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Foreword

The work presented here has been done with various coauthors. For sake of clarity, I decided to use “we”
as subject when a set of coauthors (that varies during the monograph) should be understood. However it
should be clear in the reader’s mind that this work is “ours” i.e. it is the work of my coauthors and me and
certainly not exclusively mine. Working with other people is one of the most pleasant aspect of research
and I would like to thank all my coauthors without whom this work would never have been possible:
Omid AMINI, Jean-Claude BERMOND, Stéphane BESSY, Etienne BIRMELÉ, Ricardo CORREA, Jan
VAN DEN HEUVEL, Florian HUC, Ross KANG, Colin MCDIARMID, Claudia LINHARES-SALES, Bruce
REED, Jean-Sébastien SERENI, Riste ŠKREKOVSKI, Stéphan THOMASSÉ, Min-Li (Joseph) YU, Janez
ZEROVNIK.

1 Introduction to colouring

1.1 Basic definitions

All the definitions given in this section are mostly standard and may be found in several books on graph
theory like [21, 40, 163].

1.1.1 Graphs

A graph G is a pair (V,E) of sets satisfying E ⊂ [V ]2, where [V ]2 denotes the set of all 2-element subsets
of V . We also assume tacitly that V ∩E = /0. The elements of V are the vertices of the graph G and the
elements of E are its edges. The vertex set of a graph G is referred to as V (G) and its edge set as E(G).
An edge {x,y} is usually written as xy. A vertex v is incident with an edge e if v ∈ e. The two vertices
incident with an edge are its endvertices. Note that in our definition of graphs, there is no loops (edges
whose endvertices are equal) nor multiple edges (two edges with the same endvertices).

Sometimes we will need to allow multiple edges. So we need the notion of multigraph which gener-
alizes the one of graph. A multigraph G is a pair (V,E) where V is the vertex set and E is a collection of
elements of [V ]2. In a multigraph G, we say that xy is an edge of multiplicity m if there are m edges with
endvertices x and y. We write µ(x,y) for the multiplicity of xy, and write µ(G) for the maximum of the
edges multiplicities in G.

1



A subgraph of a graph G is a graph H such that V (H)⊂V (G) and E(H)⊂E(G). Note that since H is
a graph we have E(H)⊂ E(G)∩ [V(H)]2. If H contains all the edges of G between vertices of V (H), that
is E(H) = E(G)∩ [V (H)]2, then H is the subgraph induced by V (H). The notion of submultigraph and
induced submultigraph are defined similarly. If S is a set of vertices, we denote by G[S] the (multi)graph
induced by S and by G− S the (multi)graph induced by V (G) \ S. For simplicity, we write G− v rather
than G−{v}. For a collection F of elements of [V 2], we write G \F = (V (G),E(G) \F) and G∪F =
(V (G),E(G)∪F). As above G\{e} and G∪{e} are abbreviated to G\ e and G∪ e respectively.

Let G be a multigraph. When two vertices are the endvertices of an edge, they are adjacent and are
neighbours. The set of all neighbours of a vertex v in G is the neighbourhood of G and is denoted NG(v),
or simply N(v). The degree dG(v) = d(v) of a vertex is the number of edges to which it is incident.
If G is a graph, then this is equal to the number of neighbours of v. The maximum degree of G is
∆(G) = max{dG(v) | v ∈ V (G)}. The minimum degree of G is δ(G) = max{dG(v) | v ∈ V (G)}. If the
graph G is clearly understood, we often write ∆ and δ instead of ∆(G) and δ(G). A graph is k-regular

if every vertex has degree k. The average degree of G is Ad(G) = 1
|V (G)| ∑v∈V (G) d(v) = 2|E(G)|

|V (G)| . The
maximum average degree of G is Mad(G) = max{Ad(H) | H is a subgraph of G}.

The complete graph Kn on n vertices is the graph in which any two vertices are linked by an edge. A
clique in a graph is a set of pairwise adjacent vertices. In other words, it is a set of vertices inducing a
complete graph. The clique number ω(G) is the maximum size of a clique in G. A stable or independent
set is a set of vertices pairwise non-adjacent. The stability number of a graph G, denoted by α(G), is the
maximum size of a stable set in G,

A path is a non-empty graph P =(V,E) of the form V = {x0,x1, . . . ,xk} and E = {x0x1,x1x2, . . . ,xk−1xk}
where the vertices xi are all distinct. The vertices x0 and xk are the endvertices of P and the vertices
x1, . . . ,xk−1 the internal vertices. The path P is denoted by the succession of its vertices (x0,x1, . . . ,xk).
A path with endvertices u and v is called (u,v)-path. A cycle is a non-empty graph C = (V,E) of the
form V = {x0,x1, . . . ,xk} and E = {x0x1,x1x2, . . . ,xk−1xk,xkx0} where the xi are all distinct. It is denoted
by (x0,x1, . . . ,xk,x0). The length of a path or a cycle is its number of edges. The minimum length of a
cycle contained in a multigraph is its girth; if the graph contains no cycles, the girth is defined to be +∞.
Note that in a graph the girth is at least 3. An edge which joins two vertices of a cycle but is not itself an
edge of the cycle is a chord of that cycle.

A graph G is connected if any two of its vertices are linked by a path in G. It is k-connected (for
k ∈ IN), if |G| > k and G−X is connected for every set X ⊂V with |X | < k. The connected components
or simply components of a graph are its maximal (with respect to the inclusion) connected subgraphs.
The blocks of a graph are its maximal 2-connected subgraphs. A cutvertex is a vertex v such that G− v
has more connected components than G.

1.1.2 Digraphs

A multidigraph D is a pair (V (D),E(D)) of disjoint sets (of vertices and arcs) together with two maps
tail : E(D)→V (D) and head : E(D)→V (D) assigning to every arc e a tail, tail(e), and a head, head(e).
The tail and the head of an arc are its endvertices. An arc with tail u and head v is denoted by uv and is
said to leave u and to enter v; we say that u dominates v and write u → v; we also say that u and v are
adjacent. Note that a directed multidigraph may have several arcs with same tail and same head. Such
arcs are called multiple arcs. A multidigraph without multiple arcs is a digraph. It can be seen as a pair
(V,E) with a E ⊂V 2. An arc whose head and tail are equal is a loop. All the digraphs we will consider
in this monograph have no loops.

The multigraph G underlying a multidigraph D is the multigraph obtained from D by replacing each
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arc by an edge. Note that the multigraph underlying a digraph may not be a graph: there are edges uv of
multiplicity 2 whenever uv and vu are arcs of D. Subdigraphs and submultidigraphs are defined similraly
to subgraphs and submultigraphs.

Let D be a multidigraph. If uv is an arc, we say that u is an inneighbour of v and that v is an
outneighbour of u. The outneighbourhood of v in D, is the set N+

D (v) = N+(v) of outneighbours of v in
G. Similarly, the inneighbourhood of v in D, is the set N−

D (v) = N−(v) of inneighbours of v in G. The
outdegree of a vertex v is the number d+

D (v) = d+(v) of arcs leaving v and the indegree of v is the number
d−

D (v) = d−(v) of arcs entering v. Note that if D is a digraph then d+(v) = |N+(v)| and d−(v) = |N−(v)|.
The degree of a vertex v is d(v) = d−(v) + d+(v). It corresponds to the degree of the vertex in the
underlying multigraph. The maximum outdegree of D is ∆+(D) = max{d+(v),v ∈V (D)}, the maximum
indegree of D is ∆−(D) = max{d−(v),v ∈V (D)}, and the maximum degree of D is ∆(D)= max{d(v),v ∈
V (D)}. When D is clearly understood from the context, we often write ∆+, ∆− and ∆ instead of ∆+(G),
∆−(G) and ∆(G) respectively.

A directed path or dipath is a non-empty digraph P = (V,E) of the form V = {x0,x1, . . . ,xk} and
E = {x0x1,x1x2, . . . ,xk−1xk} where the xi are all distinct. The vertex x0 is the origin of P and xk

its terminus. A circuit is a non-empty digraph C = (V,E) of the form V = {x0,x1, . . . ,xk} and E =
{x0x1,x1x2, . . . ,xk−1xk,xkx0} where the xi are all distinct. The length of a dipath or a circuit is its number
of edges.

A multidigraph D is strongly connected or strong if for every two vertices u and v, there is a dipath
in D with origin u and terminus v. It is connected if its underlying multigraph is connected.

1.2 Vertex colouring

A (vertex) colouring of a graph G is a mapping c : V (G) → S. The elements of S are called colours;
the vertices of one colour form a colour class. If |S| = k, we say that c is a k-colouring (often we use
S = {1, . . . ,k}). A colouring is proper if adjacent vertices have different colours. A graph is k-colourable
if it has a proper k-colouring. The chromatic number χ(G) is the least k such that G is k-colourable.
Obviously, χ(G) exists as assigning distinct colours to vertices yields a proper |V (G)|-colouring. An
optimal colouring of G is a χ(G)-colouring. A graph G is k-chromatic if χ(G) = k.

Obviously, the complete graph Kn requires n colours, so χ(Kn) = n. Then χ(G) ≥ ω(G). This bound
can be tight, but it can also be very loose. Indeed for any given integers k ≤ l, there are graphs with
clique number k and chromatic number l. For example, Mycielski [125] gave a simple construction of
triangle-free graphs (i.e. with clique number 2) with arbitrarily large chromatic number.

In a proper colouring, each colour class is a stable set, so χ(G) ≥ |V (G)|
α(G) .

Most upper bounds on the chromatic number come from algorithms that produce colourings. The
most widespread one is the greedy algorithm. A greedy colouring relative to a vertex ordering v1, . . . ,vn

of V (G) is obtained by colouring the vertices in the order v1, . . . ,vn, assigning to vi the smallest-indexed
colour not already used on its lowered-indexed neighbourhood. In a vertex-ordering, each vertex has
at most ∆(G) earlier neighbours, so the greedy colouring cannot be forced to use more than ∆(G)+ 1
colours.

Proposition 1. χ(G) ≤ ∆(G)+1.

The bound ∆(G)+1 is the worst upper bound that greedy colouring could produce (although optimal
for complete graphs and odd cycles). However choosing the vertex odering is the main problem. Indeed
there is a vertex ordering relative to which the greedy algorithm yields an optimal colouring. If c is an
optimal colouring of G, then any ordering v1, . . . ,vn such that for any i < j, c(vi) ≤ c(v j) will be. But
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there are n! possible orderings and it is difficult to fing a good one. Actually, for any k ≥ 3 it is NP-
complete to decide if a graph is k-colourable See [53]. Deciding if a graph is 1-colourable is easy since
such a graph as no edges and deciding if a graph is 2-colourable can be done in polynomial time (using
bread-first search for instance). Furthermore, it is NP-hard to approximate the chromatic number within
|V (G)|ε0 for some positive constant ε0 as shown by Lund and Yannakakis [111].

However, one can easily determine if the chromatic number is equal to ∆(G)+1 as shown by Brooks
Theorem [34].

Theorem 2 (Brooks [34]). Let G be a connected graph. Then χ(G)≤∆(G) unless G is either a complete
graph or an odd cycle.

In order to prove this theorem, we need the following easy result.

Proposition 3. Let G be a connected graph which is not a complete graph. Then there exists three
vertices u, v and w such that uv ∈ E(G), vw ∈ E(G) and uw /∈ E(G).

Proof. Since G is not complete there exists two vertices u and u′ which are not linked by an edge. Since
G is connected there is a path between u and u′. Let P be a shortest (u,u′)-path and let v and w be
respectively the second and third vertices on P. Then uv and vw are edges of the paths and uw is not an
edge otherwise it would shortcut P.

Proof of Theorem 2. We may assume that ∆ = ∆(G) ≥ 3, since G is complete if ∆ ≤ 1 and G is an odd
cycle or bipartite when ∆ = 2, in which cases the bound holds.

We shall find an ordering of the vertices so that the greedy colouring relative to it yields the desired
bound.

Assume first that G is not ∆-regular. Let vn be a vertex of degree less than ∆. Since G is connected,
one can grow a spanning tree of G from vn, assigning indices in decreasing order as we reach vertices.
We obtain an ordering v1, . . . ,vn such that every vertex other than vn has a higher-indexed neighbour.
Therefore the greedy colouring uses at most ∆ colours.

Assume now that G is ∆-regular. If G has a cut-vertex x, we may apply the above nethod on each
component of G−x plus x. Then permuting the names of the colours, one can make the colourings agree
on x, to complete a proper ∆-colouring of G.

Hence we may assume that G is 2-connected. In such a case, for G is not complete, by Proposition 3
some vertex vn has neighbours v1 and v2 such that v1v2 /∈ E(G). Moreover considering such vertices
for which the component of vn in G−{v1,v2} has maximum size, one easily shows that G−{v1,v2}
is connected. Then indexing the vertices of a spanning tree rooted in vn in a decreasing order, with
{3, . . . ,n}, we obtain an ordering v1, . . . ,vn such that every vertex other than vn has a higher-indexed
neighbour. Now the greedy colouring will assign colour 1 to both v1 and v2. So when colouring vn at
most ∆− 1 colours will be assigned to its neighbours. Hence the greedy colouring will use at most ∆
colours.

In other words, Brooks Theorem states that for ∆(G) > 2, χ(G) = ∆(G)+1 if and only if G contains
a clique of size ∆(G)+1. It is natural to ask whether this extends further. E. g. if χ(G) ≥ ∆+1− k does
G contain a large clique? One cannot expect a clique of size ∆+1− k if k is large. Indeed consider the
graph H∆,p formed by adding all the edges between a (∆ + 1− 5p)-clique and p disjoint 5-cycles. It is
easy to see that H∆,p has maximum degree ∆, chromatic number ∆+1−2p and clique number ∆+1−3p.
Reed [133] conjectured that if χ(G) ≥ ∆+1− k then G contains a clique of size at least ∆+1−2k.
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Conjecture 4 (Reed [133]). Let G be a graph.
If χ(G) ≥ ∆(G)+1− k then ω(G) ≥ ∆(G)+1−2k. In other words,

χ(G) ≤
⌈

∆(G)+1+ω(G)

2

⌉

.

Note that this value 2k is best possible. Indeed consider random graph R on n vertices with edge
probability (1−n−3/4). The expected number of cliques of size i is

(

n
i

)

(

1−n−3/4
)( i

2) ≤ 2i log n
(

1−n−3/4
)

i2
4

≤ 2i log ne−n−3/4 i2
4 .

For i > n3/4 log n, this is o(1) so (with high probability) ω(R) ≤ n3/4 logn. Now the expected number

of stable sets of size 3 is
(n

3

)

×
(

n−3/4
)3

= O(n3/4). Hence removing one vertex per such stable set, we
obtain a graph H with n−O(n3/4) vertices and stability number α(H) = 2. Hence its chromatic number
is at least n/2−O(n3/4). Let G be the graph obtained by connecting all the vertices of H to a clique of
size ∆− n. Then ∆(G) = ∆, χ(G) = ∆− n + χ(H) ≥ ∆− n/2−O(n3/4) and ω(G) ≤ ∆− n + ω(G) ≤
∆−n+n3/4 logn.

As an evidence for Conjecture 4, Reed [133] showed that there is an ε > 0 such that χ(G)≤ εω(G)+
(1− ε)(∆(G)+ 1). Johannson [87] settled Conjecture 4 for ω = 2 and ∆ sufficiently large. In fact, he
proved that there is a constant c such that if ω(G) = 2 then χ(G) ≤ c ∆(G)

log ∆(G) .
When k = 1 Conjecture 4 asserts that if χ(G) = ∆(G) then ω(G) ≥ ∆−1. In fact, Reed [134] showed

that when ∆ is large if χ(G) = ∆(G) then ω(G) = ∆(G), thus settling a conjecture of Beutelspacher and
Hering [18]. Borodin and Kostochka [28] conjectured that it is true for ∆ ≥ 9; counterexamples are
known for each ∆ ≤ 8.

Conjecture 5 (Borodin and Kostochka [28]). Let G be a graph of maximum degree ∆ ≥ 9. If χ(G) = ∆
then ω(G) = ∆.

When k = 2, one cannot expect all (∆− 1)-chromatic graphs to have a clique of size ∆− 1. Indeed
H∆,1 has chromatic number ∆− 1 but clique number ∆− 2. However, Farzad, Molloy and Reed [50]
showed that for ∆ sufficiently large if χ(G) ≥ ∆−1 then G contains either a (∆−1)-clique or H∆,1. They
also proved similar results for k = 3 and k = 4; in these cases, G must contain one of five or thirty eight
graphs respectively.

Let k∆ the maximum integer such that (k+1)(k+2) ≤∆. Thus, k∆ ≈
√

∆−2. Molloy and Reed [121]
showed that k∆ is a threshold to Brooks-like theorems. Indeed if k < k∆ then, if ∆ is large enough, if
χ(G) ≥ ∆− k + 1 then G must contain a graph H that is close to a (∆ + 1− k)-clique, in that H has
small size (|H| ≤ ∆+1) and cannot be (∆−k)-coloured. As a consequence, one can check polynomially
if χ(G) ≥ ∆− k or not. On the opposite, if k < k∆ then there are arbitrarily large (∆ + k − 1)-critical
(i.e (∆ + 1− k)-chromatic graphs such that every proper subgraph is (∆− k)-colourable graphs with
maximum degree ∆. Furthermore, Embden-Weinert, Hougardy and Kreuter [46], proved that for any
constant ∆ and ∆−3 ≤ k < k∆, determining whether a graph of maximum degree ∆ is (∆−k)-colourable
is NP-complete.

A graph G is k-degenerate if each of its subgraph has a vertex of degree at most k. The degeneracy
of G, denoted δ∗(G), is the smallest k such that G is k-degenerate. It is easy to see that a graph is k-
degenerate if and only if there is an ordering v1,v2, . . . ,vn of the vertices such that for every 1 < i ≤ n, the
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vertex vi has at most k neighbours in {v1, . . . ,vi−1}. Hence the greedy colouring relative to this ordering
uses at most δ∗(G)+1 colours.

Proposition 6.
χ(G) ≤ δ∗(G)+1.

Note that finding an ordering as above (and thus the degeneracy of a graph) is easy. It suffices to
recursively take a vertex vn of minimum degree in the graph and to put it at the end of the ordering
v1, . . . ,vn−1 of G− vn.

1.2.1 Fractional colouring

A fractional (vertex) colouring is a set {S1, . . . ,Sl} of stable sets and corresponding positive real weights,
{w1, . . . ,wl} such that the sum of the weights of the stable sets containing each vertex is one. I.e.
∀v ∈ V,∑{Si | v∈Si} wi = 1. Of course the weight of each stable set in a fractional colouring will be at
most one. We note that a colouring is simply a fractional colouring in which every weight is an integer
(to be precise, each weight is one). Letting S(G) be the set of stable sets in G, one can also describe a
fractional colouring by an assignment of a non-negative real weight wS to each stable set S in S(G) so
that the sum of the weights of the stable set containing each vertex is 1.

A fractional colouring is a fractional c-colouring if ∑S∈S(G) wS = c. The fractional chromatic number
of G, denoted χ f (G), is the minimum c such that G has a fractional c-colouring. Obviously χ f (G) ≥
ω(G) and since every colouring is a fractional colouring, χ f (G) ≤ χ(G). Molloy and Reed showed

(Chapter 21 of [122]) that Conjecture 4 holds fractionally, that is χ f (G) ≤ ω(G)+∆(G)+1
2 .

If G has n vertices then χ f (G) ≥ n
α(G) , because for any fractional colouring we have:

n = ∑
v∈V (G)

∑
{S∈S(G) | v∈S}

wS = ∑
S∈S(G)

∑
v∈S

wS ≤ ∑
S∈S(G)

α(G)wS.

The Linear Programming duality implies directly that the fractional chromatic number is equal to
the maximum of ∑v∈V (G) x(v) such that ∀S ∈ S(G),∑v∈S x(v) ≤ 1 over all non-negative weightings x
on V (G). (For more details on fractional graph theory see [141]). Despite this pleasing result, it is
still NP-complete to compute the fractional chromatic number of a graph. In fact, it is even difficult to
approximate the fractional chromatic number of graphs with n vertices to within a factor of nε for some
positive ε [11].

1.2.2 List colouring and choosability

List colouring is a generalisation of vertex colouring in which the set of colours available at each vertex
is restricted. This model was introduced independently by Vizing [158] and Erdős-Rubin-Taylor [48].

A list-assignment of a graph G is an application L which assigns to each vertex v ∈V (G) a prescribed
list of colours L(v). A list-assignment is a k-list-assignment if each list is of size at least k. An L-
colouring of G is a colouring such that ∀v ∈V (G),v ∈ L(v). A graph G is L-colourable if there exists a
proper colouring of G. It is k-choosable if it is L-colourable for every k-list-assignment L. The choice
number, choosability or list chromatic number ch(G) is the least k such that G is k-choosable.

Since the lists could be identical, ch(G) ≥ χ(G). One the opposite, it is not possible to pace an upper
bound on ch(G) in terms of χ(G) because there are bipartite graphs with arbitrarily large choice number.

Proposition 7 (Erdős, Rubin and Taylor [48]). If m =
(2k−1

k

)

, then Km,m is not k-choosable.

6



Proof. Let (A,B) be the bipartition of Km,m. Let L be a list assignment such that every k-subset I of
{1,2, . . . ,2k−1} there exists a vertex aI ∈ A and a vertex bI ∈ B such that L(aI) = L(bI) = I. Consider
an L-colouring of Km.m. Let SA be the set of colours used on A and SB be the set of colours used on
B. Then |SA| ≥ k otherwise a vertex aI with I ⊂ {1,2, . . . ,2k − 1} \ SA would be assigned no colour.
Similarly, |SB| ≥ k. Hence SA ∩SB 6= /0, so the colouring is not proper.

One can decide in polynomial time if a graph is 2-colourable. One can also decide in polynomial
time if a graph is 2-choosable as one can characterize such graphs.

Definition 8. The graph consisting of two vertices connected with three independent paths (that is with
no internal vertices in common) of length i, j and k is denoted θi, j,k .

The heart of a connected graph G is its maximum subgraph of minimum degree different from 1. So
if G is 1-degenerate, that is a tree, then its heart is K1 otherwise it is the largest induced subgraph with
minimum degree at least 2.

It is easy to show that a graph is 2-choosable if and only if its heart is. Hence to characterize 2-
choosable graphs it is sufficient to characterize their hearts.

Theorem 9 (Erdős, Rubin and Taylor [48]). A connected graph G is 2-choosable if and only if its heart
is either K1 or an even cycle or a θ2,2,2m for some postive integer m.

If the lists have size δ∗(G)+1, then colouring greedily the vertices according to a degenerate ordering
leaves an available colour at each vertex. So

Proposition 10.
ch(G) ≤ δ∗(G) ≤ ∆(G)+1.

Brooks Theorem may be extended to list colouring. It is directly implied by the following theorem
proved independently by Borodin [22] and Erdős, Rubin and Taylor [48]. A graph G is degree choosable
if for any assignment L such that for all v ∈V (G), |L(v)| ≥ dG(v), then G is L-colourable. A connected
graph is said to be a Gallai tree if each of its blocks is either a complete graph or an odd cycle.

Theorem 11 (Borodin [22], Erdős, Rubin and Taylor [48]). Let G be a connected graph. Then G is
degree choosable if and only if G is not a Gallai tree.

To prove this theorem we need the following definitions and preliminary results.

Definition 12. Let G be a graph and u a vertex of G. A list assignment L on V (G) is u-nice if for
all v ∈ V (G), |L(v)| ≥ dG(v) and |L(u)| ≥ dG(u)+ 1. A list assignment is nice if it is u-nice for some
u ∈V (G).

Proposition 13. Let G be a connected graph. For any nice assignment L, G is L-colourable.

Proof. Let u be the vertex such that L is u-nice. Let v1, . . . ,vn = u be an ordering of the vertices of G such
that every vertex but u has a higher-indexed neighbour. Such an ordering exists: take for example the
reverse of a bread-first search ordering from u. Colour the vertices greedily according to this ordering.
When we are about to colour vi, i < n, there are at most d(vi)− 1 neighbours of vi already coloured
because the higher-indexed neighbour is uncoloured. Since |L(vi)| ≥ d(vi), one can assign to vi a colour
in L(vi) which does not appear on a vertex of its neighbourhood. Thus the greedy algorithm proceeds
until the last vertex u. Then since |L(u)| ≥ d(u)+1, one can colour u with a colour in L(u) which does
not appear on its neighbourhood.
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Lemma 14. Let G be a 2-connected graph which is neither complete nor a cycle. Then G has an induced
θi, j,k for some i, j,k.

Proof. By Proposition 3, there exists three vertices u, v and w such that uv ∈ E(G), vw ∈ E(G) and uw /∈
E(G). Now since G is 2-connected, there is a (u,w)-path in G− v. Let P = (u = u0,u1, . . . ,ul−1,ul = w)
be a shortest such path.

Suppose first that there is an edge vui for some 1 ≤ i ≤ l − 1. Let i1 and i2 be the smallest and
second smallest integers i > 0 such that vui is an edge. Then the graph induced by {v,u0, . . . ,ui2} is a
θ1,i1+1,i2−i1+1.

Suppose now that vui is not an edge for all 1 ≤ i ≤ l − 1. Then C = (v,u0, . . . ,ul ,v) is an induced
cycle of length at least 4. Since G is not a cycle and connected, there is a C-path in G, that is a path
with both ends distinct and in V (C) and the internal vertices in V (G)\V (C). Let P = (x0, . . . ,xm,xm+1)
be such a path with minimal length. W.l.o.g. we may assume that v = x0. By minimality of P, P is an
induced path and the sole internal vertices that are adjacent to a vertex of C are x1 and xm.

Assume first that x1 has at least three neighbours in C. Let j1 and j2 be the smallest and second
smallest integers j ≥ 0 such that vu j is an edge. By rotation around C, we may assume that j2 6= l. Then
the graph induced by {x1,v,u0, . . . ,u j2} is a θ1, j1+2, j2− j1+1.

If x1 has exactly two neigbours in C, v and ui for some 1≤ i≤ l then the graph induced by {x1}∪V (C)
is a θ1,i+2,l−i+2 . Similarly, we get the result if xm has at least two neighbours in C.

Hence, we may assume that x1 and xm have both a unique neigbour in C. It follows that V (C)∪V (P)
induces a θi, j,k for some i, j,k.

Proposition 15. For any positive integers i, j and k, the graph θi, j,k is degree choosable.

Proof. Let x and y be twe two vertices of degree 3 in θi, j,k and xu1 . . .ui−1y, xv1 . . .v j−1y and xw1 . . .wk−1y
be the three paths joining them.

Let L be a list assignment of θi, j,k such that |L(v)|= d(v). Let c(x) be a colour of L(x)\L(u1). Extend
c greedily to an L-colouring of θi, j,k with respect to the ordering v1, . . . ,v j−1,w1, . . . ,wk−1,y,ui−1, . . . ,u1.
This is possible since c(x) /∈ L(u1).

Proof of Theorem 11. We proceed by induction on the number of vertices of the graph G.
Let G be a graph which is not a Gallai tree and let L be a list assignment on V (G) such that |L(v)| =

d(v) for any vertex v. We shall prove that there exists an L-colouring of G.
Suppose first that G has a cutvertex x. Let C1 be a connected component of G− v and C2 = V (G) \

(C1 ∪ {x}). For i = 1,2 set Gi = G[Ci ∪ {x}]. Then G1 and G2 are connected and there is no edge
between vertices of C1 and C2. Moreover dG(x) = dG1(x) + dG2(x). Since G is not a Gallai tree, one
of the Gis is not a Gallai tree. Without loss of generality, we may assume that G1 is not a Gallai tree.
Let L′(x) be the set of colours α such that there exists an L-colouring of G2 with x coloured α. By
Proposition 13, for any subset S of L(x) of size dG2(x)+1, there is an L-colouring of G1 with x coloured
in S, so |L′(x)| ≥ dG(x)−dG2(x) = dG1(x). Now since G1 is not a Gallai tree then by induction hypothesis
it is degree choosable, so there is an L-colouring c1 of G1 such that c1(x) ∈ L′(x). Since c1(x) ∈ L′(x),
there is an L-colouring c2 of G2 such that c2(x) = c1(x). The union of c1 and c2 is an L-colouring of G.

Suppose now that G is 2-connected. If G is an even cycle, we have the result by Theorem 9. Hence
we may assume that G is not a cycle. So by Lemma 14, G contains an induced θi, j,k say T . Let v1, . . . ,vq

be an ordering of V (G) \V (T ) such that for every 1 ≤ i ≤ q, vi has a higher-indexed neighbour or a
neighbour in T . (Such an ordering may be obtained by reversing a bread-first search ordering from
T .) Let c be a greedy L-colouring of V (G) \V (T ) according to this ordering. Now for each vertex
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v ∈ V (T ), let L′(v) be the set of available colours at v, that is L′(v) = L(v) \ {c(u) | u ∈ N(v) \V (T )}.
Then |L′(v)| ≥ dT (v) for all v ∈V (T ), so by Proposition 15, T admits an L′-colouring whose union with
c forms an L-colouring of G.

1.2.3 Colouring planar graphs

A graph G is planar if it has a drawing in the plane without crossing. Such a drawing is called a planar
embedding of G. A plane graph is a particular planar embedding of a planar graph.

The girth and the maximum average degree of a planar graph are related to each other:

Theorem 16. Let G be a planar graph of girth g.

Mad(G) < 2+
4

g−2
.

Proof. The assertion is easy if G has no cycle, so we may assume that g is finite. We recall the Euler’s
formula for a planar graph H: |V (H)|−|E(H)|+ |F(H)|= 2 with |F(H)| the number of faces of H . Note
that every subgraph H of G has girth at least g, so g|F(H)| ≤ 2|E(H)|. Thus 2g−g|V (H)|+g|E(H)| =
g|F(H)| ≤ 2|E(H)|. Hence 2|E(H)|

|V (H)| ≤ 2g
g−2 −

4g
(g−2)|V (H)| < 2g

g−2 for every subgraph H of G.

In particular, planar graphs have girth at least 3, so have maximum degree less than 6. Thus they are
5-degenerate and consequently are 6-choosable by Proposition 10. In fact, Thomassen [152] showed that
they are 5-choosable.

Theorem 17 (Thomassen [152]). Every planar graph is 5-choosable.

Proof. Free to add some extra edges, we may assume that G is an inner triangulation, that is that every
inner face of G is bounded by a triangle and its outer face by a cycle F = (v1,v2, . . . ,vk,v1).

We shall prove by induction a stronger assertion. To do so we need the following definition. A list
assignment L of quasi-triangulation G is suitable if

- |L(v1)| = 1 and |L(v2)| = 2,

- for every v ∈V (F)\{v1,v2}, |L(v)| ≥ 3, and

- for every v ∈V (G)\V (F), |L(v)| ≥ 5.

We shall prove by induction on the number of vertices that if L is a suitable list assignment of a quasi-
triangulation G then G is L-colourable.

The results holds trivially if G has three vertices. Now let |G| ≥ 4.
Suppose first that F has a chord vw. Then vw lies in two unique cycles in F ∪ vw, one C1 containing

v1v2 and the other C2. For i = 1,2, let Gi denote the subgraph induced by the vertices lying on Ci or in
its inner face. See Figure 1. By induction hypothesis, there exists a proper L-colouring c1 of G1. Let
L2 be the list assignment on G2 defined by L2(v) = {c1(v)}, L2(w) = {c1(v),c1(w)} and L2(u) = L(u)
if u ∈ V (G2) \ {v,w}. Then L2 is suitable for G2 so G2 admits a proper L2-colouring c2 by induction
hypothesis. The union of c1 and c2 is a proper L-colouring of G.

Suppose now that F has no chord. Let v1,u1,u2, . . . ,um,vk−1 be the neighbours of vk in their natural
cyclic order around vk. All the ui are not in F since F has no chord. Furthermore, as G is a quasi-
triangulation, (v1,u1,u2, . . . ,um,vk−1) = P is a path. Hence the graph G− vk has F ′ = P∪ (F − vk) as
outer face. See Figure 2.
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G1

v1 v2

G2

w

v

Figure 1: Configuration when F has a chord

v1 v2

2u

vk
1u

u3
vk−1

Figure 2: Configuration when F has no chord

Let c3 and c4 be two distinct colours of L(vk)\{c1}. Set L1(ui) = L(ui)\{c3,c4} for 1 ≤ i ≤ m and
L1(v) = L(v) if v /∈ {u1,u2, . . . ,um}. L1 is suitable for G− vk. So by induction hypothesis, there is a
proper L1-colouring c of G− vk. At least one of the colours of {c3,c4} is not used for vk−1. Hence we
may assign it to vk to obtain a proper L-colouring of G.

Voigt [159] showed planar graphs which are not 4-choosable. Indeed consider the graph H and the list
assignment Li, j depicted Figure 3. It is simple matter to check that for j > i ≥ 5, H is not Li, j-colourable.

{1,2,3,4}

{1,2,3,4}

y

x

{i,1,3,4}

{i}

{i,2,3,4}

{i,j,1,2}

{j,2,3,4} {j,1,3,4}

{j}

{i,j,1,2}

Figure 3: The graph H and its list assignment Li, j

Let G be the graph obtained from 16 copies Hi, j of H , 5≤ i≤ 8, 9≤ j ≤ 12, by identifying all the vertices
x of all copies and the vertices y of all copies. Let L be the list assignment defined by L(x) = {5,6,7,8},
L(y) = {9,10,11,12} and L(v) = Li, j(v) if v ∈V (Hi, j)\{x,y}. Then G is not L-colourable and thus not
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4-choosable.
However, the celebrated Four Colour Theorem by Appel and Haken [8, 9, 10] states that every planar

graph is 4-colourable.

Theorem 18 (Appel and Haken [8, 9, 10]). Every planar graph is 4-colourable.

It is NP-Complete (see [53]) to decide if the chromatic number of a planar graph is 3 or 4, even if the
maximum degree does not exceed 4.

But, the problem becomes easier for planar graphs with girth at least 4. According to Theorem 16,
planar graphs with girth at least 4 are 3-degenerate and thus 4-choosable. The celebrated Grötzsch
Theorem [61] asserts that such graphs are also 3-colourable.

Theorem 19 (Grötzsch [61]). Every planar graph with girth at least 4 is 3-colourable.

Thomassen [154] gave a short elegant proof of this theorem. Note that it implies that one can find in
polynomial time the chromatic number of a planar graphs of girth at least 4 as it is polynomial to decide
if a graph is 2-colourable.

Voigt [160] showed a planar graph with girth 4 which is not 3-choosable. But if its girth is at least 5
then a planar graph is 3-choosable.

Theorem 20 (Thomassen [153]). Every planar graph with girth at least 5 is 3-choosable.

The general idea of the proof of this theorem has the same flavour as the proof of Theorem 17. A
stronger result is shown by induction: if the lists of the vertices have size three except on the outer face
where the lists satisfy some particular conditions, then the graph is list colourable.

1.3 Edge-colouring

An edge-colouring of G is a mapping f : E(G)→ S. The element of S are colours; the edges of one colour
form a colour class. If |S|= k then f is a k-edge-colouring. An edge-colouring is proper if incident edges
have different colours; that is, if each colour class is a matching. A graph is k-edge-colourable if it has a
proper k-edge-colouring. The chromatic index or edge-chromatic number χ ′(G) of a graph G is the least
k such that G is k-edge-colourable.

Since edges sharing an endvertex need different colours, χ(G) ≥ ∆(G). Furthermore if a subgraph H

of G is odd then a matching contains at most |V (H)|−1
2 edges. Hence at least 2|E(H)|

|V (H)|−1 colours are needed
to edge-colour H and thus G. It follows that

χ′(G) ≥ max

{

∆(G),max

{

2|E(H)|
|V (H)|−1

| H odd subgraph of G

}}

. (1)

As an edge is incident to at most 2∆(G)− 2 other edges (∆− 1 at each endvertex), colouring the
edges greedily we use at most 2∆(G)− 1 colours. However, one needs less colours. Vizing [156] and
Gupta [63] independently showed that χ′(G) ≤ ∆(G)+1.

Theorem 21 (Vizing [156], Gupta [63]). If G is a graph then χ′(G) ≤ ∆(G)+1.

Proof. We prove the result by induction on |E(G)|. For |E(G)| = 0, it is trivial.
Suppose now that |E(G)| ≥ 1 and that the assertion holds for graphs with fewer edges than G. Set

∆(G) = ∆.
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Let xy0 be an edge of G. By induction hpothesis, G \ xy0 admits a (∆ + 1)-edge-colouring. As y0 is
incident to at most ∆− 1 edges in G \ xy0, there exists a colour c1 ∈ {1,2, . . . ,∆ + 1} missing at y0, i.e.
such that no edge incident to y0 is coloured c1. If c1 is also missing at x, then colouring xy0 with c1, we
obtain a (∆+1)-edge-colouring of G. So we may assume that there is an edge xy1 coloured c1.

Because y1 is incident to at most ∆ edges, a colour c2 ∈ {1,2, . . . ,∆ + 1} is missing at y1. If c2 is
missing at x then recolouring xy1 with c2 and colouring xy0 with c1, we obtain a (∆+1)-edge-colouring
of G. So we may assume that there is an edge xy2 coloured c2.

And so on, we construct a sequence y1,y2, . . . of neighbours of x and a sequence of colours c1,c2, . . .
such that: xyi is coloured ci and ci+1 is missing at yi. Since the degree of x is bounded, there exists a
smallest l such that for an integer k < l,cl+1 = ck.

Now, for 0 ≤ i ≤ k−1, let us recolour the edge xyi with ci+1.
There exists a colour c0 ∈ {1,2, . . . ,∆+1} missing at x. In particular, c0 6= ck. Let P be the maximal

path starting at yk−1 with edges alternatively coloured c0 and ck. Let us interchange the colour c0 and ck

on P+ xyk−1. If P does not contain yk, we have a (∆ + 1)-edge-colouring of G. If P contains (and thus
ends in) yk , recolouring the edge xyi with ci+1 for k ≤ i≤ l, we obtain a (∆+1)-edge-colouring of G.

Hence χ′(G) ∈ {∆(G),∆(G) + 1}. A graph is said to be Class 1 if χ′(G) = ∆(G) and Class 2 if
χ′(G) = ∆(G)+ 1. Determining whether a graph is Class 1 or Class 2 is NP-complete [84]. However
there are classes of graphs for which we know if they are Class 1 or Class 2. For example, a regular
graph of odd order, say 2n + 1, is Class 2, as a matching contains at most n/2 edges. König Theorem
[96] states that every bipartite graph is Class 1. Planar graphs with sufficiently large maximum degree ∆
are Class 1. Sanders and Zhao [140] showed that planar graphs with maximum degree ∆ ≥ 7 are Class
1. Vizing edge-colouring conjecture asserts that planar graphs of maximum degree 6 are also Class 1.

1.3.1 Line-graph and edge-colouring

Edge-colouring may be seen as a vertex colouring of a special class of graphs, namely the line graphs.
The line graph of a graph G, denoted L(G), is the graph whose vertices are the edges of G, with e f ∈
E(L(G)) whenever e and f share an endvertex. Then χ′(G) = χ(L(G)). Obviously, not all graphs are line
graphs. Indeed a set of pairwise-intersecting edges of G form a clique in L(G). Thus the neighbourhood
of every vertex is covered by two cliques in L(G). So L(G) may be partitionned into cliques such that
every vertex is in at most two of these cliques. Krausz [105] showed that this necessary condition to be
a line graph is also sufficient. However, this characterization does not directly yield an efficient test for
line graphs, because there are too many possible decompositions into cliques to test. Beineke [13] gave
a forbidden subgraphs characterization that provides a polynomial algorithm to test if a graph is a line
graph.

Theorem 22 (Beineke [13]). A graph is a line graph of some graph if and only if it does not have any of
the nine graphs depicted Figure 4 as a subgraph.

As the forbidden subgraphs have at most six vertices, Theorem 22 yields a polynomial algorithm to
test if a graph G is a line graph that runs in time O(n6). In fact, there is such an algorithm that runs in
linear time (Lehot [107]) and produces a graph H such that L(H) = G if it exists.

1.3.2 Edge-colouring multigraphs

In case of multigraph, the chromatic index may exceed ∆(G) + 1. Indeed the multigraph, called fat
triangle (see Figure 5), with three vertices and k edges between each pair of vertices has maximum
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Figure 4: Forbidden subgraphs in a line graph

degree 2k and chromatic index 3k. This example is actually extremal as Shannon [145] proved that for

Figure 5: The fat triangle

every multigraph G, χ(G′) ≤ 3
2 ∆(G). Vizing [156] and Gupta [63] improved this result by proving the

following:

Theorem 23 (Vizing [156]; Gupta [63]).

χ(G′) ≤ ∆(G)+µ(G).

These bounds follow from that of Andersen [7] and Goldberg [56, 57]:

χ′(G) ≤ max

{

∆(G),max
T

⌊

1
2

d(x)+µ(x,y)+µ(y,z)+d(z)

⌋}

where T = {x,y,z ∈V (G) | z ∈ N(x)∩N(y)}.

1.3.3 List edge-colouring

Analogously to list colouring, one can define list edge-colouring. In this variant, we assign lists to the
edges and must choose a proper edge-colouring. The list chromatic index ch ′(G) is the minimum k such
that for every assignment L of lists of size k to the edges, G admits a proper edge-colouring f such that
f (e) ∈ L(e) for every edge e. Equivalently, ch′(G) = ch(L(G)), where L(G) is the line graph of G.

Analogously as for χ′, the greedy algorithm yields ch′(G) ≤ 2∆(G)− 1. So ch′(G) is bounded in
terms of χ′(G). It was suggested independently by many researchers including Vizing, Gupta, Albertson,
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Collins, and Tucker and appeared first in Bollobás and Harris [20] that the list chromatic index equals
the chromatic index.

List Colouring Conjecture The chromatic index is equal to the list chromatic index, that is χ ′ = ch′.

This conjecture and Vizing’s Theorem (Theorem 21) would yield ch′(G) ≤ ∆(G)+1. Bollobás and
Harris [20] proved that ch′(G) < c∆(G) when c > 11/6 for sufficiently large ∆. Using probabilistic
methods, Kahn [89] proved the conjecture asymptotically: ch′(G) ≤ (1 + o(1))∆(G). The error term
was sharpened by Häggkvist and Janssen [65]: ch′(G) ≤ ∆(G)+ O(∆(G)2/3

√

log ∆(G) and further on
by Molloy and Reed [120]: ch′(G) ≤ ∆(G)+O(∆(G)1/2(log ∆(G))4).

Galvin [52] proved the List Colouring Conjecture for bipartite graph.

1.3.4 Fractional edge-colouring

Fractional edge-colourings and the fractional chromatic index χ′
f (G) are defined similarly to fractional

colourings and the fractional chromatic number. Of course, we need to assign weights to the set M (G)
of matchings of G.

The lower bound of (1) for the chromatic index is also a lower bound for the fractional chromatic
index by the same argument. The seminal result on fractional edge-colourings, due to Edmonds [43],
shows that it is indeed the fractional chromatic index.

Theorem 24 (Edmonds [43]). The fractional chromatic index of a graph G is

χ′
f (G) = max

{

∆(G),max

{

2|E(H)|
|V (H)|−1

| Hodd subgraph of G

}}

.

Using this characterization, Padberg and Rao [129] obtained a polynomial algorithm for computing the
fractional chromatic index of a graph and indeed an optimal fractional edge-colouring.

One of the most celebrated conjectures concerning edge-colouring is the Goldberg-Seymour Conjec-
ture.

Conjecture 25 (Goldberg [55]; Seymour [144]). Let G be a multigraph. Then

χ′(G) ≤ max
(

∆(G)+1,
⌈

χ′
f (G)

⌉)

.

The main results towards this conjecture and the List Colouring Conjecture are due to Kahn [90, 91]
using the probabilistic method and hard core distributions.

Theorem 26 (Kahn [90]). χ′(G) ≤ (1+o(1))χ′
f (G).

Theorem 27 (Kahn [91]). ch′(G) ≤ (1+o(1))χ′
f (G).

In these two theorems the o(1) should be understood as a function tending to 0 as χ ′
f (G) tends to infinity.

1.4 Total colouring

A total colouring of G is a mapping f from V (G)∪E(G) into a set S of colours such that:

- adjacent vertices have different colours;

- incident edges have different colours;
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- each edge and its endvertices have different colours.

If |S| = k then f is a k-total colouring. A graph is k-total colourable if it has a k-total colouring. The
total chromatic number χT (G) of a graph G is the least k such that G is k-total-colourable. The colour
classes in a total colouring are called total stable sets.

Since a vertex and the edges incident to it need different colours, then χ(G) ≥ ∆(G)+1.

Total Colouring Conjecture χT (G) ≤ ∆(G)+2.

Total colouring was introduced by Vizing [156, 157] and independently by Behzad [14]. They both for-
mulated the Total Colouring Conjecture. A generalisation of the Total Colouring Conjecture for multi-
graph exists. It states that χT (G) ≤ ∆(G)+µ(G)+1 for every multigraph G.

The List Colouring Conjecture would yield the upper bound of ∆(G)+3. Indeed consider a (vertex)
colouring c of G in {1, . . . ,∆ + 3}; such a colouring exists by Proposition 1. For any edge e = xy, set
L(e) = {1, . . . ,∆ + 3} \ {c(x),c(y)}. Then |L(e)| = ∆ + 1. Now if ch′(G) = χ′(G), then G is (∆ + 1)-
choosable and thus G is L-edge colourable and one can extend c into a proper (∆+3)-total colouring of
G.

Trivially using distinct colours for edges and vertices, we obtain χT (G) ≤ χ′(G) + χ(G) ≤ 2∆ +
2. Lots of better upper bounds on the total chromatic number have been obtained. We just give here
the more significant ones. An interested reader is referred to the Section 4.9 of [86]. Hind [79, 80]

showed that χT (G) ≤ χ′(G)+ 2
⌈

√

χ(G)
⌉

. Häggkvist and Chetwynd [64] and independlty McDiarmid

and Reed [116] proved that given a graph G with n vertices, χT (G) ≤ χ′(G)+ k+1 where k is an integer
such that k! > n. In [82], it is proved that if ∆(G) is large enough, then χT (G) ≤ ∆(G)+O(log10 ∆(G))
(see also Chapter 9 of [122]). Finally Molloy and Reed [119] proved that there is a constant c such that
the total chromatic number is at most ∆+ c as long as ∆ is sufficiently large, where c ≤ 1026.

McDiarmid and Reed [116], showed that the Total Colouring Conjecture is true for almost all graphs:
there is a constant c < 1 such that only a fraction o(cn2

) of all graphs on n vertices are potential coun-
terexample to the conjecture.

The Total Colouring Conjecture has been proved for many classes of graphs. (See Section 4.9 of
[86].) For example, it has been settled for graphs with maximum degree 5 by Kostochka [97, 98, 99],
for graphs with minimum degree δ(G) ≥ 3|V (G)|/4 by Hilton and Hind [78], for r-partite graphs by
Yap [166] and planar graphs with the exception of ∆ = 6 and ∆ = 7 by Borodin (see Section 4.9 of [86]).

The Total Colouring Conjecture asserts that the graphs fall into two classes. Type 1 graphs have
χT (G) = ∆(G)+1, whereas type 2 graphs have χT (G) = ∆(G)+2. Sánchez-Arroyo [135] proved that it
is NP-complete to decide for a given graph if it is type 1 or type 2. McDiarmid and Sánchez-Arroyo [118]
showed that it remains NP-complete for a given k-regular (for k ≥ 3) bipartite graph. Planar graphs with
sufficently high maximum degree ∆ are of Type 1. Borodin [24] showed this for planar graphs with
maximum degree ∆ ≥ 14. This bound 14 then been decreased succesively to 12 [29] and then 11 [30]
by Borodin, Kostochka and Woodall and then to 10 by Wang [161]. Very recently, Kowalik, Sereni and
Škrekovski [101] showed that every planar graph of maximum degree 9 is 10-total colourable. Sanders
and Zhao [138] showed that planar graphs of maximum degree 7 are type 1.

Interested readers in total colouring are referred to the book of Yap [167].

1.4.1 Fractional total colouring

Fractional total colourings and the fractional total chromatic number χT
f (G) are defined similarly to

fractional colourings and the fractional chromatic number. Of course, we need to assign weights to the
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set T (G) of total stable sets of G.
An approach to prove the Total Colouring Conjecture is to prove that it holds fractionally. It is not

difficult to show that χT
f (G) ≤ ∆(G)+ 3. Indeed let S1, . . . ,S∆+3 be the stable sets of a proper (∆ + 3)-

colouring of G and M1, . . . ,M∆+1 be the matchings of a proper (∆ + 1)-edge-colouring of G. For every
1 ≤ i ≤ ∆ + 3 and 1 ≤ j ≤ ∆ + 1, let Ti, j be the total stable set Si ∪ (M j \ {e | e ∩ Si 6= /0}) and set
w(Ti, j) = 1

∆+1 . Then for each vertex v, w(v) = 1 as it is in the ∆+1 Ti, j such that v ∈ Si and for each edge
e = uv, w(e) = 1 as it is in the ∆ + 1 Ti, j such that e ∈ M j, u /∈ Si and v /∈ Si. In [94], Kilakos and Reed
proved that the Total Colouring Conjecture holds fractionally: χT

f ≤ ∆(G)+2. However the complexity
of computing the fractional total chromatic number remains unclear.

2 Colouring with contraints at distance two or more

2.1 Motivation: channel assignment

The channel assignment problem in radio or cellular phone networks is the following : we need to assign
radio frequency bands to transmitters ( each station gets one channel which corresponds to an integer ).
In order to avoid interference, if two stations are very close, then the separation of the channels assigned
to them has to be large enough. Moreover, if two stations are close ( but not very close ), then they must
also receive channels that are sufficiently far apart.

Such a problem may be modelled by L(p,q)-labellings of a graph G. The vertices of this graph
correspond to the transmitters and two vertices are linked by an edge if they are very close. Two vertices
are then considered close if they are at distance 2 in the graph. Let dist(u,v) denote the distance between
the two vertices u and v. An L(p,q)-labelling of G is an integer assignment f to the vertex set V (G) such
that :

• | f (u)− f (v)| ≥ p, if dist(u,v) = 1, and

• | f (u)− f (v)| ≥ q, if dist(u,v) = 2.

As the separation between channels assigned to vertices at distance 2 cannot be smaller than the separa-
tion between channels assigned to vertices at distance 1, it is often assumed that p ≥ q.

The span of f is the difference between the largest and the smallest labels of f plus one. The λ p,q-
number of G, denoted by λp,q(G), is the minimum span over all L(p,q)-labellings of G.

Moreover, very often, because of technical reasons or dynamicity, the set of channels available varies
from transmitter to transmitter. Therefore one has to consider the list version of L(p,q)-labellings. Recall
that a k-list-assignment L of a graph is a function which assigns to each vertex v of the graph a list L(v)
of k prescribed integers. Given a graph G, the list λp,q-number, denoted λl

p,q(G) is the smallest integer k
such that, for every k-list-assignment L of G, there exists an L(p,q)-labelling f such that f (v) ∈ L(v)
for every vertex v. Surprisingly, list L(p,q)-labellings have been studied only very little explicitely and
seems to appear only very recently in the literature [95]. However, some of the proofs for L(p,q)-
labellings also work for list L(p,q)-labellings.

Generalisations of L(p,q)-labellings in which for each i ≥ 1, a minimum gap of p i is required for
channels assigned to vertices at distance i, have also been studied ( see for example [109] or [102] ).

2.2 Bounds on the λp,q-number

Note that L(1,0)-labellings of G correspond to ordinary vertex colourings of G. Hence the λ1,0-number
of a graph G equals its chromatic number χ(G), and its λl

1,0-number equals its choice number ch(G).
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Moreover L(1,1)-labellings of G correspond to the vertex colourings of the square of G. The square of a
graph G, denoted G2, is the graph with vertex set V (G) such that two vertices u,v are linked by an edge
in G2 if and only if u and v are at distance at most 2 in G. Formally, E(G2) = {uv | distG(u,v) ≤ 2}. So
λ1,1(G) = χ(G2) and λl

1,1(G) = ch(G2).
Recall that ω(G)≤ χ(G)≤ ch(G)≤ ∆(G)+1. Similar easy inequalities may be obtained for L(p,q)-

labellings : qω(G2)− q + 1 ≤ λp,q(G) ≤ λl
p,q(G) ≤ p∆(G2) + 1. As ω(G2) ≥ ∆(G) + 1, the previous

inequality gives that λp,q ≥ q∆ + 1. However, a straightforward argument shows that λp,q ≥ q∆ + p−
q + 1. In the same way, ∆(G2) ≤ ∆2(G) so λl

p,q(G) ≤ p∆2(G)+ 1 and the greedy algorithm shows that
λl

p,q(G) ≤ (2q− 1)∆2(G) + (2 p− 1)∆(G) + 1. Taking an L(dp/ke ,dq/ke)-labelling and multiplying
each label by k, we obtain an L(p,q)-labelling. This proves the following easy observation.

Proposition 28. For all graph G and positive integers k, p,q we have

λp,q(G) ≤ k (λdp/ke,dq/ke(G)−1)+1.

In general, determining the λp,q-number of a graph is NP-hard [54]. In their seminal paper, Griggs
and Yeh [60] observed that a greedy algorithm yields λ2,1(G)≤ ∆2 +2∆+1. Moreover, they conjectured
that this upper bound can be decreased to ∆2 +1.

Conjecture 29 (Griggs and Yeh [60]). For every ∆ ≥ 2 and every graph G of maximum degree ∆,

λ2,1(G) ≤ ∆2 +1.

This upper bound would be tight: there are graphs with maximum degree ∆, diameter 2 and ∆2 + 1
vertices, namely the 5-cycle, the Petersen graph and the Hoffman-Singleton graph. Thus, their square is
a clique of order ∆2 +1, so the span of every L(2,1)-labelling is at least ∆2 +1.

However, such graphs exist only for ∆ = 2,3,7 and possibly 57, as shown by Hoffman and Single-
ton [83]. So one can ask how large may be the λ2,1-number of a graph with large maximum degree. As
it should be at least as large as the largest clique in its square, one can ask what is the largest clique
number γ(∆) of the square of a graph with maximum degree ∆. If ∆ is a prime power plus 1, then
γ(∆) ≥ ∆2 −∆ + 1. Indeed, in the projective plane of order ∆− 1, each point is in ∆ lines, each line
contains ∆ points, each pair of distinct points is in a line and each pair of distinct lines has a common
point. Consider the incidence graph of the projective plane: it is the bipartite graph with vertices the
set of points and lines of the projective plane, and every line is linked to all the points it contains. The
properties of the projective plane implies that the set of points and the set of lines form two cliques in the
square of this graph, and there are ∆2 −∆+1 vertices in each.

Jonas [88] improved slightly on Griggs and Yeh’s upper bound by showing that every graph of
maximum degree ∆ admits a (2,1)-labelling with span at most ∆2 + 2∆− 3. Subsequently, Chang and
Kuo [35] provided the upper bound ∆2 + ∆ + 1 which remained the best general upper bound for about
a decade. Král’ and Škrekovski [104] brought this upper bound down by 1 as the corollary of a more
general result. And, using the algorithm of Chang and Kuo [35], Gonçalves [58] decreased this bound by
1 again, thereby obtaining the upper bound ∆2 +∆−1. Note that Conjecture 29 is true for planar graphs
of maximum degree ∆ 6= 3. For ∆ ≥ 7 it follows from a result of van den Heuvel and McGuiness [77],
and Bella et al. [15] proved it for the remaining cases.

In [69], we show Conjecture 29 for sufficiently large ∆, and generalises it to L(p,1)-labelling.

Theorem 30 (Havet, Reed and Sereni [69]). Let p be a positive integer. There is a ∆ p such that for
every graph G of maximum degree ∆ ≥ ∆p,

λp,1(G) ≤ ∆2 +1.
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The proof of this theorem makes an intensive use of probabilistic methods. In particular, it uses dozen
of times the Lovász Local Lemma [47] together with some concentration bounds like the Chernoff
Bound [3, 113], Azuma’s inequality [12], Talagrand’s inequality [151] and McDiarmid’s inequality [114].
All this tools are presented in the book of Molloy and Reed [122] to which we refer the reader interested
in colouring via the probabilistic method. It is possible that using a similar proof, one can show that
λp,1(G) ≤ γ(∆). Note however that it does not mean that for every graph G λ p,1(G) ≤ ω(G2), which
in fact is false. For example, consider a graph consisting of five vertices x i, 1 ≤ i ≤ 5 together with 5k
additional vertices of degree two, such that xi has k common neighbours with xi+1 (indices should be
understood modulo 5). Then ω(G2) = 2k +1 and χ(G2) = 5k+5

2 .

Problem 31. What is the smallest function f such that for every graph G, χ(G2) ≤ f (ω(G2))?

The problem of determining λp,q(G) has been studied for lots of specific classes of graphs ( see the
survey of Yeh [168] ). We will now only discuss the few classes that we studied.

2.3 L(p,q)-labellings of planar graphs

Because the transmitters are laid out on the surface of the earth, L(p,q)-labellings of planar graphs are of
particular interest. There are planar graphs for which λp,q ≥ 3

2 q∆ + c(p,q), where c(p,q) is a constant
depending on p and q. For example, consider a graph consisting of three vertices x, y and z together with
3k − 1 additional vertices of degree two, such that z has k common neighbours with x and k common
neighbours with y, x and y are connected and have k−1 common neighbours ( see Figure 6 ).
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Figure 6: The planar graphs Gk

This graph has maximum degree 2k and yet its square contains a clique with 3k + 1 vertices ( all the
vertices except z ).

A first upper bound on λp,q(G), for planar graphs G and positive integers p ≥ has been proved
by Van den Heuvel and McGuinness [77] : λp,q(G) ≤ 2(2q − 1)∆ + 10 p + 38q − 24. Molloy and
Salavatipour [123] improved this bound by showing the following :

Theorem 32 (Molloy and Salavatipour [123]). For a planar graph G and positive integers p,q,

λp,q(G) ≤ q
⌈5

3
∆
⌉

+18 p+77q−18.
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Moreover, they described an O(n2) time algorithm for finding an L(p,q)-labelling whose span is at most
the bound in their theorem.

The Four Colour Theorem (Theorem 18) states that λ1,0(G) = χ(G)≤ 4 for planar graphs. Regarding
the chromatic number of the square of a planar graph, Wegner [162] posed the following conjecture which
is mentioned in Jensen and Toft [86, Section 2.18].

Conjecture 33 (Wegner [162]). For a planar graph G of maximum degree ∆ :

λ1,1(G) = χ(G2) ≤







7, if ∆ = 3,
∆+5, if 4 ≤ ∆ ≤ 7,
⌊

3
2 ∆

⌋

+1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For ∆ ≥ 8, these are the same
examples is in Figure 6.

Kotoschka and Woodall [100] conjectured that, for every square of a graph, the list-chromatic number
equals the choice number. This conjecture and Wegner’s one imply directly the following :

Conjecture 34. For a planar graph G of maximum degree ∆ :

λl
1,1(G) = ch(G2) ≤







7, if ∆ = 3,
∆+5, if 4 ≤ ∆ ≤ 7,
⌊

3
2 ∆

⌋

+1, if ∆ ≥ 8.

Wegner also showed that if G is a planar graph with ∆ = 3, then G2 can be 8-coloured. Very recently,
Thomassen [155] solved Wegner’s conjecture for ∆ = 3 and Cranston and Kim [38] showed that the
square of every connected graph (non necessarily planar) which is subcubic ( i.e., with ∆ ≤ 3 ) is 8-
choosable, except for the Petersen graph. However, the 7-choosability of the square of subcubic planar
graphs is still open. The first upper bound on χ(G2) in terms of ∆ was obtained by Jonas [88] who
showed χ(G2)≤ 8∆−22. This bound was later improved by Wong [164] to χ(G2)≤ 3∆+5 and then by
van den Heuvel and McGuinness [77] to χ(G2) ≤ 2∆+25. Better bounds were then obtained for large
values of ∆. It was shown that χ(G2) ≤ d 9

5 ∆e+ 1 for ∆ ≥ 749 by Agnarsson and Halldórsson [1], and
that χ(G2) ≤ d 9

5 ∆e+1 for ∆ ≥ 47 by Borodin et al. [27]. Finally, the best known upper bound so far has
been obtained by Molloy and Salavatipour [123] as a special case of Theorem 32 :

Theorem 35 (Molloy and Salavatipour [123]). For a planar graph G,

λ1,1(G) = χ(G2) ≤
⌈5

3
∆
⌉

+78.

As mentioned in [123], the constant 78 can be reduced for sufficiently large ∆. For example, it was
improved to 24 when ∆ ≥ 241.

In [70], we prove the following theorem :

Theorem 36 (Havet et al. [70]). The square of every planar graph G of maximum degree ∆ has list chro-
matic number at most (1+o(1)) 3

2 ∆. Moreover, given lists of this size, there is an acceptable colouring
in which the colours on every pair of adjacent vertices of G differ by ∆1/4.

The idea of the proof of this theorem is to reduce to a problem of colouring a line graph. We follow the
approach developed by Kahn [91] for the proof of Theorem 27. We need to modify the proof so it can
handle our situation in which we have a graph which is slightly more than a line graph and in which we
have lists with fewer colours than he permitted. This reduction to line graphs for which asymptotically
the chromatic number equals the fractional chromatic number suggests the following question.

19



Problem 37. Let G be a planar graph. Is is true that χ(G2) = (1+o(1))χ f (G2)?

Theorem 36 yields that for every planar graph G and any fixed p, λl
p,1(G) ≤ (1 + o(1)) 3

2 ∆(G).
Together with Proposition 28, this yields:

Corollary 38 (Havet et al. [70]). Let p ≥ q be two fixed integers. Then for any planar graph G we have
λp,q(G) ≤ (1+o(1)) 3

2 q∆(G).

Note that using exactly the same proof as for Theorem 36, one can show that for any fixed p ≥ q, for
every planar graph G, λl

p,q(G) ≤ (1+o(1)) 3
2 (2q−1)∆(G).

Problem 39. Is it true that λl
p,q(G) ≤ (1+o(1)) 3

2 q∆(G) for planar graphs G and fixed p ≥ q ?

Finally, Theorem 36 implies that ω(G2) ≤ (1+o(1)) 3
2 ∆(G) for any planar graph G. But does there

exists a simple proof of this inequality. Furthermore, a step forward to Wegner’s Conjecture would be to
prove that ω(G2) ≤

⌊

3
2 ∆

⌋

+1. This inequality is tight as shown by the graph Gk depicted Figure 6.

2.3.1 Connections with frugal and cyclic colouring

The size ( number of vertices in its boundary ) of a largest face of a plane graph G is denoted by ∆∗(G).
A cyclic colouring of a plane graph G is a vertex colouring of G such that any two vertices incident
to the same face have distinct colours. This concept was introduced by Ore and Plummer [128], who
also proved that a plane graph has a cyclic colouring using at most 2∆∗ colours. Borodin [23] ( see also
Jensen and Toft [86, page 37] ) conjectured the following.

Conjecture 40 (Borodin [23]). Any plane graph has a cyclic colouring with
⌊

3
2 ∆∗⌋ colours.

The best general known upper bound in the general case is due to Sanders and Zhao [139], who
proved that any plane graph has a cyclic colouring with

⌈

5
3 ∆∗⌉ colours. Denote by fc(x) the minimum

number of colours needed to cyclically colour every plane graph of maximum face size m. The value
of fc(m) is known for m ∈ {3,4}: fc(3) = 4 (the problem of finding fc(3) being equivalent to the Four
Colour Theorem proved in [10]) and fc(4) = 6 (see [23, 26]). It is also known that fc(5) ∈ {7,8} and
fc(6) ≤ 10 [31], and that fc(7) ≤ 12 [25].

As noted by Amini et al. [5], there are connections between Conjecture 40 and Conjecture 34 through
frugal colouring. For an integer m ≥ 1, an m-frugal colouring of a graph G is a proper vertex colouring
of G ( i.e., adjacent vertices get a different colour ) such that no colour appears more than m times in
the neighbourhood of any vertex. The least number of colours in a m-frugal colouring of G is called the
m-frugal chromatic number, denoted χm(G). Clearly, χ1(G) is the chromatic number of the square of G;
and for m at least the maximum degree of G, χm(G) is the usual chromatic number of G. This type of
colouring was introduced by Hind, Molloy and Reed in [81].

Inspired by Wegner’s Conjecture, Amini, Esperet and van den Heuvel conjectured the following
bounds for the m-frugal chromatic number of planar graphs.

Conjecture 41 (Amini, Esperet and van den Heuvel [5]).
For any integer m ≥ 1 and planar graph G with maximum degree ∆(G) ≥ max{2m, 8} we have

χm(G) ≤







⌊∆(G)−1
m

⌋

+3, if m is even;
⌊ 3∆(G)−2

3m−1

⌋

+3, if m is odd.
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Note that the graphs Gk in Figure 6 also show that the bounds in this conjecture are best possible. The
graph Gk has maximum degree 2k. First consider an m-frugal colouring with m = 2` even. We can use
the same colour at most 3

2 m times on the vertices of Gk, and every colour that appears exactly 3
2 m = 2`

times must appear exactly ` times on each of the three sets of common neighbours of x and y, of x and z,
and of y and z. So we can take at most 1

` (k− 1) = 1
m (∆(Gk)− 1) colours that are used 3

2 m times. The
graph that remains can be coloured using just three colours.

If m = 2`+ 1 is odd, then each colour can appear at most 3`+ 1 = 1
2 (3m− 1) times, and the only

way to use a colour so many times is by using it on the vertices in V (Gk) \ {x,y,z}. Doing this at most
3k−1

(3m−1)/2 = 3∆(G)−2
3m−1 times, we are left with a graph that can be coloured using three colours.

In [5], Amini, Esperet and van den Heuvel showed that if there is an even m ≥ 4 so that Borodin’s
Conjecture 40 holds for all plane graphs with ∆∗ ≤m, and Conjecture 41 is true for the same value m, then
Wegner’s conjecture is true up to an additive constant factor. More precisely, if m ≥ 4 is an even integer
such that every plane graph G with ∆∗(G)≤m has a cyclic colouring using at most 3

2 m colours, then, if G

is a planar graph satisfying χm(G) ≤
⌊∆(G)−1

m

⌋

+3, we also have χ(G2) = χ1(G) ≤
⌊

3
2 ∆(G)

⌋

+ 9
2 m−1.

The concept of facial colourings, introduced in [103], extends the concept of cyclic colourings. A
facial segment of a plane graph G is a sequence of vertices in the order obtained when traversing a part
of the boundary of a face. The length of a facial segment is the number of its edges. Two vertices u
and v of G are `-facially adjacent, if there exists a facial segment of length at most ` between them. An
`-facial colouring of G is a function which assigns a colour to each vertex of G such that any two distinct
`-facially adjacent vertices are assigned with distinct colours. A graph admitting an `-facial colouring
with k colours is called `-facially k-colourable. The following conjecture, called (3`+1)-Conjecture, is
proposed in [103]:

Conjecture 42 (Král’, Madaras and Škrekovski). Every plane graph is `-facially colourable with
3`+1 colours.

Observe that the bound offered by Conjecture 42 is tight: as shown by Figure 7, for every ` ≥ 1, there
exists a plane graph which is not `-facially 3`-colourable.

`

`

`

Figure 7: The plane graph G` = (V,E): each thread represents a path of length `. The graph G` is not
`-facially 3`-colourable: every two vertices are `-facially adjacent, therefore any `-facial colouring must
use |V | = 3`+1 colours.

Conjecture 42 can be considered as a counterpart for `-facial colouring of Conjecture 40. Note that
Conjecture 42 implies Conjecture 40 for odd values of ∆∗.

Conjecture 42 is trivially true for ` = 0, and is equivalent to the Four Colour Theorem for ` = 1. It
is open for all other values of `. As noted in [103], if Conjecture 42 were true for ` = 2, it would have
several interesting corollaries. Besides giving the exact value of fc(5) (which would then be 7), it would
allow to decrease from 16 to 14 (by applying a method from [103]) the upper bound on the number of
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colours needed to 1-diagonally colour every plane quadrangulation (for more details on this problem,
consult [85, 136, 137, 103]). It would also imply Conjecture 34 restricted to plane cubic graphs since
colourings of the square of a plane cubic graph are precisely its 2-facial colourings.

Let f f (`) be the minimum number of colours needed to `-facially colour every plane graph. Clearly,
fc(2` + 1) ≤ f f (`). So far, no value of ` is known for which this inequality is strict. The following
problem is offered in [103].

Problem 43 (Král, Madaras and Škrekovski [103]). Is it true that, for every integer `≥ 1, fc(2`+1) =
fl(`)?

Another conjecture that should be maybe mentioned is the so-called 3`-Conjecture proposed in [41],
stating that every plane triangle-free graph is `-facially 3`-colourable. Similarly as the (3`+1)-Conjecture,
if this conjecture were true, then its bound would be tight and it would have several interesting corollaries
(see [41] for more details).

It is proved in [103] that every plane graph has an `-facial colouring using at most
⌊

18
5 `

⌋

+2 colours
(and this bound is decreased by 1 for ` ∈ {2,4}). So, in particular, every plane graph has a 3-facial
12-colouring. In [72], we improve this last result by proving the following theorem.

Theorem 44 (Havet, Sereni and Škrekovski [72]). Every plane graph is 3-facially 11-colourable.

The proof of this theorem uses a rather complicated discharging method involving faces and vertices.

2.3.2 Planar graphs with given girth

In [41], Dvořák, Škrekovski and Tancer proved that the choice number of the square of a subcubic graph
G is at most 4 if Mad(G) < 24/11 and G has no 5-cycle, at most 5 if Mad(G) < 7/3 and at most 6 if
Mad(G) < 5/2. By Theorem 16, it implies that the choice number of the square of a planar graph with
girth g is at most 6 if g ≥ 10, at most 5 if g ≥ 14 and at most 4 if g ≥ 24. The two latter results had been
previously proved by Montassier and Raspaud [124].

In [67], we improve some of these results.

Theorem 45 (Havet [67]). The choice number of the square of a subcubic graph with maximum average
degree less than 18/7 is at most 6.

As a corollary, by Theorem 16, we get that the choice number of the square of a subcubic planar
graph with girth at least 9 is at most 6. (Note that this corollary has been proved later and independently
by Cranston and Kim [38].) We show that if the girth is large enough then the square of a subcubic planar
graph is 5-choosable.

Theorem 46 (Havet [67]). The choice number of the square of a subcubic planar graph with girth at
least 13 is at most 5.

The idea of the proofs of Theorems 45 and 46 is to consider a minimum counterexample, to show that
it does not contain some configurations (i.e. induced subgraphs) and then to use a discharging method to
get a contradiction.
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2.4 (p,1)-total labelling

The first subdivision of a graph G is the graph s1(G) obtained from G by inserting one vertex along
each edge of G. An L(p,1)-labelling of s1(G) corresponds to an assignment of positive integers to
V (G)∪E(G) such that:

(i) any two adjacent vertices of G receive distinct integers,
(ii) any two adjacent edges of G receive distinct integers, and
(iii) a vertex and an edge incident receive integers that differ by at least p in absolute value.

We call such an assignment a (p,1)-total labelling of G. It is a total colouring strenghtened with an extra
condition by insisting on a minimal separation of p between incident vertices and edges.

The span of a (p,1)-total labelling is the maximum over all the labels. The (p,1)-total number of a
graph G, denoted by λT

p (G), is the minimum span of a (p,1)-total labelling of G. Note that a (1,1)-total
labelling is a total colouring so λT

1 = χT , where χT is the total chromatic number.
Looking at the label of a vertex with maximum degree and its incident edges, it is easy to see that

λT
p ≥ ∆+ p. This lower bound may be increased to ∆+ p+1 if G is ∆-regular or if p ≥ ∆.

Colouring the vertices with {1, . . . ,χ(G)} and edges with {χ(G)+ p, . . .χ(G)+ χ ′(G)+ p− 1}, we
obtain a (p,1)-total labelling of G. So,

λT
p (G) ≤ χ(G)+χ′(G)+ p−1. (2)

As a corollary, if G be a bipartite graph then ∆ + p ≤ λT
p (G) ≤ ∆ + p + 1. Moreover if p ≥ ∆ then

λT
p (G) = ∆+ p+1. If p < ∆ then there are bipartite graphs with maximum degree ∆ such that λT

p = ∆+ p
and others such graphs that λT

p = ∆+ p. In [73], we proved that for any fixed ∆ > p then it is NP-complete
to decide for a bipartite graph G with maximum degree ∆ if λT

p (G) = ∆ + p unless ∆ = 3 and p = 2 in
which case, we gave a polynomial algorithm. However, for any fixed ∆, it is polynomial to decide if a
tree with maximum degree ∆ has (p,1)-total number ∆ + p + 1 using dynamic programming. But the
complexity of the determining the (p,1)-total number of a tree remains unclear.

Moreover using Brooks and Vizing Theorems (and a short proof for odd cycles and odd complete
graphs), we derived [74] from (2) that λT

p ≤ 2∆ + p. However, this upper bound is not supposed to be
tight when ∆ ≥ p: As a natural extension of the Total Colouring Conjecture to (p,1)-total labelling,
we [74] conjectured the following.

(p,1)-Total Labelling Conjecture: λT
p ≤ ∆+2p−1 or λT

p ≤ min{∆+2p−1,2∆+ p−1}.
As noted in [74], lots of upper bounds on the total chromatic number (see Subsection 1.4) may

be generalised to λT
p . For example, generalising the result of [82], one can show that if ∆(G) is large

enough then λT
p (G)≤ ∆(G)+O(log10 ∆(G)) and extending a result of [116], also show that as n →∞, the

proportion of graphs on n vertices with (p,1)-total number λT
p > ∆+2p is very small. More precisely, if

q and c are constants with 0 < q < 1 and 0 < c < min{ 1
3 , q

2}, then

P{λT
p (Gn,q) > ∆+2p} = o(n−cn/2).

It is also very likely, that mimicing the proof of [119], one can prove the existence of a constant c p such
that the (p,1)-total number is at most ∆ + cp provided that ∆ is large enough. It has been verified for
sparse graphs by Esperet, Montassier and Raspaud [49].

In [74], we also show that λT
p ≤ 2∆− 2log(∆ + 2)+ 2log(16p− 8)+ p which gives a better upper

bound on the (p,1)-total number when ∆ is not too large.
We also study [74] the (p,1)-total number of complete graphs and determine the exact values of the

(p,1)-total numbers for almost all complete graphs : If n is odd then λT
p (Kn) = min{n + 2p− 2,2n +
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p− 2}; if n is even then λT
p (Kn) = min{n + 2p− 2,2n + p− 2} if n ≤ p + 5, λT

p (Kn) = n + 2p− 1 if
n > 6p2 −10p+4 and λT

p (Kn) ∈ {n+2p−2,n+2p−1} otherwise.
We then focused (2,1)-total labelling. We show that if ∆ ≥ 2, then λT

2 ≤ 2∆ + 1 and therefore the
(p,1)-Total Labelling Conjecture is true when p = 2 and ∆ = 3. In fact, the bound for this special case
is tight as λT

2 (K4) = 7. However, we conjecture that K4 is essentially the unique such graph.

Conjecture 47 (Havet and Yu [74]). Let G be a connected graph. If ∆(G) ≤ 3 and G 6= K4 then
λT

2 (G) ≤ 6.

One approach to prove the (p,1)-Total Labelling Conjecture is to obtain a small function a(p) such
that a (p,1)-total labelling with span ∆ + a(p) of a graph can be constructed by extending a vertex
colouring with a suitable edge colouring.

Conjecture 48. Let p ≥ 1. There is an integer a(p), such that for any vertex colouring cv of a non-
complete graph G with colours in [1,∆], there is an edge colouring ce of G with colours in [1,∆+a(p)]
such that cv ∪ ce is a (p,1)-total labelling of G.

Conjecture 48 for a(p) = 4p− 1 is implied by the List Colouring Conjecture. Since every graph is
(∆+1)-edge colourable (Vizing’s Theorem), the List Colouring Conjecture implies that it also is (∆+1)-
edge choosable. Let cv be a vertex colouring of a non-complete graph with colours in [1,∆]. For any edge
e = (x,y), there is a set L(e) ⊂ [0,∆ + 4p− 2] of ∆ + 1 colours such that L(e)∩ ([cv(x)− p + 1,cv(x)+
p−1]∪ [cv(y)− p+1,cv(y)+ p−1] = /0. Then since G is (∆+1)-choosable, there exists a desired edge
colouring. In [74], we relax the constraints and show that one can extend the vertex colouring with a
(∆+3p+1)-fractional edge colouring.

3 Improper colouring

3.1 Motivation

Our sudy is motivated by a problem posed by Alcatel Space Technologies (see [4]). A satellite sends
informations to receivers on earth, each of which is listening several frequencies, one for each signal
it needs to receive. Technically it is impossible to focus a signal sent by the satellite exactly on the
destination receiver. So part of the signal is spread in an area around it creating noise for the other
receivers displayed in this area and listening the same frequency. Each receiver is able to distinguish the
signal directed to it from the extraneous noises it picks up if the sum of the noises does not become too
big, i.e. does not exceed a certain threshold T . The problem is to assign frequencies to the receivers in
such a way that each receiver gets its dedicated signals properly, while minimizing the total number of
frequencies used.

Generally the “noise relation” is symmetric, that is if a receiver u is in the noise area of a receiver v
then v is in the noise area of u. Hence, interferences may be modelled by a noise graph whose vertices
are the receivers and in which two vertices are joined by an edge if and only if they interfer. Moreover,
the graph is attached a weight function p : V → IN, where the weight p(v) of the vertex v is equal to the
number of signals it has to receive. The maximum weight of a graph G under p is pmax = max{p(v) | v ∈
V (G)}.

In a simplified version, the intensity I of the noise created by a signal is independent of the frequency
and the receiver. Hence to distinguish its signal from noises, a receiver must be in the noise area of at
most k =

⌊

T
I

⌋

receivers listening signals on the same frequency. Hence the problem comes to find a
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weighted colouring of the graph which is k-improper. Let G be a graph and p a weight function on G.
A [p]colouring of G is a function C : V → P (S) such that |C(v)| ≥ p(v). As usual, the set S is called the
set of colours and is usually {1,2, . . . , l} for some integer l as we are only interested in its cardinality. A
[p]colouring into a set S of cardinality l is called an l-[p]colouring of G. For any integer q, we denote by
q the constant weight function equal to q. Note that a [1]colouring is a usual colouring. A [p]colouring
C of G is k-improper if for any colour i, the set of vertices coloured i induces a graph of degree at most
k. The k-improper [p]chromatic number of G, denoted χk(G, p), is the smallest ` such that G admits
a k-improper `-[p]colouring. The k-improper chromatic number of G is χk(G) = χk(G,1). Note that
0-improper colouring corresponds to proper colouring, so χ0(G) = χ(G).

Similarly to channel assignment, often due to technical reasons or dynamicity, each receiver is given
a list of available frequencies. This can be modelled by weighted improper list colouring. The k-improper
[p]choice number of G is denoted by chk(G, p) and we write chk(G) for chk(G,1).

As in the usual channel assignment problem, planar graphs and more generally graphs with bounded
maximum average degree are of particular interest. Moreover, usually the noise areas of the receivers
are modelled by disks of the same radius. Hence, the noise graph is a unit disk graph. A unit disk
graph is the intersection graph of equal-sized disks in the the plane. In other words, given a set of points
fixed in the plane and a positive quantity d, we construct a unit disk graph by joining edges between any
two points within distance d of one another. Clearly, we may assume d = 1 or otherwise rescale. An
important restricted class of unit disk graphs (specific to radio channel assignment and Alcatel’s problem
in particular) is that of weighted induced subgraphs of the triangular lattice, or hexagonal graphs. This
class is related to a common placement pattern of radio transmission towers in a cellular communications
network: for efficient coverage, the transmitters are only placed on points of a the triangular lattice
graph R that may be described as follows. The vertices are all integer linear combinations a~e1 + b~e2

of the two vectors ~e1 = (1,0) and ~e2 = ( 1
2 ,

√
3

2 ): thus we may identify the vertices with the pairs (a,b)
of integers. Two vertices are adjacent when the Euclidean distance between them is 1. Thus each
vertex x = (a,b) has the six neighbours: its left neighbour (a− 1,b), its right neighbour (a + 1,b), its
leftup neighbour (a−1,b+1), its rightup neighbour (a,b+1), its leftdown neighbour (a,b−1) and its
rightdown neighbour (a+1,b−1).

In this part, we first study (non weighted) improper colouring of graphs, and more specifically, im-
proper colouring of planar graphs. We then study (weighted) improper colouring of unit disk graphs, and
more particularly unit interval graphs ( A unit interval graph is a graph whose vertices are intervals of
length one on a straight line, in whose two vertices are joined if and only if the correspondig intervals
intersect.) and hexagonal graphs.

3.2 Improper colouring

One can generalise Propositions 1 and 10 to k-improper colouring.

Proposition 49 (Lovász [110]). Let k be a non-negative integer. Then for any graph G,

χk(G) ≤ chk(G) ≤
⌈

∆(G)+1
k +1

⌉

.

Proof. Set ` =
⌈

∆(G)+1
k+1

⌉

. Let L be an `-list assignment on G. Without loss of generality, we may assume

that
⋃

v∈V (G) L(v) = {1, . . . ,q} for some integer q. Consider a partition of V (G) into q sets V1, . . . ,Vq

such that for every vertex v, if v ∈ Vi then i ∈ L(v), and that minimizes the number of internal edges,
i.e. ∑`

i=1 E(G[Vi]), under this condition. Let v be a vertex and Vi the set containing v. Then for any
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j ∈ L(v)\{i}, v has at least as many vertices in V j as in Vi otherwise moving v from Vi to Vj would give a
partition with less internal edges. Hence if v has k+1 neighbours in Vi it has at least (k+1)×`≥∆(G)+1
neighbours in G, which is impossible by the definition of ∆(G). Thus v has at most k neighbours in Vi.
So the sets V1, . . . ,Vq correspond to the colour classes of a k-improper L-colouring of G.

However, one cannot generalise Propositions 1 and 10 by replacing the maximum degree by the
degeneracy in the above proposition, if k ≥ 1.

Proposition 50. Let k and d be two positive integers. There is a d-degenerate graph G such that χk(G) =
d +1.

Proof. Let us prove by induction on l that if 0 ≤ l ≤ d, there is a d-degenerate graph G l such that
χk(Gl) ≥ l. The result is true for l = 0 with G0 the graph with a unique vertex. Suppose now that the
result is true for l. Let Gl+1 be the graph constructed from Gl as follows : For every subset A of l vertices,
add a set SA of kl + 1 new vertices and connect all the vertices of SA to all the vertices of A. It is easy
to check that Gl+1 is d-degenerate since every new vertex has degree at most l ≤ d. Let us now prove
that χk(Gl+1) ≥ l + 1. Suppose to the contrary that there exists a k-improper l-colouring. Then since
χk(Gl) ≥ l, the l colours must be used on Gl . Hence there is a set A of l vertices of Gl , one of each
colour. Now consider the set SA. There is a colour c that is assigned to at least k + 1 of them. So the
vertex of A which is coloured c has k +1 neighbours of its colour which is a contradiction.

Let αk(G) be the largest size of an induced subgraph of G with maximum degree at most k. As every
colour class induces a sibgraph of maximum degree at most k, we obtain:

χk(G) ≥ |V (G)|/αk(G). (3)

3.2.1 Improper colouring of planar graphs

Improper colourings of planar graphs have been widely studied. In particular pk and p∗k , the smallest in-
tegers l such that every planar graph is k-improper l-colourable and k-improper l-choosable respectively,
are known for almost all k. Recall that Thomassen [152] showed that every planar graph is 5-choosable
(Theorem 17) and there are planar graphs which are not 4-choosable [159] so p∗

0 = 5. Moreover, every
planar graph is 4-colourable [8, 9] and there are planar graphs which are not 1-improper 3-colourable, so
p0 = p1 = 4. But we do not know the exact value of p∗

1 which is either 4 or 5. However, it is conjectured
that it is 4:

Conjecture 51 (Eaton and Hull [42], Škrekovski [146]). Every planar graph is 1-improper 4-choosable.

As shown independently by Eaton and Hull [42] and Škrekovski [146], every planar graph is 2-
improper 3-choosable and for every k, there are planar graphs which are not k-improper 2-colourable.
Hence pk = p∗k = 3 for any k ≥ 2. The two proofs of this result are very similar and use an induction
hypothesis in the same flavour as the one of the proof of Theorem 17.

Moreover improper colourings of planar graphs have also been studied under some girth restric-
tions. As mentionned in Section 1.2.3, the Grötzsch Theorem states that every planar graph of girth
at least 4 is 3-colourable. Voigt [160] showed a planar graph of girth 4 which is not 3-choosable and
Thomassen [153] proved that every planar graph of girth at least 5 is 3-choosable. Škrekovski [147]
showed that every planar graph of girth at least 4 is 1-improper 3-choosable. Škrekovski [148] inves-
tigated k-improper 2-choosability of planar graphs in relation with their girth. Denoting by gk be the
smallest integer such that every planar graph of girth at least gk is k-improper 2-choosable, he proved
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that 6 ≤ g1 ≤ 9, 5 ≤ g2 ≤ 7, 5 ≤ g3 ≤ 6 and ∀k ≥ 4,gk = 5. Hence the only unknown values are g1, g2

and g3.
In [71], we study the k-improper l-choosability of graphs in relation with their maximum average

degree. Let M(k, l) be the greatest real such that every graph of maximum average degree less than
M(k, l) is k-improper l-choosable. Obviously, M(k1, l) ≤ M(k2, l) if k1 ≤ k2. A graph is k-improper
1-choosable if and only if it has maximum degree at most k. So M(k,1) = 2k+2

k+2 . We then give relatively
close lower and upper bounds on M(k,2).

Theorem 52 (Havet and Sereni [71]). For every k ≥ 0,

4− 4
k +2

≤ M(k,2) ≤ 4− 2k +4
k2 +2k +2

.

As a corollary, we obtain the following upper bounds for gk which are better than Škrekovski’s ones:
g1 ≤ 8, g2 ≤ 6, g3 ≤ 6 and ∀k ≥ 4,gk ≤ 5.

We then extend the lower bound to any value of l:

Theorem 53 (Havet and Sereni [71]). For every l ≥ 2 and k ≥ 0,

l +
lk

l + k
≤ M(k, l).

Finally, we provide for any value of l and k a graph which is not k-improper l-choosable, and we deduce
that M(k, l) −−−→

k→∞
2l.

3.2.2 Complexity and Brooks-like theorems

For all integers k and `, let k-IMP `-COL be the following problem:
INSTANCE: a graph G.
QUESTION: is G k-improper `-colourable?

Cowen et al. [39] showed that the problem k-IMP `-COL is NP-complete for all pairs (k, `) of integers
with k ≥ 1 and ` ≥ 2. When ` ≥ 3, this is not a very surprising result since it is already hard to determine
whether a given graph is properly 3-colourable. On the contrary, determining if a graph is 2-colourable,
i.e. bipartite, can be done in polynomial-time, whereas it is NP-complete to know if it is k-improper
2-colourable as soon as k > 0.

Of more interest is the question of complexity of k-IMP `-COL when restricted to graphs with max-
imum degree (k + 1)`. Recall that determining whether a graph with large constant maximum degree
∆ is (∆− k)-colourable can be done in linear time if (k + 1)(k + 2) ≤ ∆ [121] and is NP-complete if
(k +1)(k +2) > ∆ [46]. It is natural to ask whether analogous results can be found for improper colour-
ing. This first problem to grapple with is the existence, or not, of a Brooks-like theorem for improper
colouring : does there exist a polynomial-time algorithm that decides whether a graph G of maximum de-
gree ∆ has k-improper chromatic number at most

⌈∆+1
k+1

⌉

−1? Proving that k-IMP `-COL is NP-complete
when restricted to graphs with maximum degree (k +1)` would provide a negative answer to this ques-
tion (unless P = NP). Cowen et al. [39] proved that k-IMP 2-COL is NP-complete for the class of graphs
with maximum degree 2(k + 1), and asked what happens when ` ≥ 3. In [37], we provide a negative
answer if ` is not to large compared to a function of k.

Theorem 54 (Corrêa, Havet and Sereni [37]). Let k ≥ 1 and ` ≥ 3 be two integers. If l +
√

l ≤ 2k +3
then k-IMP `-COL restricted to graphs with maximum degree (k +1)` is NP-complete.
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But we do not know the complexity of this problem for larger value of `:

Problem 55 (Corrêa, Havet and Sereni [37]). What is the complexity of k-IMP `-COL restricted to
graphs with maximum degree (k +1)` when `+

√
` > 2k +3?

We conjecture that it is always NP-complete. As an evidence, we prove [37] the NP-completeness when
k = 1 and ` = 4.

In view of these negative results, one may ask what happens for planar graphs. Recall that every
planar graph is 4-colourable [10], and 2-improper 3-colourable [42, 146]. Cowen et al. [39] proved that
it is NP-complete to know whether or not a planar graph is 1-improper 3-colourable, but without any
restriction on the maximum degree. Cowen et al. [39] proved that k-IMP 2-COL is NP-complete for
planar graphs, again without any restriction on the degree. In particular, they asked if 1-IMP 2-COL is
still NP-complete for planar graphs with maximum degree four – they could prove it only for maximum
degree five. More generally what is the complexity of k-IMP 2-COL for planar graphs of maximum
degree 2k +2?

Problem 56. What is the complexity of k-IMP 2-COL restricted to planar graphs of maximum degree
2k +2?

We show [37] that it is NP-complete when k ∈ {1,2}. Note that for k = 1, it settles Cowen et al. [39] ques-
tion. However, we conjecture that if k is sufficiently large k-IMP 2-COL can be polynomially decided,
as the answer is always affirmative:

Conjecture 57 (Corrêa, Havet and Sereni [37]). There exists an integer k0 ≥ 3 such that for any k ≥ k0,
any planar graph with maximum degree at most 2k +2 is k-improper 2-colourable.

Problem 58 (Correa, Havet and Sereni [37]). What is the complexity of 1-IMP 3-COL restricted to
planar graphs with maximum degree at most 6?

3.2.3 Improper colouring of unit disk graphs

As k-IMP `-COL is NP-complete (k ≥ 2), a natural question is to ask whether it remains NP-complete
when restricted to unit disk graphs. For all integers k and `, let UD k-IMP `-COL be the following
problem:

INSTANCE: a unit disk graph G.
QUESTION: is G k-improper `-colourable?
Clark et al. [36] demonstrated NP-completeness of UD 0-IMP 3-COL. Then Gräf, Stumpf and

Weißenfels [59] extend this for all value of `: for any fixed integer ` ≥ 3, the problem UD 0-IMP `-
COL is NP-complete. In [68], we generalise this result to improper colouring.

Theorem 59 (Havet, Kang and Sereni [68]). UD k-IMP `-COL is NP-complete for any fixed integers k
and ` such that k ≥ 0 and ` ≥ 3.

Our approach generalises that of Gräf et al. [59] and our key contribution is to produce auxiliary graphs
— in particular, the auxiliary crossing graph — that are more general than those of the proof for unit disk
`-colourability.

At first sight, it is not clear if we should expect k-improper 2-colourability for unit disk graphs
to be NP-complete, as 2-colourability is polynomial-time in general, while the planar k-improper 2-
colourability problem, for any fixed positive integer k, is NP-complete [39]. We can in fact reduce from
the latter problem to show NP-completeness
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Theorem 60 (Havet, Kang and Sereni [68]). Unit disk k-improper 2-colourability is NP-complete for
any fixed positive integer k.

The reduction from planar k-improper 2-colourability requires no crossing auxiliary graphs. However,
the auxiliaries must transmit information about impropriety; also, we need to take care of high-degree
vertices. The task of constructing such auxiliary graphs is the crux of the reduction.

These two results show that, like for unit disk (proper) colourability, the unit disk improper coloura-
bility problem is NP-hard in a relatively strong sense. In light of these negative results, our next question
is to consider approximability. The following proposition implies that the chromatic number of a unit
disk graph is approximable to within a factor of 3.

Proposition 61 (Peeters [130]). There is a polynomial-time algorithm that, for any unit disk graph G,
finds a proper colouring of G using at most 3ω(G)−2 colours.

The relatively simple proof of this uses geometric ideas to show that the degeneracy δ∗(G) is at most
3ω(G)− 3. (Consider the vertex with the largest first coordinate). Hence, a colouring using at most
3ω(G)−2 colours can be found inductively. Note that there exist (3ω−3)-regular unit disk graphs [112].
There has been no tangible improvement of this approximation result since then. Gräf et al. [59] provide
a more sophisticated heuristic called the STRIPE algorithm, but it also has performance guarantee of 3.

Since there is no improper analogue for colouring graphs with bounded degeneracy, the only known
positive approximation result is the following which gives a performance guarantee of 6.

Proposition 62. For any fixed non-negative integer k, there is a polynomial-time approximation algo-

rithm that, given a unit disk graph G, finds a k-improper colouring of G using at most
⌈

6ω(G)−6
k+1

⌉

colours.

This is a direct consequence of the bound ∆(G) ≤ 6ω(G)−7 for unit disk graphs, and Proposition 49. It
is unknown whether the best approximation ratio for computing χk of unit disk graphs is closer to 3/2 or
6, if k is a fixed positive integer.

A related problem is to consider the best upper bound for unit disk graphs on the ratio between the
k-improper chromatic number and the trivial lower bound, i.e.

⌈ ω
k+1

⌉

. Malesińska et al. [112] showed
that there are classes of unit disk graphs with χ(G) ≥ 3

2 ω(G); however, the question of whether this
parameter is closer to 3/2 or 3 is an enticing open problem. Results on colouring of random unit disk
graphs show that this parameter is lower than 3 for “most” unit disk graphs [115]. By the last proposition,
we know that for positive integers k this bound is at most 6.

Proposition 63 (Havet, Kang and Sereni [68]). There exist unit disk graphs Gn such that

χk(Gn)

ω(Gn)/(k +1)
≥

{

2 if k is odd, and
2(k +1)/(k +2) if k ≥ 2 is even.

Proof. Fix an arbitrary integer n > k/2 + 1. Consider the graph Gn whose vertices are the 2n points
equally spaced on a circle. Join each point to all other points on the circle except for the one directly
opposite it. It can be verified that Gn is a unit disk graph and that ω(Gn) = n.

Since each vertex is adjacent to all but one vertex in Gn, then αk(Gn) ≤ k + 2. When k is odd, we
can reduce this estimate by one: suppose k is odd and there is an induced subgraph S of size k +2 with
maximum degree at most k. Since k is odd, there must be two opposite (non-adjacent) vertices u and v
such that only one of them, say v, is in S. Then v must be adjacent to all other vertices in S and hence
have degree k +1, a contradiction.

Equation (3) yields the result.
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These examples are inspired by the unit disk graphs that show the ratio 3/2 can be attained in the case
k = 0 (cf. Malesińska et al. [112]) — these are also formed by equally spaced points around a circle.
That we can obtain higher ratios for all other cases (except k = 3) gives us further evidence to believe
that, for unit disk graphs, the improper chromatic numbers (i.e. when k ≥ 1) are harder to approximate
than the chromatic number.

On the other hand, we note that random analysis for this problem, generalising McDiarmid [115],
has been performed [103]. In the standard model for random unit disk graphs, it is shown, for nearly all
asymptotic choices for the distance parameter r(n), that, as n → ∞, the k-improper chromatic number
tends to a value at most 2

√
3/π ≈ 1.103 times the optimal. One interpretation of this is that, given large

instances G of randomly generated unit disk graphs, returning 2
√

3/π · ω(G)
k+1 is a reasonable approxima-

tion for χk.

3.2.4 Improper colouring of unit interval graphs

As unit interval graphs are particular cases of unit disk graphs, we investigate [68] improper colouring
for unit interval graphs.

Proposition 64 (Havet, Kang and Sereni [68]). For any fixed non-negative integers k and l, there
exists a unit interval graph Ik,l with maximum degree and clique number equal to l(k + 1) which is not
k-improperly l-colourable.

Proof. To construct Ik,l , just start with a (l(k+1))-clique K = Kl(k+1) and add a vertex u linked to exactly
(l −1)(k +1)+1 vertices of K. Suppose Ik,l has a k-improper l-colouring: K must have exactly (k +1)
vertices of each colour. Thus any vertex of K has impropriety k in K. As u has (l − 1)(k + 1) + 1
neighbours in K it must have at least one neighbour of each colour and hence cannot be coloured, a
contradiction. Ik,l is clearly a unit interval graph.

This proposition raises the question of the complexity of k-improperly l-colouring unit interval graphs
for fixed non-negative integers k and l. We prove now that this problem is polynomial time for general
interval graphs, and we provide a dynamic programming algorithm.

Theorem 65 (Havet, Kang and Sereni [68]). The k-improper l-colourability problem restricted to in-
terval graphs is in P for any fixed non-negative integers k and l.

This result does not fully answer the complexity question for improper colouring of unit interval
graphs: it is unknown whether, for k > 0 fixed, there is a polynomial-time algorithm to find χk(G) given
a unit interval graph G. The following result, however, shows that only two values are possible: the lower
bound given by Proposition 49, or this number plus one.

Theorem 66 (Havet, Kang and Sereni [68]). For any fixed non-negative integer k, there is a linear-
time algorithm that, given a unit interval graph G, finds a k-improper colouring of G using at most

l̂ =
⌈

ω(G)
k+1

⌉

+1 colours.

Proof. Let v1, . . . ,vn be a unit interval representation for G. Under this ordering, our colouring procedure
proceeds by assigning colour 1 to the first k+1 vertices, colour 2 to the next k+1, and so on until colour
l̂ has been assigned whereupon it begins assigning colour 1 again. If we now have an invalid colouring,
we can suppose without loss of generality that vk+1 and v(k+1)l̂+1 (both coloured 1) are adjacent. But,

because G is a unit interval graph, this implies that
{

vk+1, . . . ,v(k+1)l̂+1

}

induces a clique in G and this

contradicts the choice of ω(G).
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When only k is fixed, one can think of applying the algorithm of Theorem 65 with l =
⌈ ω

k+1

⌉

. However,

this may be polynomial neither in space nor in time, since space and time complexity both are O(lk) l(k+1)

and ω can be linear in the number of vertices. In light of this, we pose the following problem:

Problem 67 (Havet, Kang and Sereni [68]). Let G be a unit interval graph, and k a positive integer.

The preceding result states that χk(G) ∈
{⌈

ω(G)
k+1

⌉

,
⌈

ω(G)
k+1

⌉

+1
}

. Is there a polynomial-time algorithm to

decide which value is correct?

3.2.5 Improper colouring of weighted hexagonal graphs

For any k ≥ 6, the k-improper chromatic number of a hexagonal graph is its maximum weight because it
has maximum degree 6.

McDiarmid and Reed [117] showed that it is NP-complete to decide whether the chromatic number
of a weighted hexagonal graph is 3 or 4. Hence there is no polynomial time algorithm for finding the
weighted chromatic number of hexagonal graphs (unless P= NP). Hence one have to find approximate
algorithms. An algorithm that gives a colouring with at most c1 ×opt + c2 colours for some constants c1

and c2, where opt is optimal number of colours of such a colouring is said to be c1-approximate or to have
approximation ratio c1. For example, Theorem 21 give a 1-approximate algorithm for edge-colouring a
graph while Shannon’s result give a 3/2-approximate algorithm for edge-colouring a multigraph.

The better known so far has approximation ratio 4/3 and is based on the following result.

Theorem 68 (McDiarmid and Reed [117]). Let G be a weigthed hexagonal graph. For any weight
function p then

χ(G, p) ≤ 4
3

ω(G, p).

A distributed algorithm which guarantees the 4
3 ω(G, p) bound is reported by Narayanan and Schende [126,

127]. However, one expects approximate algorithm with ratio better than 4/3. In particular, McDiarmid
and Reed conjecture that for big weight the ratio may be decreased to almost 9/8.

Conjecture 69 (McDiarmid ans Reed [117]). There exists a constant c such that for any weigthed
hexagonal graph G and weight function p,

χ(G, p) ≤ 9
8

ω(G, p)+ c.

Note that the ratio 9/8 in the above conjecture is best possible. Indeed consider a 9-cycle C9 with
constant weight k. A colour maybe assigned to at most 4 colours, so χ(C9,k) ≥ 9k

4 . Clearly, ω(C9,k) =
2k. So χ(C9,k) ≥ 9

8 ω(C9,k). In [66], we give an evidence for this conjecture by proving a 7/6 ratio for
hexagonal graphs with girth at least 4. See also [150] for an alternative proof.

Theorem 70 (Havet [66]). Let G be a hexagonal graph with girth at least four. Then for any weight
function p, χ(G, p) ≤ 7

6 ω(G, p)+5.

We also provide [75] a distributed algorithm for [p]colouring such hexagonal graph G with 5
4 ω(G, p)+

3 colours.
Regarding improper colouring, we generalised [68] the above mentionned NP-completeness result

of McDiarmid and Reed:
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Theorem 71 (Havet, Kang and Sereni [68]). For 0 ≤ k ≤ 5, the following problem is NP-complete:
Instance: a weighted hexagonal graph (G, p).
Question: is (G, p) k-improper 3-colourable?

Hence one cannot expect polynomial-time algorithm for finding the k-improper chromatic number
of weighted hexagonal graphs. Therefore, our aim is to find approximate algorithm with approximation
ratio as small as possible.

A natural method to finding a k-improper colouring of (G, p) consists in finding first a k-improper
colouring of (G,q) with r colours, ideally χk(G,q). We then divide each weight into sets of size q; using r

colours for each of these sets, we obtain a k-improper r×
⌈

pmax
q

⌉

-colouring of (G, p). As χk(G, p)≥ pmax,

we obtain an (r/q)-approximate algorithm.
In [16], we improve this approximation ratio.
To do so, instead of considering only pmax, we consider the number of colours that a vertex and its

neighbours may require. As shown by the following, this number may be larger than pmax. The graph
K1,k+1 is the graph with k +2 vertices and k +1 edges linking one v ertex, called the centre to the k +1
others, called spikes.

Proposition 72. For every weight function p, χk(K1,k+1, p) ≥ 1
k +1 ∑

v∈V (K1,k+1)

p(v).

Proof. Let u be the centre of K1,k+1 and v1, . . . ,vk+1 its spikes. Consider a k-improper colouring C of
K1,k+1. For 1 ≤ i ≤ k + 1, set q(vi) = |C(vi) \C(u)|. The colouring C uses at least M = max{q(vi) +
p(u) | 1 ≤ i ≤ k + 1} ≥ p(u) + 1

k+1 ∑k+1
i=1 q(vi). But a colour in C(u) is assigned to at most k of the

spikes because the colouring is k-improper. Thus ∑k+1
i=1 q(vi) ≥ ∑k+1

i=1 p(vi)− kp(u). It follows M ≥
1

k+1(p(u)+ ∑k+1
i=1 p(vi)).

We denote by θk(G, p) = max{p(H)/(k + 1) | H star of G} and ωk(G, p) = max{pmax,θk(G, p)}.
According to Proposition 72, ωk(G, p) ≤ χk(G, p).

Our aim is to show algorihtms that k-improper [p]colours a graph G with at most αk ×ωk(G, p)+βk

colours, so proving an αk-approximate algorithm.

Theorem 73 (Bermond, Havet, Huc Linhares [16]). Let αk(r,q) = (k+1)r2

(k+2)rq−q2 and βk(r,q) = max{(k+

2)r2 − rq,(k +1)r2 + krq}.
Given a k-improper colouring C of (G,q) with r colours, there exists a polynomial algorithm that

gives a k-improper colouring (G, p) with at most αk(r,q)×ωk(G, p)+βk(r,q) colours.
In particular, if χk(G,q) ≤ r, then χk(G, p) ≤ αk(r,q)×ωk(G, p)+βk(r,q).

For 1-improper colouring or when the maximum degree ∆ of the graph G is k + 1, one can get
algorithms with better approximation ratio.

Theorem 74 (Bermond, Havet, Huc Linhares [16]). Let r and q be two integers. Set a = 2r − 2q if
r ≥ 2q and a = r if r ≤ 2q, and α′

1(r,q) = ar+rq
aq+rq and β′

1(r,q) = 4r2.
Given a 1-improper colouring C of (G,q) with r colours, there exists a polynomial algorithm that

gives a 1-improper colouring of (G, p) with at most α′
1(r,q)×ωk(G, p)+β′

1(r,q) colours.
In particular, if χ1(G,q) ≤ r, then χ1(G, p) ≤ α′

1(r,q)×ω1(G, p)+β′
1(r,q).
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Theorem 75 (Bermond, Havet, Huc Linhares [16]). Let r and q be two integers. Set a = (k +1)r−2
if r ≥ 2q and a = kr if r ≤ 2q, and α′′

k (r,q) = ar+rq
aq+rq and β′′

k (r,q) = ar + r2.
Let G be a graph with maximum degree k + 1. Given a k-improper colouring C of (G,q) with r

colours, there exists a polynomial algorithm that gives a k-improper colouring of (G, p) with at most
α′′

k (r,q)×ωk(G, p)+β′′
k (r,q) colours.

In particular, if χk(G,q) ≤ r, then χk(G, p) ≤ α′′
k (r,q)×ωk(G, p)+β′′

k (r,q).

For the triangular lattice R, we show [16] that χ1(R,q) =
⌈

5q
2

⌉

, χ2(R,q) = 2q, χ3(R,q) =
⌈

3q
2

⌉

,

χ4(R,q) =
⌈

4q
3

⌉

and χ5(R,q) =
⌈

7q
6

⌉

. Hence according to Theorems 74, 73 and 75, for 1 ≤ k ≤ 5, we

obtain αk-approximate algorithms for finding a k-improper colouring of a weighted hexagonal graph,
where α1 = 20

11 , α2 = 12
7 , α3 = 18

13 , α4 = 80
63 , and α5 = 41
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4 Colouring the arcs of a digraph

An edge-colouring of a graph is a mapping from the edge-set E(G) into a set of colours such that two
edges get different colours if they are adjacent that i.e. have an end-vertex in common. If we consider
digraphs, one may imagine several arc-colourings since there are different types of adjacency. Indeed
two adjacent arcs e and f may intersect into three different ways:

• either head(e) = head( f ) in which case e and f are said coheaded;

• or tail(e) = tail( f ), in which case e and f are said cotailed;

• or tail(e) = head( f ) or head( f ) = tail(e), in which case e and f are said consecutives.

Let D be a digraph. Suppose we would like to colour the arcs of D. We will get different colourings
depending on which types of adjacency impose two arcs to have different colours.

If arcs which are either coheaded, cotailed or consecutives must have different colours, then we are
looking for a usual edge-colouring of the underlying digraphs and the colour classes are matchings. See
Subsection 1.3.

If only coheaded arcs must get different colours then the colour classes are outforests and exactly
∆−(D) colours are needed and suffice. Indeed at a vertex v of indegree ∆−(D), all the arcs with head
v must get different colours. Conversely, if we assign at each vertex different colours arbitrarily to
incoming arcs, we obtain the desired colouring.

If coheaded and cotailed arcs must get different colours but consecutives ones may be coloured
the same, then each colour class is a union of disjoint directed paths or circuits. The problem is then
equivalent to finding an (optimal) edge-colouring of the bipartite graph with vertex-set

⋃

v∈V (D){v−,v+}
and edge-set {u−v+ | uv ∈ A(D)}. Hence, max{∆+(D),∆−(D)} colours are needed and suffice.

If only consecutives arcs must get different colours then the colour classes are cuts. A cut is a set of
arcs with tail in a fixed subset S of V (G) and head in V (G) \ S. Such colourings, introduced by Poljak
and Rödl [131], are called arc-colourings and are in one-to-one correspondence with the colouring of the
line-digraph of D. This digraph L(D) has vertex set V (L(D)) = E(D) and an arc a ∈ E(D) dominates
an arc b ∈ E(D) in L(D) if and only if head(a) = tail(b). The arc-chromatic number of D, denoted
χa(D), is the minimum number of colours of an arc-colouring of D. Clearly χa(D) = χ(L(D)), where
χ denotes the chromatic number. In the first section, show how some problems in function theory may

33



be modelled as an arc-colouring problem of digraphs in which each vertex has bounded outdegree or
bounded indegree. We then give the upper and lower bounds, shown in [17], on the number of colours
needed for such a colouring

If coheaded and consecutives arcs must get different colours then the colour classes are outstar
forests. An outtree is a digraph in which every vertex has indegree 1 except one, called the root which has
indegree 0; an outforest is the disjoint union of outtrees; an outstar is an outtree in which all the vertices
are dominated by the root and an outstar forest or galaxy is an outforest of outstars. The minimum
number of colours of such an arc colouring has been introduced by Guiduli [62] as the directed star
arboricity. It is an analog of the star arboricity defined in [2]. In [6], we show that finding the directed
star arboricity of a digraph is a NP-hard problem. More precisely, we show that determining if the
directed star arboricity of a digraph with out- and indegree at most 2 is NP-complete. In Subsection 4.2,
we show how some wavelength assignment problems in optical networks may be modelled by directed
star arboricity. We then expose some upper bounds on the directed star arboricity of digraphs with
bounded outdegree and/or bounded indegree proved in [6].

4.1 Arc-colouring of digraphs

Definition 76. We denote by Hk the complementary of the hypercube of dimension k, that is the digraph
with vertex-set all the subsets of {1, . . . ,k} and with arc-set {xy | x 6⊂ y}.

A homomorphism h : D→D′ is a mapping h : V (D)→V (D′) such that for every arc xy of D, h(x)h(y)
is an arc of D′.

Let c be an arc-colouring of a digraph D into a set of colours S. For any vertex x of D, we denote
by Col+c (x) or simply Col+(x) the set of colours assigned to the arcs with tail x. We define Col−(x) =
S \Col+(x). Note that Col−(x) contains (but may be bigger than) the set of colours assigned to the arcs
with head x. The cardinality of Col+(x) (resp. Col−(x)) is denoted by col+(x) (resp. col−(x)).

Lemma 77. For every digraph D, χa(D) = min{k : D → Hk}.

Proof. Assume that D admits an arc-colouring with {1, . . . ,k}. It is easy to check that Col + is a homo-
morphism from D to Hk.
Conversely, suppose that there exists a homomorphism h from D to H k. Assign to each arc xy an element
of h(y)\h(x), which is not empty. This provides an arc-colouring of D.

Definition 78. The complete digraph of order n, denoted ~Kn, is the digraph with vertex set {v1,v2, . . . ,vn}
and arc set {viv j | i 6= j}.

The transitive tournament of order n, denoted TTn, is the digraph with vertex set {v1,v2, . . . ,vn} and
arc set {viv j | i < j}.

θ is the function defined by θ(k) = min{s :

(

s
⌈

s
2

⌉

)

≥ k}.

The following corollary of Lemma 77 provides bounds on the arc-chromatic number of a digraph
according to its chromatic number.

Lemma 79 (Poljak and Rödl [131]). For every digraph D,

dlog(χ(D))e ≤ χa(D) ≤ θ(χ(D)).
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Proof. By the definition of the chromatic number, D → ~Kχ(D). As the subsets of {1, . . . ,k} with cardi-

nality
⌈

k
2

⌉

induce a complete digraph on
( k
d k

2e
)

vertices in Hk, we obtain a homomorphism from D to

Hθ(χ(D)). So χa(D) ≤ θ(χ(D)).
By Lemma 77, we have D → Hχa(D). As χ(Hχa(D)) = 2χa(D), we obtain D → ~K2χa(D) .

These bounds are tight since the lower one is achieved by transitive tournaments and the upper one
by complete digraphs by Sperner’s Lemma (see [149]).

4.1.1 Function theory and arc-colouring

Let f and g be two maps from a finite set A into a set B. Suppose that f and g are nowhere coinciding, that
is for all a∈ A, f (a) 6= g(a). A subset A′ of A is ( f ,g)-independent if f (A′)∩g(A′) = /0. We are interested
in finding the largest ( f ,g)-independent subset of A and the minimum number of ( f ,g)-independent
subsets to partition A. As shown by El-Sahili [45], this can be translated into an arc-colouring problem.

Let D f ,g and H f ,g be the digraphs defined as follows :

• V (D f ,g) = B and (b,b′)∈E(D f ,g) if there exists an element a in A such that g(a) = b and f (a) = b′.
Note that if for all a, f (a) 6= g(a), then D f ,g has no loop.

• V (H f ,g) = A and (a,a′) ∈ E(H f ,g) if f (a) = g(a′).

We associate to each arc (b,b′) in D f ,g the vertex a of A such that g(a) = b and f (a) = b′. Then
(a,a′) is an arc in H f ,g if, and only if, head(a) = tail(a′) (as arcs in D f ,g). Thus H f ,g = L(D f ,g). Note
that for every digraph D, there exists maps f and g such that D = D f ,g.

It is easy to see that an ( f ,g)-independent subset of A is an independent set in H f ,g and thus a cut of
D f ,g. In [44] El-Sahili proved the following :

Theorem 80 (El-Sahili [44]). Let f and g be two nowhere coinciding maps from a finite set A into a set
B. Then there exists an ( f ,g)-independent subset A′ of cardinality at least |A|/4.

As noted in [17], this theorem may be easily shown using the digraphs defined above. Indeed consider
a partition (V1,V2) be a partition of V (D f ,g) that maximizes the number a(V1,V2) of arcs with tail in V1

and head in V2. It is well-known that a(V1,V2) ≥ |E(D f ,g)|/4.

Let f and g be two nowhere coinciding maps from a finite set A into B. We define φ( f ,g) as the
minimum number of ( f ,g)-independent sets to partition A. Then φ( f ,g) = χ(H f ,g) = χa(D f ,g).

Let Φ(k) (resp. Φ∨(k, l)) be the maximum value of φ( f ,g) for two nowhere coinciding maps f
and g from A into B such that for every z in B, g−1(z) ≤ k (resp. either g−1(z) ≤ k or f−1(z) ≤ l).
The condition f −1(z) (resp. g−1(z)) has at most k elements means that each vertex has indegree (resp.
outdegree) at most k in D f ,g. Therefore we are interested in the arc-chromatic number of digraphs with
maximal outdegree k called k-digraph, and digraphs in which every vertex has either outdegree at most
k or indegree at most l called (k∨ l)-digraphs. Let Φ(k) (resp. Φ∨(k, l)) is the maximum value of χa(D)
for D a k-digraph (resp. (k∨ l)-digraph).

The two functions Φ and Φ∨ are closely related as

Proposition 81 (Bessy, Birmelé and Havet [17]).

Φ(k) ≤ Φ∨(k,0) ≤ ·· · ≤ Φ∨(k,k) ≤ Φ(k)+2
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Proof. The sole inequality that does not immediately follow the definitions is Φ∨(k,k) ≤ Φ(k)+2. Let
us prove it.
Let D be a (k∨ k)-digraph. Let V + be the set of the vertices of D with outdegree at most k and V − =
V (D) \V +. One can colour the arcs in D[V +]∪D[V−] with Φ(k) colours. It remains to colour the arcs
with tail in V− and head in V + with one new colour and the arcs with tail in V + and head in V− with a
second new colour.

In [17], we conjecture that Φ∨(k,k) is never equal to Φ(k)+2.

Conjecture 82 (Bessy, Birmelé and Havet [17]).

Φ∨(k,k) ≤ Φ(k)+1

In view of Proposition 81, getting good bounds on Φ will also give good bounds on Φ∨. Therefore,
we mainly focus on Φ. It is easy to check that Φ(1) = 3.

Theorem 83 (Bessy, Birmelé and Havet [17]). If k ≥ 2,

max{log(2k +3),θ(k +1)} ≤ Φ(k) ≤ θ(2k +1).

Proof. It is easy to see that the multigraph underlying a k-digraph is 2k-degenerate and so (2k + 1)-
colourable, by Proposition 6. Then Theorem 79 gives the upper bound on Φ(k).

The lower bounds are obtained by considering a regular tournament on 2k +1 vertices and the com-
plete digraph ~Kk+1.

Analogously, we showed [17] the following bound on Φ∨.

Theorem 84 (Bessy, Birmelé and Havet [17]).

max{log(2k +2l +4),θ(k +1),θ(l +1)} ≤ Φ∨(k, l) ≤ θ(2k +2l +2)

We obtained [17] slightly better bounds on Φ and Φ∨. Moreover, we provide the exact values of
Φ(k) and Φ∨(k, l) for l ≤ k ≤ 3. They are summarized in the following table :

Φ∨(0,0) = 1 Φ∨(1,0) = Φ(1) = 3 Φ∨(2,0) = Φ(2) = 4 Φ∨(3,0) = Φ(3) = 4
Φ∨(1,1) = 3 Φ∨(2,1) = 4 Φ∨(3,1) = 4

Φ∨(2,2) = 4 Φ∨(3,2) = 5
Φ∨(3,3) = 5

In view of all these results, we made the following conjecture:

Conjecture 85 (Bessy, Birmelé and Havet [17]). Let l be a positive integer. There exists an integer kl

such that if k ≥ kl then Φ∨(k, l) = Φ(k).

As an evidence, we showed that Φ∨(k,0) = Φ(k). Moreover, if l = 1, then for every k, at least one of
Conjecture 82 and Conjecture 85 holds : Φ∨(k,k) ≤ Φ(k)+1 or Φ∨(k,1) = Φ(k).
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4.2 Directed star arboricity

4.2.1 Motivation: WDM in star network

We are given a star network in which a center node is connected by an optical fiber to a set of nodes
V . Each node v of V sends a set of multicasts M1(v), . . . ,Ms(v)(v) to the sets of nodes S1(v), . . . ,Ss(v)(v).
Using WDM (wavelength-division multiplexing), different signals may be sent at the same time through
the same fiber but on different wavelengths. The central node is an all-optical transmitter: hence, it may
redirect a signal arriving from a node on a particular wavelength to some of the others nodes on the
same wavelength. Therefore for each multicast Mi(v), the node v should send the message to the central
node on a set of wavelengths so that the central node redirect it to each node of S i(v) using one of these
wavelengths. The aim is to minimize the total number of used wavelengths.

In the very fundamental case when the fiber is unique and each vertex v sends a unique multicast
M(v) to the set S(v) of nodes. Let D be the digraph with vertex set V such that the outneighbourhood of
a vertex v is S(v). Note that this is a digraph and not a multidigraph (there is no multiple arcs) as S(v) is
a set. Then the problem is to find the directed star arboricity of D.

For a vertex v, its indegree d−(v) corresponds to the number of multicasts it receives. A sensible
assumption is that a node receives a bounded number of multicasts. Hence, we studied the directed star
arboricity of a digraph D with maximum indegree ∆−.

4.2.2 Directed star arboricity of digraph with bounded (in)degree

Brandt and Gonzalez [33] showed that dst(D) ≤ d5∆−/2e. This upper bound is tight if ∆− = 1 because
odd circuits have directed star arboricity 3. However it can be improved for larger value of ∆− = 1. We
conjecture that if ∆− ≥ 2, then dst(D) ≤ 2∆−.

Conjecture 86 (Amini et al. [6]). Every digraph D with maximum indegree k ≥ 2 satisfies dst(D) ≤ 2k.

This conjecture would be tight as Brandt [32] showed that for every k, there is an acyclic digraph Dk

such that ∆−(Dk) = k and dst(Dk) = 2k. Note that to prove this conjecture, it is sufficient to prove it for
k = 2 and k = 3. Indeed a digraph with maximum indegree k ≥ 2 has an arc-partition into k/2 digraphs
with maximum indegree 2 if k is even and into (k− 1)/2 digraphs with maximum indegree 2 and one
with maximum indegree 3.

It is easy to see that an outforest has directed star arboricity 2. Hence, an idea to prove Conjecture 86
would be to show that every digraph has an arc-partition into ∆− outforests. However this statement is
false. Indeed A. Frank [51] (see also [142], p.908) characterized digraphs having an arc-partition into k
outforests. Let D = (V,A). For any U ⊂V , the digraph induced by the vertices of U is denoted D[U ].

Theorem 87 (A. Frank). A digraph D = (V,A) has an arc-partition into k outforests if and only if
∆−(D) ≤ k and for every U ⊂V, the digraph D[U ], has at most k(|U |−1) arcs.

However, Theorem 87 implies that every digraph D has an arc-partition into ∆−+1 outforests. Indeed
for any U ⊂ V , ∆−(D[U ]) ≤ min{∆−, |U | − 1}, so D[U ] has at most min{∆−, |U | − 1}× |U | ≤ (∆− +
1)(|U |−1) arcs. Hence, every digraph has directed star arboricity at most 2∆− +2.

Corollary 88. Every digraph D satisfies dst(D) ≤ 2∆− +2.

In [6], we lessen this upper bound by one so showing Conjecture 86 up to 1.
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Theorem 89 (Amini et al. [6]).
dst(D) ≤ 2∆− +1

Proof. The idea to prove this theorem is to show that every digraph has an arc-partition into ∆− outforests
and a galaxy G. To do so, we shall prove a stronger result by induction.

A sink is a vertex with outdegree 0. A source is a vertex with indegree 0. A multidigraph is k-nice
if ∆− ≤ k and if the tails of parallel arcs, if any, are sources. A k-decomposition of a digraph D is an
arc-partition into k outforests and a galaxy G such that every source of D is isolated in G. Let u be a
vertex of D. A k-decomposition of D is u-suitable if no arc of G has head u.

Let u be a vertex of a k-nice multidigraph D. Then D has a u-suitable k-decomposition.
We proceed by induction on n+ k. We now discuss the connectivity of D.

• If D is not connected, we apply induction on every component.

• If D is strongly connected, every vertex has indegree at least one. Remember also that there is
no parallel arcs. Let v be an outneighbour of u. There exists a spanning arborescence T with
root v which contains all the arcs with tail v. Let D′ be the digraph obtained from D by removing
the arcs of T and v. Observe that D′ is (k − 1)-nice. By induction, it has a u-suitable (k − 1)-
decomposition (F1, . . . ,Fk−1,G). Note that Fi, T and G contain all the arcs of D except those with
head v. By construction, G′ = G∪uv is a galaxy since no arc of G has head u. Let u1, . . . ,ul−1 be
the inneighbours of v distinct from u, where l ≤ k. Let F ′

i = Fi ∪ uiv, for all 1 ≤ i ≤ l − 1. Then
each F ′

i is an outforest, so (F1, . . . ,Fk−1,T,G′) is a u-suitable k-decomposition of D.

• If D is connected but not strongly connected, we consider a strongly connected terminal component
D1. Set D2 = D\D1. Let u1 and u2 be two vertices of D1 and D2, respectively, such that u is one
of them.

If D2 has a unique vertex v (thus u2 = v), since D is connected, there exists a spanning arborescence
T of D with root v. Now D′ = D \A(T ) is a (k− 1)-nice multidigraph, so by induction it has a
u1-suitable (k − 1)-decomposition. Adding T to this decomposition, we obtain a u1-suitable k-
decomposition, which is also u2-suitable since u2 is a source. Since u = u1 or u = u2, we have our
conclusion.

If D2 has more than one vertex then , by induction, it admits a u2-suitable k-decomposition
(F2

1 , . . . ,F2
k ,G2). Moreover the digraph D′

1 obtained by contracting D2 to a single vertex v has
a u1-suitable k-decomposition (F 1

1 , . . . ,F1
k ,G1). Moreover, since v is a source, it is isolated in G1.

Hence G = G1 ∪G2 is a galaxy. We now let Fi be the union of F1
i and F2

i by replacing the arcs
of F1

i with tail v by the corresponding arcs in D. Then (F1, . . . ,Fk,G) is a k-decomposition of D
which is suitable for both u1 and u2.

Moreover, we settle Conjecture 86 for acyclic digraphs.

Remark 90. Note that we restrict ourselves to digraphs, i.e. circuits of length two are permitted, but not
multiple arcs. When multiple arcs are allowed, all the bounds above do not hold. Indeed the multidigraph
Tk with three vertices u, v and w and k parallel arcs uv, vw and wu satisfies dst(Tk) = 3k. One can easily
show (see [6]) that for multidigraphs, the bound dst(D) ≤ 3∆− is sharp.
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We then study the directed star arboricity of a digraph bounded with maximum degree. By Theo-
rem 23, one can colour the edges of a multigraph with ∆(G)+µ(G) colours so that incident edges have
different colours. Since the multigraph underlying a digraph has maximum multiplicity at most two, for
any digraph D, dst(D) ≤ ∆+2. We conjecture the following:

Conjecture 91 (Amini et al. [6]). Let D be a digraph with maximum degree ∆ ≥ 3. Then dst(D) ≤ ∆.

This conjecture would be tight since every digraph with ∆ = ∆− has directed star arboricity at least
∆. In [6], we prove that Conjecture 91 holds when ∆ = 3.

Theorem 92 (Amini et al. [6]). Let D be a digraph. If ∆(D) ≤ 3 then dst(D) ≤ 3.

A first step towards Conjectures 86 and 91 would be to prove the following statement which is weaker
than these two conjectures.

Conjecture 93 (Amini et al. [6]). Let k ≥ 2 and D be a digraph. If max(∆−,∆+) ≤ k then dst(D) ≤ 2k.

This conjecture holds and is far from being tight for large k. Indeed Guiduli [62] showed that
if max(∆−,∆+) then dst(D) ≤ k + 20log k + 84. Since max(∆−,∆+) ≤ ∆, every digraph D satisfies
dst(D) ≤ ∆ + 20log ∆ + 84. Guiduli’s proof is based on the fact that, when both out and indegree are
bounded, the colour of an arc depends of the colour of few other arcs. This bounded dependency allows
the use of the Lovász Local Lemma. This idea was first used by Algor and Alon [2], for the star arboric-
ity of undirected graphs. Note also that Guiduli’s result is (almost) tight since there are digraphs D with
max(∆−,∆+) ≤ p and dst(D) ≥ p+Ω(log p). (See [62].) Note also that similarly as for Conjecture 86,
it is sufficient to prove Conjecture 93 for k = 2 and k=3. In [6], we prove that Conjecture 93 holds for
k = 2. By the above remark, it implies that Conjecture 93 holds for all even k.

4.2.3 Several fibers and several multicasts

Next, we study the more general (and more realistic) problem in which the center is connected to the
nodes of V with n optical fibers. Morover each node may sent several multicasts. We model it as a
labelled digraph problem: We consider a digraph D on vertex set V . For each multicast (v,S i(v)) we add
the set of arcs Ai(v) = {vw,w∈ Si(v)} with label i. The label of an arc a is denoted by l(a). Thus for every
couple (u,v) of vertices and label i there is at most one arc uv labelled by i. If each vertex sends at most
m multicasts, there are at most m labels on the arcs. Such a digraph is said to be m-labelled. One wants
to find a n-fiber wavelength assignment of D, that is a mapping Φ : A(D) → Λ×{1, . . . ,n}×{1, . . .n} in
which every arc uv is associated a triple (λ(uv), f +(uv), f−(uv)) such that :

(i) (λ(uv), f −(uv)) 6= (λ(vw), f +(vw));

(ii) (λ(uv), f −(uv)) 6= (λ(u′v), f−(u′w));

(iii) if l(vw) 6= l(vw′) then (λ(vw), f +(vw)) 6= (λ(vw′), f +(vw′)).

λ(uv) corresponds to the wavelength of uv, and f +(uv) and f−(uv) the fiber used in u and v respectively.
Hence the condition (i) corresponds to the fact that an arc entering v and an arc leaving v have either
different wavelength or different fibers; the condition (ii) corresponds to the fact that two arcs entering
v have either different wavelength or different fibers; the condition (iii) corresponds to the fact that two
arcs leaving v with different labels have either different wavelengths or different fibers. The problem is
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then to find the minimum cardinality λn(D) of Λ such that there exists an n-fiber wavelength assignment
of D.

The crucial thing in an n-fiber wavelength assignment is the function λ which assigns colours (wave-
lengths) to the arcs. It must be an n-fiber colouring, that is a function φ : A(D) → Λ, such that at each
vertex v, for each colour in λ ∈ Λ, in(v,λ)+ out(v,λ) ≤ n with in(v,λ) the number of arcs coloured λ
entering v and out(v,λ) the number of labels l such that there exists an arc leaving v coloured λ. Once we
have an n-fiber colouring, one can easily find a suitable wavelength assignment by assigning for every
vertex v and every colour λ a different fiber to each arc entering v with colour λ and each set of arcs
leaving v coloured λ and labelled the same. Hence λn(D) is the minimum number of colours such that
there exists an n-fiber colouring.

We are particularly interested in λn(m,k) = max{λn(D) | D is m-labelled and ∆−(D) ≤ k} that is the
maximum number of wavelengths that may be necessary if there are n-fibers and each node sends at most
m and receives at most k multicasts. In particular, λ1(1,k) = max{dst(D) | ∆−(D) ≤ k}. So our above
mentionned results show that 2k ≤ λ1(1,k) ≤ 2k + 1. Brandt and Gonzalez showed that for n ≥ 2 then
λn(1,k) ≤

⌈

k
n−1

⌉

. In [6], we study the case when n ≥ 2 and m ≥ 2. We show that if m ≥ n then

⌈

m
n

⌈

k
n

⌉

+
k
n

⌉

≤ λn(m,k) ≤
⌈

m
n

⌈

k
n

⌉

+
k
n

⌉

+C
m2 logk

n
for some constant C.

We also show that if m < n then
⌈

m
n

⌈

k
n

⌉

+
k
n

⌉

≤ λn(m,k) ≤
⌈

k
n−m

⌉

.

The lower bound generalizes Brandt and Gonzalez [33] results which established this inequality in the
particular cases when k ≤ 2, m ≤ 2 and k = m. The digraphs used to show this lower bound are all
acyclic. We show that if m ≥ n then this lower bound is tight for acyclic digraphs. Moreover the above
mentionned digraphs have large outdegree. Generalizing the result of Guiduli [62], we show that for an
m-labelled digraph D with both in- and outdegree bounded by k then few colours are needed:

λn(D) ≤ k
n

+C′m
2 log k

n
for some constant C′.
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[6] O. Amini, F. Havet, F. Huc, and S. Thomassé. Directed star arboricity with applications to
WDM. Submitted, 2007.

40



[7] L. D. Andersen. On edge-colouring of graphs. Math. Scand. 40:161–175, 1977.

[8] K. Appel and W. Haken. Every planar map is four colourable. I. Discharging. Illinois J.
Math. 21, 429–490, 1977.

[9] K. Appel, W. Haken, and J. Koch. Every planar map is four colourable. II. Reducibility. Illinois J.
Math. 21:491–567, 1977.

[10] K. Appel and W. Haken. Every Planar Map is Four Colourable. Contemporary Mathematics 98.
American Mathematical Society, Providence, RI, 1989.

[11] S. Arora and C. Lund. Hardness of approximation. In Approximation Algorithms for NP-hard
Problems, (Ed. D. Hochbaum), PWS Publishing, Boston, 1996.

[12] K. Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J. (2) 19:357–
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Teubner, 1968.

[14] M. Behzad. Graphs and their chromatic numbers. PhD Thesis, Michigan State University, 1965.

[15] P. Bella, D. Král’, B. Mohar and K. Quittnerova. Labeling planar graphs with a condition at
distance two, European J. of Combin., to appear.

[16] J.-C. Bermond, F. Havet, F. Huc and C. Linhares-Sales, Allocation de fréquences et coloration
impropre des graphes hexagonaux pondérés. In 9e rencontres francophones sur les Aspects Al-
gorithmiques des Telecommunications (ALGOTEL’2007), Ile d’Oléron, France, Mai 2007.
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