaration ... */
/* components instantiation */
addMaterialComponent(new PCU());
addMaterialComponemiéw CU());
addMaterialComponeméw DAU());
/* signal connections */
addSignalGDP = new Signal());
GDP. linkToPort(pcu.getPort("gdp"));
GDP. linkToPort(cu.getPort("gdp"));
GDP. linkToPort(dau.getPort("gdp"));
/* others */

1

A material container only serves to encaspulate
material components and signals; it allows a structura
description for material components. These wmponents
could either be dementary material components or
material containers. So the materialContainer class has
to inherit from the materialComponent class.

3.3.4. Elementary material components We said before
there are @mponents with a simple behaviour like the
ROM component. The ROM code is not very interesting
to ill ustrate our behavioural model so the following Java
code presents the description of an edgetriggered
register (cfFigure § with aln asynchronous reset.

com
—in Register out{—
reset
!

Figure 5 - Edge-triggered Register

classRegisterextendsEdgeComponent{
public Register () {
addRisingEdgePort("com");
addFallingEdgePort("reset");
addPort("in"); addPort("out");
}
void report(Value v, String sender) {
if (sender.equalsfeset))
value = new IntValue));
else if (sender.equals("com"))
value = getPort("in"yead();
emit("out", value);
b
The EdgeComponent class inherits from the
material Component class It describes materia
components the behaviour of which is commanded when
an edge event occurs on one of the ports. Each port can
be responsible for the amponent sensiti vity. Considering
the Register component case, the builder dedares ‘in’
and ‘out’ ports as unsenstive ports, ‘com’ port as
sensitive on rising edge event and ‘reset’ port as ensitive
on faling edge event. So, when an event occurs on a
sengitive port, the report method of the component is
executed.

3.3.5. Using a library The precaling example shows
how we @n use &isting components and how we @n
create new components. After the study of severa
examples of digital architedures, it appears me
components which are often used. These mmponents
have been implemented and added to a library of
standard components (multiplexer, ALU, register,
multi pli er, memory). Moreover, in order to construct the
model of the Pine procesor more @mponents were
needed (decoder, PC, DAU, PCU, CU). So we give some
terminal components which can be reused because they

are objects inheriting from the materialComponent class.

But for each new studied system, the user will have to
construct its own elementary component library.

3.4 The generic object-oriented model

Until now we have shown how we @n deduce some
properties for digital hardware architedures. In a more
general way, we studied dgital architedures and we
deduced some general properties most of which are
described in sedion 3.3. These properties have been
moddlled using the Objed Moddling Tednique

(represented ifrigure §.
specifications
o

\ / ,
properties model N

/ /
Y,
digital hardware Generic object- o
architectures oriented model
properties for digital

architectures |class model
T

Y
simulable
Java code models

Figure 6 - Representing genericity with OMT

Fallowing this method, we mnstruct a generic objed-
oriented modd for digital hardware architedures. This
model is presented by the Figure 7 and contains every
deduced properties.

Using this unique model we are able to construct
simulable models from spedfications of each particular
architedure. The application of this generic model to a
spedfic architedure @n be boaring so we have built a
graphical interface ables to apply it in a semi-automatic
way.

<owner

material Contai ner |

— [— |

| Level Component |

EdaePort | | LeveiPort

|\/|rlualPorl | |Amve

§ i isowned bt |

fiisowned by}

: : EdaeComponent |
lowner

|FdoeSimulable |

Figure 7 - Generic object-oriented model

4. The framework

4.1 Objectives

The framework ams a alowing hardware
architedure designers to make the structural description
of the seleded dgital hardware architedure and to have

a given application simulated by the architedure modd.
Components with behavioural description has to ke
constructed and compiled separately. With the graphical
interface the designer can add al components, make
links between them, add input/output components and
gtart the simulation. He @n proceal in an incremental
way and choose an adapted abstraction level. The
graphical interface @n also ke used to edit an existing
material container by removing or replacing some of the
components or links. The modelled architedure ould be
mono-core or multi-core. The simulated architedure is
supposed to be modelled using the proposed generic
object-oriented model.

4.2 Applying the model

The Figure 8 shows the graphical interface of the
framework.

When the designer want to model a new architedure,
he firstly has to identify all eementary materia
components, to implement their behaviours in Java and
to add them to anew library using the "custom" button of
the library bar. Most of the needed components sould
yet be present in the standard library. Then he an build
a new material Container with the "Modul€' menu. He
just has to drag and drop existing components from the
library bar to the aliting zone. If he thinks that the
abstraction level is not adapted, he just has to add a new
level by inserting a new material container.

4 E valuator - pine: M [=] E3
Module Edit /0 Tools windows Help
ine
reset | i
m' aut. | m
RYDP |-
— ¥ dau L
k| e GDP
I Bind codeop yram xram
Addr T L
mem ot L
DAUop yram xram
GDP
pc
— reset inst e""¥
—| clock rdXe il Ll
— e g o

ADE ATE flgs RYDH
sel

E 4

=

o

=

=

=
TTTTTTTTT

wiAl wiAO Clop
L

AR
8
£ 2
2
&

1

ALY Bufrar Consat
W ||| @|| libraries

Figure 8 - graphical interface
With the mouse, the designer can also add some new
signals or ports to the material containers.

4.3 Describing the targetted application

If the architedure has to process an application, it
contains in its design an instruction memory. When the
designer model a procesor he has to describe the

instruction-set of the targetted processor. This could be
done in any language from binary description to
assembly language or high-level language.

The graphical interface only permits designers to
construct every components of the architedure. If the
designer wants the model to use a high-level description
language, he has to describe in detail the instruction-set
and the mean by which the architedure will i nterpret the
application.

We will present now, two posshiliti es that we have
tried, but each designer can use its own method.

4.3.1. Application binary description For a very
smple procesor, we have described the antire
application with a binary description. The instruction
memory was loaded with data (Values) corresponding to
binary instructions, and the decoder was described with
all logic gates. The ontroller was ending read events to
memory and the program counter was generating the
right address When the sequence of bits (instruction)
comes to the deaoder, al logic gates ®nd the right data
values on the data path and generate the right control
signals for other components.

4.3.2. Application aseembly description For the Pine
model, we did not have modelled al logic gates
congtituting the deaoder, because it contains thousand of
gates. So we dedded to use an asembly description for
applications.

We have implemented an eementary material
component which is an abstract model of the instruction
dewder. This component read instructions from the
instruction memory and generate all control and data
values (cf. Figure 9). It can be mnsidered as a micro
interpreter for assembly instructions.

data_out—p- - -
. deqoder control —p- :
instruction oo
out|put
PROM
read address
clock pc .
<l dataf - - - -

Figure 9 - decoding instructions

So it has been defined an Instruction class which
inherits from the Vaue dass This instruction is
transmitted as a normal Vaue by a Signal. Severa
subclases (ALU_Instruction, Branch_Instruction,

Address Ingtruction) of the Instruction class have been
defined in order to model al the Pine processor
instruction-set. Each addressng mode has been modell ed
too. For each of the three sdeded algorithms, the
instruction memory has been loaded with an assmbly
program as $own by the memory viewer included in the
framework (cf.Figure 10.

4.4 Simulation

When the architedure and application description
have been done, the simulation can immediatly be started
without any compil ation phase. Indeed, the designer can
send clock or reset events using the input/output
components (cf. 4.4.1). The dock events can be sent
manually in order to debug or to lodk in detail each step
of the simulation. They can also be sent automatically
until the entire application is exeauted. The tod does not
adlow to verify that exeaution times are goad, it just
permits designers to wverify that the design of the
architedure does not forbid the eeaution of the
appli cation with resped to constraints described in terms
of number of cycles. If results are not satisfying, the
designer can immediatly add or replace a component and
measures the modification consequences.

=23 mem - FIRVFir.asm x|

— D=Mov #0x11. r1

— 1=Mov #0x00, r4

— 2=Movy #0x00, r2

— I=Mov #0x10, st2

— 4=Movy ##0x0381. cfoj

— b=BkRep #0x09, 15:part 0
— G=BkRep #0x09. 15:part 1
— F=Mov 1210

— B=ModA clr. al

— 9=Mpy [r0]+. [rd)+

— 10=Rep #0x06

— 11=Mac [r0]+, [rd]+. a0

— 12=Add p. al

— 13=Mov [a0h]. [r1]+

— 14=Mov [all]). [r1]+

— 15=Modr [12]+

Figure 10 - instruction memory with FIR

He @n also change the abstraction level by replacing
a component with a behavioural description with a new
material container.

4.4.1. The Input/Ouput components We @n make a
difference between input and oupu components. Input
components generate events towards the modelled
architedure and output components display some static
results. We will describe now, each input/output
component.

* Input: Field used to get all digital type inputs.

» Actuator : When this button is clicked, a LOW value
followed by a HIGH one are sent on the output port.

e Bin : This is a ched button. When it is cheded,
HIGH value is maintained on the output port. When it
is not checked, a LOW value is maintained.

e Clock : This entry is composed by a ‘rst’ button, a
‘clk’ button, a ‘aut.’ button and a counter field. The
‘rst’ button make a reset of the dock counter (not the
clock component). When ‘aut.’ ched button is not
chedked, thisis the normal mode, when it is chedked
this is the automatic mode. The ‘clk’ button send
ONE edge event (LOW then HIGH) on the dock port
in the normal mode. In the automatic mode, this
button starts or pauses the automatic sent of edge
events on the clock port each 250 ms.

» Sensor : Display Values as plain text. Digital values
are laid out in a decimal base format.

* Hexasensor : Idem than sensor, but digital values are
laid out in an hexadecimal base format.

4.4.2. Automatic Java code generation The mnstructed
model can be saved and add to a library. The Java code
corresponding to the material container is automatically
generated by the framework and has to be cmpiled. By
example, the wde present in sedion 3.3 has been
generated with the interface.

4.4.3. Observing results and tods Several tods have
been developed and included in the framework.
The console window (Figure 11) displays last

executed instructions with comments and error messages.

Eﬁf’,ﬂ' console
[MOY Instruction)Mov #O0x00, 14 => br ﬂ

MOV Instruction)Moy #0x01. 15 => b
[ALU Instruction]ModA clr, al => al =0
[ALU Instruction)Mpy [r1]+, [r4] => p = br_lr

4] 2

Figure 11 - console screen

At any time, the number of cycle nealed to processthe
application is laid out into the clock input component.
The memory viewer shows the ntent of each
memory during the simulation. It can display data
memories as well as instruction memories ajure 10.

With the register viewer, the designer can have at

any time the state of each register during the simulation. [2] A proposed Design Objectives Document for Object-

With the port status viewer, the designer knows the
value present on a sdeded port. Using this tod, he @n
determine when a data path is obstructed by foll owing
the path used by a specific data.

In the next release of the tod, an historic of each
event will be displayed as a wave form.

5. Results and conclusion

With the proposed method and the graphica
framework we have modelled the sdeded architedure
(Pine). The simulation with the seleded applications has
given exactly right results acoording to real tests. Thisis
not surprising becuse of the knowledge we have of the
architedure. But we think that with a totally unknown
architedure the designer can have realistic estimations of
real results. And espedally, the designer will be able to
improve in an interactive way its architedure and to
make quick modifications on its design. As an evidence
the simulation does not allow designer to make any
prodf, but it gives a good support to improve
architectures.

Moreover, good objed-oriented properties are
conserved and useful:

* inheritance : A component can easily inherits from
another one. By example, the RAM inherits from the

ROM, or the accumulator inherits from the register.

e polymorphism : Very simply used. It permits not to
dudicate source @de the software maintenance is
made easier. So the model can be upgaded in an
easier way.

e encapsulation : Each materialComponent is
independent from the others and a function can be
encapsulated into a material container. Then the
reusability is better because we @n reuse a function
just inserting a material container. Moreover, once
the function is done, external components only see
the eternal ports, they are not interested in the
internal description. So the user can choose the
abstraction and modélli ng level for each block in the
hardware architecture.

In a future work, we will try to model an entirely
asynchronous network with this method.

6. References

[1] Object-Oriented High-Level Modding d System
Components for the Generation of VHDL Code.

Karlheinz Agsteiner, Dieter Monjau, Stéren Schulze. 0-8186
7156-4/95. IEEE, 1995.

Oriented VHDL.

David L.Barton, Jean Michel Berge. The RASSPDigest - Vol.
3, September 1996.
http://rassp.scra.org/newsletters/96sep/news_18.html.

[3] Object Oriented Extensions to CHDL, The LaMI proposal.
Judith Benzakki, Bachir Djaffri. IFIP 1997. Chapman & Hall.
p. 334-347.

[4 A Framework for Harware-Sdtware Co-Design o
Embedded Systems : POLIS.
http://lwww-cad.eecs.berkeley.edu/Respep/
Research/hsc/abstract.html.

[5] DSP Training.
VLSI Technology Inc.

[6] The Rapid prototyping d Application Spcific Sgnd
Processors (RASSP) Program.
http://eti.sysplan.com/ETO/RASSP.

[7] Object-Oriented Techniques in Hardware Design.
Sanjaya Kumar, James H.Aylor, Barry W.Johnson, Wm. A.
Wulf. Computer, Juin 1994, p. 64-70.

[8] Inheritance Concept for Sgnds in Object-Oriented
Extensions to VHDL.
Guido Schumacher, Wolfgang Nebel. Proceedings of the
EURO-DAC' 95 with EURO-CHDL ‘95. IEEE Computer
Society Press 1995.

[9] Object-Oriented VHDL Provides New Modeling andReuse
Techniques for RASSP.

Dr. Sowmitri Swamy, Vista RASSP Pogam Manager. The
RASSP Digest - Vol. 2, No. 171Qtr. 1995
http://rassp.scra.org/newsletters/95q1/news_6.html.

[10] VVF3000 DSP Core user’s manual r2.0.
VLSI Technology Inc.

