
HARDWARE MODELLING AND SIMULATION USING AN OBJECT-ORIENTED
METHOD

Frédéric MALLET*, Fernand BOERI* Senior Member IEEE, Jean-François DUBOC**
* Laboratoire I3S, UPRES_A 6070 CNRS, Université de Nice-Sophia Antipolis, 41 Bd Napoléon III

06041 Nice Cédex France. Tel : (+33) 4 93 21 79 58e-mail : fmallet@i3s.unice.fr, boeri@unice.fr
** VLSI Technology inc., 505 Route des Lucioles, Sophia-Antipolis 06560 Valbonne.

Tel : (+33) 4 92 96 11 81e-mail : jean-francois.duboc@sophia.europe.vlsi.com

KEYWORDS
Simulation, Modelli ng, Object-oriented, Hardware
architectures, Performance evaluation.

ABSTRACT

In order to reduce the cost, the time-to-market and to make
the most pertinent choices, it becomes essential to allow
designers to evaluate, very soon in the design phase, a given
appli cation performances with respect to the targetted
architecture. So, we have decided to build a modelli ng and
simulation environnement in order to evaluate digital
hardware architecture performances. We considered the
requisite number of cycles for processing a given appli cation
with a simple model of the architecture. In this project, we
need to increase the reusabilit y with an adjustable abstraction
level. So, we decided to use object-orientation concepts to
build our environnement. Then, reusing already designed
components, designers will be able to build models with a
level of abstraction which fit theirs goals. So, our main
objective and the greatest part of out work was to define a
generic object-oriented model of digital architectures. This
paper mainly consists in the explanation of this model which
is designed to help us to implement a visual modelli ng and
simulation environnement.

INTRODUCTION

Digital hardware architectures and embedded appli cations
are becoming more and more complex. The very high
integration rate and the increasing complexity lead designers
to search for new tools and methods. Performances of a given
appli cation and architecture have to be evaluated sooner and
sooner in the design phase. So we have decided to build a
modelli ng and simulation environnement in order to evaluate
digital hardware architecture performances. We aim mainly
at evaluating the requisite number of cycles for processing a
given application with a simple model of the architecture.
Increase the reusabilit y and adjust the abstraction level of
models is not a recent problem and object-oriented methods
were born to solve this problem for software systems
[Swa95]. For a few years, lots of international projects
(RASSP [ETO96] from the American Department of
Defense; POLIS [BER96] from the University of Berkeley,
Cali fornia) have tried to find an object-oriented solution for
hardware systems. One result of these projects consists in the
definiti on of an object-oriented layout upon VHDL (OO-
VHDL) [BaB96] [AMS95] [BeD97] which is with Verilog
one of the two most used hardware description languages.
But, VHDL is a very heavy language designed to synthesize
hardware systems and it includes lots of mechanisms which
are useless in first steps of the design phase. So, we have
chosen to construct upon Java - an entire and pure object-
oriented language - mechanisms which will permit designers

to model and simulate hardware architectures. Object-
orientation includes abstraction and encapsulation
mechanisms and allows polymorphism and inheritance. Then,
reusing already designed components, designers will be able
to build models with a level of abstraction which fits theirs
goals. The abstraction level will be choosen by the designer
during the modelli ng phase by an incremental way and
depending on the expected results.
Now, we expose our method applied to a simple example
from the simulation context to the lowest description level
which is here the gate level. Using this example we introduce
every words we need to construct our model. And then we
present our deductions and the resulting generic object-
oriented model.

OUR METHOD

We have proceeded in several steps. The first step was to
define the main characteristics of the targetted digital
architectures. We would have li ked to have a generic
description with a few constraints in order to be able to study
not only simple processors but also multi core or distributed
architectures. The second step was to determine basic
components of these targetted architectures in order to make
a standard basic li brary of reusable components. The third
step was to choose and apply an object-oriented design
method in order to construct a generic object-oriented
framework for the description and the simulation of the
targetted architectures and appli cations. This step constitutes
the greatest part of our work. The last step is going to be the
construction of a visual modelli ng and simulation interface
which can use the proposed object-oriented model. This
interface will be described entirely in a following paper with
an application to a real Digital Signal Processor (DSP).

SIMULATION CONTEXT

By example, we would have li ked to simulate a DSP core.
Then we need some external components (reset, clock,
ROM) which constitute the simulation context for the core
(cf. Figure 1).

Simulation

clock
Core

reset ROM

Figure 1 - Simulation context

This context model was implemented with a Java appli cation
named Simulation. In this class, each component (reset,
clock, Core, ROM, Signal) is represented by another Java
class. We just need to instantiate these classes and to make

li nks between components as shown by the following source
code.

class Simulation extends Frame {
public static void main(String arg[]) {

Core pine = new Core();
ROM mem = new ROM();
Actuator rst = new Actuator("reset");
Actuator clk = new Actuator("clock");
Signal reset = new Signal();
reset.linkToPort(rst.getPort("out"));
reset.linkToPort(pine.getPort("reset"));
Signal clock = new Signal();
clock.linkToPort(clk.getPort("out"));
clock.linkToPort(pine.getPort("clk"));
Signal ppan = new Signal();
ppan. linkToPort(pine.getPort("ppan"));
ppan. linkToPort(mem.getPort("addr"));
Signal idp = new Signal();
idp. linkToPort(pine.getPort("idp"));
idp. linkToPort(mem.getPort("out"));

}}

BASIC CLASSES FOR THE MODEL

It appears that we need to define several classes in order to
represent different parts of the modelled system. So we
consider digital hardware architectures as material
components. The description of these components can be a
behavioural description or a structural description. In the
example above, we distinguish three material components,
one with a structural description (Core) and two with a
behavioural description (Actuator, ROM). The
communication with other components is done across some
ports. These ports are connected by signals which transport
different values. These values can be speciali sed into several
sub-classes (assembly instructions, integers, events, bit
values, hardware levels).
In the example, the ROM component can easil y be
represented with a behavioural description language. In the
other hand, the Core component should be represented with a
structural description.
Components which description is behavioural are called
elementary material components and constitute the leafs of
our hierarchy. Other components are represented with the
materialContainer class.

THE MATERIAL CONTAINER

According to this, in what follows we give a rough sketch of
the current Java implementation for the Core component
which is a material container.

class Core extends materialContainer {
public Core() {

/* variables declaration ... */
/* components instantiation */
addMaterialComponent(new PCU());
addMaterialComponent(new CU());
addMaterialComponent(new DAU());
/* signal connections */
addSignal(GDP = new Signal());
GDP. linkToPort(pcu.getPort("gdp"));
GDP. linkToPort(cu.getPort("gdp"));

GDP. linkToPort(dau.getPort("gdp"));
/* others */

}}

A material container only serves to encaspulate material
components and signals; it allows a structural description for
material components. These components could either be
elementary material components or material containers. So
the materialContainer class has to inherit from the
materialComponent class.

ELEMENTARY COMPONENTS

We said before there are components with a simple
behaviour li ke the ROM component. These components were
to constitute entiti es the description of which has the lowest
abstraction level. The ROM code is not very interesting to
ill ustrate our behavioural model so the following Java code
presents the description of an edge-triggered register (cf.
Figure 2) with an asynchronous reset.

com

reset

in outRegister

Figure 2 - Edge-triggered Register

class Register extends EdgeComponent {
public Register () {

addRisingEdgePort("com");
addFallingEdgePort("reset");
addPort("in"); addPort("out");

}
void report(Value v, String sender) {

if (sender.equals("reset"))
value = new IntValue(0);

else if (sender.equals("com"))
value = getPort("in").read();

emit("out", value);
}}

The EdgeComponent class inherits from the
materialComponent class. It describes material components
the behaviour of which is commanded when an edge event
occurs on one of the ports. Each port can be responsible for
the component sensiti vity. In the case of the Register
component, the builder declares ‘ in’ and ‘out’ ports as
unsensiti ve ports, ‘ com’ port as sensiti ve on a rising edge
event and ‘reset’ port as sensiti ve on a falli ng edge event. So,
when an event occurs on a sensiti ve port, the report method
of the component is executed.

USING A LIBRARY

The preceding example shows how we can use existing
components and how we can create new components. After
the study of several digital architecture examples, it appears
some components which are often used. These components
have been implemented and added to a li brary of standard
components (multiplexer, ALU, register, multiplier,
memory). Moreover, in order to construct the model of a DSP
core more components were needed (decoder, PC, DAU,
PCU, CU). So we give some terminal components which can

be reused because they are objects inheriti ng from the
materialComponent class. But for each new studied system,
the user will have to construct its own elementary component
library.

THE GENERIC OBJECT-ORIENTED
MODEL

Until now we shown how we can deduce some digital
hardware architecture properties. In a more general way, we
have studied several digital architectures and we deduced
some general properties. These properties have been
modelled using the Object Modelli ng Technique (represented
in Figure 3). Pine and Oak are digital signal processors and
ARM is a RISC processor.

digital hardware
architectures

properties
OMT

Pine

Oak
Network

ARM

Register

models
simulable

properties model

Java code

specifications

Generic object-
oriented model

for digital
architectures class model

Figure 3 - Representing genericity with OMT

Following this method, we construct a generic object-oriented
model for digital hardware architectures. This model is
presented by the Figure 4 and contains every deduced
properties.
Using this unique model we are able to construct simulable
models from specifications of each specific architecture. The
appli cation of this generic model to a specific architecture
can be boring so we have built a graphical interface which is
able to apply it in a semi-automatic way.

Simulable

materialComponentPortList

parent

1-4
ports

Port list

Value

defaultValuevalue

is owned by owner

materialContainer

sons

Active

EdgeComponentLevelComponentSignal

EdgePort LevelPort VirtualPort

owner

{ is owned by
}

EdgeSimulable LevelSimulabl
e

owner owner

{ is owned by }{ is owned by }
Out

Figure 4 - Generic object-oriented model

CONCLUSION AND FUTURE WORKS

With this generic object-oriented model we can describe each
of the targetted digital hardware architectures from a basic
specification li ke a simpli fied block diagram. Applying this
technique, we had constructed in a few weeks a simple
simulable model of a real digital signal processor core. This
model uses a reduced subset of the real processor assembly
language for the proposed object-oriented model. Results
obtained for processing some classical DSP appli cations

(FFT, Viterbi, FIR) with our model and with the real
synthesized component are exactly the same. Then we are
constructing a visual interface which can use the proposed
object-oriented model. This is about to be done using the
Java Development Kit 1.1.5 (or 1.2 if released) and the
interface features will be described in a following paper. The
Figure 5 ill ustrates this interface. Moreover, the Java
language integrates lots of useful mechanisms to perform
distributed communication. Then, we are going to apply the
model to a real distributed appli cation (a Vehicle Area
Network) and to a multi core architecture. This could permit
us to extend and improve our model.

Figure 5 - graphical interface

REFERENCE

[AMS95] Object-Oriented High-Level Modeling of System
Components for the Generation of VHDL Code.
Karlheinz Agsteiner, Dieter Monjau, Sören Schulze. 0-8186-
7156-4/95. IEEE, 1995.

[BaB96] A proposed Design Objectives Document for Object-
Oriented VHDL.
David L.Barton, Jean Michel Berge. The RASSP Digest -
Vol. 3, September 1996.
http://rassp.scra.org/newsletters/96sep/news_18.html.

[BeD97] Object Oriented Extensions to CHDL, The LaMI
proposal.
J.Benzakki, B.Djaffri.IFIP 1997. Chapman & Hall.p.334-347.

[Ber96] A Framework for Harware-Software Co-Design of
Embedded Systems : POLIS.
http://www-cad.eecs.berkeley.edu/Respep/
Research/hsc/abstract.html.

[ETO96] The Rapid prototyping of Application Specific
Signal Processors (RASSP) Program.
http://eti.sysplan.com/ETO/RASSP.

[Swa95] Object-Oriented VHDL Provides New Modeling and
Reuse Techniques for RASSP.
Dr. Sowmitri Swamy, Vista RASSP Program Manager. The
RASSP Digest - Vol. 2, No. 1, 1st. Qtr. 1995
http://rassp.scra.org/newsletters/95q1/news_6.html

