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A basic problem in the design of mobile telephone networks is to assign sets of radio frequency bands (colours)
to transmitters (vertices) to avoid interference. The number p(v) of bands demanded at transmitter v may vary
between transmitters. We assume also that adjacent vertices must not be assigned the same band, so as to avoid
interference. There are many more refined versions of this channel assignment problem, see for example [3, 6],
in which we insist on a minimum separation between channels assigned to two transmitters (where this minimum
separation may depend on the proximity of the transmitters). But we consider only the most basic case here.

The channel assignment problem described above is a colouring problem of a weighted graph. A weighted
graph is a pair (G, p), where G is a graph and p a weight function on the vertex set of G. A proper t-colouring of
a weighted graph (G, p) is a mapping C : V (G)→ P ({1, . . . , t}) such that for every vertex v ∈V (G), |C(v)|= p(v)
and for all edges uv ∈ E(G), C(u)∩C(v) = /0. The chromatic number of a weighted graph (G, p), denoted by
χ(G, p), is the least integer t such that (G, p) admits a proper t-colouring. This is a natural generalization of the
chromatic number of a graph since χ(G,1) = χ(G) (for every positive integer k, we denote by k the appropriate all
k’s function).

The clique number of a weighted graph (G, p), denoted by ω(G, p), is the maximum weight of a clique, that is
max{p(C) |C clique of G}, where p(C) = ∑v∈C p(v).

Trivially, we have
χ(G, p)≥ ω(G, p).

The triangular lattice crops up naturally in radio channel assignment. It is sensible to aim to spread the transmit-
ters out to form roughly a part of a triangular lattice, with hexagonal cells, since that will give the best “coverage”,
that is, for a given number of transmitters in a given area this pattern minimizes the maximum distance to a trans-
mitter. The triangular lattice graph may be described as follows. The vertices are all integer linear combinations
ae1 +be2 of the two vectors e1 = (1,0) and e2 = ( 1

2 ,
√

3
2 ). Thus we may identify the vertices with the pairs (a,b)

of integers. Two vertices are adjacent when the Euclidean distance between them is 1. See Figure 1. A hexagonal
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Figure 1: The triangular lattice.

graph is an induced subgraph of the triangular lattice.
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McDiarmid and Reed [4] showed that it is NP-complete to decide whether the chromatic number of a weighted
hexagonal graph is 3 or 4. Hence, there is no polynomial-time algorithm for finding the chromatic number of
weighted hexagonal graphs (unless P=NP). Therefore, one has to find approximate algorithms. The better known
so far has approximation ratio 4/3 and is based on the following result:

Theorem 1 (McDiarmid and Reed [4]). For any weigthed hexagonal graph G,

χ(G, p)≤ 4ω(G, p)+1
3

.

A distributed algorithm which guarantees the 4
3 ω(G, p) bound is reported by Narayanan and Schende [5]. How-

ever, one expects to have approximate algorithms with ratios better than 4/3. In particular, Reed and McDiarmid
conjecture that, for big weights, the ratio may be decreased to almost 9/8.

Conjecture 2 (McDiarmid and Reed [4]). There exists a constant c such that for any weigthed hexagonal graph
(G, p),

χ(G, p)≤ 9
8

ω(G, p)+ c.

Note that the ratio 9/8 in the above conjecture is the best possible. Indeed, consider a 9-cycle C9 with constant
weight k. A colour can be assigned to at most 4 vertices, so χ(C9,k)≥ 9k

4 . Clearly, ω(C9,k) = 2k. So χ(C9,k)≥
9
8 ω(C9,k).

A first aim of the the internship would be to improve the ratio 4/3 of Theorem 1 and to find a distributed
algorithm which uses at most α ·χ(G, p)+β colours with α < 4/3 and β an arbitrary constant.

Another problem posed by Alcatel Space Technologies (see [1]) can be modelled into a similar colouring
problem. A satellite sends informations to receivers on earth, each of which is listening several frequencies, one
for each signal it needs to receive. Technically it is impossible to focus a signal sent by the satellite exactly on
the destination receiver. So part of the signal is spread in an area around it, creating noise for the other receivers
displayed in this area and listening the same frequency. Each receiver is able to distinguish the signal directed to
it from the extraneous noises it picks up if the sum of the noises does not become too large, i.e. does not exceed
a certain threshold T . The problem is to assign frequencies to the signals in such a way that each receiver gets its
dedicated signals properly, while minimizing the total number of frequencies used.

Generally the ”noise relation” is symmetric, that is if a receiver u is in the noise area of a receiver v then v is in
the noise area of u. Hence, interferences may be modelled by a noise graph G = (V (G),E(G)) whose vertices are
the receivers and where two vertices are joined by an edge if and only if they interfer. Moreover, to the graph is
attached a weight function p : V (G)→ IN, where the weight p(v) of the vertex v is equal to the number of signals
it has to receive. Hence we have a weighted graph. We can model the frequencies by colours. Therefore, to each
vertex, we associate a set C(v) of p(v) distinct colours. If in total l colours are used, C is an l-colouring of (G, p).

In a simplified version, the intensity I of the noise created by a signal is independent of the frequency and
the receiver. Hence to distinguish its signal from noises, a receiver must be in the noise area of at most k =

⌊T
I

⌋
receivers listening signals on the same frequency. In terms of colouring this property is equivalent to say that for
any colour c, the set of vertices having one colour c induces a graph of degree at most k. Such a colouring is
called k-improper. The k-improper chromatic number of (G, p), denoted χk(G, p), is the smallest l such that (G, p)
admits a k-improper l-colouring. Note that a 0-improper colouring corresponds to a proper colouring.

In this problem too, hexagonal graphs are interesting because the transmitters are often spread out like the
vertices of the triangular lattice.

First results on improper colouring of hexagonal graphs are reported in [2]. A second goal of the internship will
be to design distributed algorithms to k-improper colour hexagonal graphs. A first step could be to prove results
analogous to Theorem 1.
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