Simplicial complexes and connectivity

Basics

A hypergraph H=(V,E) is a pair, where V is a set of elements, and E a collection of (finite) subsets of V, called *edges*.

We sometimes identify H with E.

H is called r-uniform if all edges are of the same size r. We also say then that H is an *r-graph*.

A wonderful fact: hypergraphs can be realized geometrically

And the geometric properties reflect on combinatorial properties.

In particular – the holes.

A hypergraph with no holes behaves very nicely.

For example, a graph with no holes is a tree.

Simplicial complexes

- Fact: two affine subspaces of dimension at most k in R^{2k-1} in general position do not meet.
- Example: two random lines in R³ do not meet.

Geometric realization of hypergraphs

- Given a hypergraph H of rank (=maximal size of an edge) r, put its points in general position in R^{2r-1} and for every edge e of H take the convex hull of its points.
- The resulting collection of simplices (=lines, triangles, tetrahedra...) is called a "simplicial complex"

Holes

A hole of dimension n in X is an empty S^{n-1}

Namely an image of a sphere, that cannot be filled in X.

Formally: a function $f: S^{n-1} \to X$

that cannot be extended to a function $\widetilde{f}: B^{n+1} \to X$

Connectivity

The topological connectivity

of a set X in Euclidean space is the smallest dimension of a hole in X.

It is denoted by $\eta(X)$

Example: $\eta(S^n) = n + 1$

Connectivity

The connectivity of a complex C, denoted by $\eta(C)$ is the smallest dimension of a hole in C.

Examples:

C=
$$\eta(C) = \infty$$

$$C = \qquad \qquad \eta(C) = 1$$

Examples

• $\eta(X) \ge 1$ if X is non empty (convention).

• $\eta(X) \ge 2$ if X is connected (usual sense) – for every two points (image of S^0) there is a filling line between them.

• $\eta(X) \ge 3$ means that X is simply connected.

• $\eta(X) = \infty$ if X has no holes (namely it is contractible).

Example:

Joins

• The "join" of two complexes *A,B*, is:

$$A*B:=\sigma\cup\tau\sigma\in A, \tau\in B$$

Fact:

$$\eta(A*B) = \eta(A) + \eta(B)$$

(Well, almost. But sometimes $\eta(A*B) \ge \eta(A) + \eta(B)$)

Example

• $\eta(S70)=1$

• $S \uparrow n = S \uparrow 0 * S \uparrow 0 * ... * S \uparrow 0$

• And indeed $\eta(S \uparrow n) = 1 + 1 + ... + 1$.

Examples: connectivity of independence complexes

The independence complex of a graph G, denoted by I(G), is the collection of independent sets in G.

$$I(C_4)$$

$$I(P_4)$$

$$\eta(I(P_4)) = \infty$$

$$\eta(I(P_5)) = 2$$

 $I(P_5)$

$$\eta(I(P_5)) = 2$$

$$\eta(I(C_5)) = 2$$

$$\eta(I(C_6)) = 2$$

The Meyer-Vietoris inequalities

 $\eta(A \cap B) \ge \min(\eta(A), \eta(B), \eta(A \cup B) - 1)$

Leopold Vietoris, 1891 - 2002

Proof

• We have to show that if $\eta(A), \eta(B), \eta(A \cap B) + 1 \ge k$ then $\eta(A \cup B) \ge k$.

Proof, k=3

Proof, k=3

Proof, k=3

Proof, k=3 (remember: $\eta(A \cap B) \ge 2$)

Proof, k=3 (remember: $\eta(A \cap B) \ge 2$)

Proof, k = 3 (remember: $\eta(A \cap B) \ge 2$)

Application: the Meshulam game

- For a graph G and an edge e define $G \neg e = G N(e)$
- Theorem (Meshulam): $\eta(I(G)) \ge \min(\eta(I(G-e)), \eta(I(G\neg e)) + 1)$
- Proof: $I(G-e)=(I(G\neg e)*ab)\cup I(G)$
- $(I(G \neg e) * ab) \cap I(G) = I(G) * \{a,b\}$
- $\eta(I(G)*\{a,b\})=\eta(I(G))+1$
- $\eta(I(G \neg e) * ab) = \infty$
- $\eta(A \cup B) \ge \min(\eta(A), \eta(B), \eta(A \cap B) + 1)$ QED

proof

• Theorem: $\eta(I(G)) \ge \min(\eta(I(G-e)), \eta(I(G\neg e)) + 1)$

- $I(G-e)=(I(G\neg e)*ab)\cup I(G)$
- $(I(G \neg e)*ab) \cap I(G)=I(G \neg e)*\{a,b\}$
- $\eta(I(G \neg e) * \{a,b\}) = \eta(I(G \neg e)) + 1$
- $\eta(I(G \neg e) * ab) = \eta(ab) = \infty$
- $\eta(A \cap B) \ge \min(\eta(A), \eta(B), \eta(A \cup B) 1)$
- - QED

Another Meyer-Vietoris inequality

- $\eta(A \cap B) \ge \min(\eta(A), \eta(B), \eta(A \cup B) 1)$
- Exercise: prove this inequality, and use it to prove another "game" inequality: for every vertex v,

$$\eta(I(G)) \ge \min(\eta(I(G-v)), \eta(I(G\neg v)) + 1)$$

Here
$$G \neg v = G - N(v)$$
.