Simplicial complexes and
connectivity



Basics

A hypergraph H=(V,E) is a pair, where V is a set of elements, and E a
collection of (finite) subsets of V, called edges.

We sometimes identify H with E.

H is called r-uniform if all edges are of the same size r. We also say then
that H is an r-graph.



A wonderful fact: hypergraphs can be realized
geometrically

And the geometric properties reflect on combinatorial properties.



In particular — the holes.

A hypergraph with no holes behaves very nicely.

For example, a graph with no holes is a tree.



Simplicial complexes

* Fact: two affine subspaces of dimension at most k in R?¢1in general
position do not meet.

* Example: two random lines in R® do not meet.



Geometric realization of hypergraphs

* Given a hypergraph H of rank (=maximal size of an edge) r, put its
points in general position in R?"! and for every edge e of H take the
convex hull of its points.

* The resulting collection of simplices (=lines, triangles, tetrahedra...) is
called a “simplicial complex”



A simplicial
complex in R?

A non- simplicial
complex in R?




Holes

A hole of dimension nin Xis an empty S™!
Namely an image of a sphere, that cannot be filled in X.
Formally: afunction f:8""' =X

that cannot be extended to a function f:B"™ — X



Connectivity

The topological connectivity
of a set Xin Euclidean space is the smallest dimension of a hole in X.

It is denoted by 77( X)

Example: U(Sn) =n+1



Connectivity

The connectivity of a complex C, denoted by #(C)
is the smallest dimension of a hole in C.

Examples:

c= @ ()=

C= o—eo n0)=I



Examples
« n(X)=1if X isnonempty (convention).

« N(X)=2 if X isconnected (usual sense) — for every two points
(image of S9) there is a filling line between them.

e n(X)=3 meansthat X issimply connected.

N(X)=> if X has no holes (namely it is contractible).



Example:

] -



Joins

* The “join” of two complexes 4,5, is:
AxF=0Ur0€A, €L

Fact:
n(AxB)=n(A)+n(8)

(Well, almost. But sometimes 77(A*F)=n(A)+7n(5))



Example
* 7(S70)=1
e STn =570 x570 *...x570

* And indeed 7(85Tn )=1+1+...+1.



Examples: connectivity of independence
complexes

The independence complex of a graph ¢, denoted
by /¢), is the collection of independent sets in ¢.
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The Meyer-Vietoris inequalities

n(ANB)zmin(7(A4), 7(B)7(AVE)—-1)




Proof

* We have to show that if 7(4),7(5),7(ANB)+1=4
then 7(4AUB)> 4.



Proof, £=3



Proof, A=3




Proof, A=3




Proof, #4=3  (remember: 7(ANF)=2)




Proof, #4=3  (remember: 7(ANF)=2)




Proof, k =3 (remember: n(A N B) = 2)




Application: the Meshulam game

* For a graph & and an edge e define G-e=G—N(e)
* Theorem (Meshulam): 7(/(6))=zmin(n(/(G—¢€)), n(/(G—e))+1)

* Proof: /(G—e)=(/(G—e)xab)V/((G)

s (/(GHe)xab)N/(G)=1(C)x{a b}

* ({(G){ab})=n({(6))+]

* n(/(G—e)xab)=x

* 7(AVB)=min(7(A), n(F),n(ANL)+1) - QED



oroof

* Theorem: 7(/(G))=zmin(n(/(G—e)), n(/(G—e))+1)

o /[(G—e)=(/(G-e)xab)V/(()

s (/(Gne)xab)N/(C)=/(C—e)*{ab}
* 1(/(Gme){ab))=n(/(G—e))+1

* 7({(G~e)xab)=n(ab)=oo

* 7(ANB)zmin(y7(A4), n(F),n(AVF)—-1)
- QED



Another Meyer-Vietoris inequality

* 7(ANB)=zmin(n(A), n(F)n(AVE)—-1)

* Exercise: prove this inequality, and use it to prove another “game”
inequality: for every vertex v,

7(/(6))zmin(7(/(6—v)), n({(G—v))+1)

Here G—~v=G—-N(v).



