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We first compute the chromatic number of Kneser and Schrijver graphs using the Borsuk-
Ulam theorem and Gale’s Lemma. Then, we consider their local-chromatic number (a coloring
parameter bounded above by the chromatic number) using the Zig-Zag Theorem (about col-
orings of graphs for which topological methods are relevant when estimating their chromatic
number) proved by Ky Fan’s Theorem.

1 Chromatic number of Kneser and Schrijver graphs

In this section, we define the Kneser and Schrijver graphs and consider their chromatic number.
Let [m] denote the set {1, · · · ,m} and

(
S
`

)
the set of all `-subsets of S.

Definition 1. Let m, ` ∈ N and m ≥ 2`. The Kneser Graph KG(m, `) has vertex set
([m]
`

)
,

i.e., all `-subsets of a set with m elements, and AB ∈ E(KG(m, `)) iff A ∩B = ∅.

If m = 2`, then KG(m, `) is a matching.
If ` = 1, then KG(m, `) ∼= Km.
KG(5, 2) is isomorphic to the Petersen Graph.

Lemma 2. χ(KG(m, `)) ≤ m− 2`+ 2.

Proof. Let A ∈
([m]
`

)
. Let c(A) = minA if minA < m−2`+ 2 and c(A) = m−2`+ 2 otherwise.

Let us check that c is a proper coloring of KG(m, `). Assume that c(A) = c(B) = i. If
i < m−2`+2, then minA = minB = i. Hence A and B intersects, and so AB /∈ E(KG(m, `)).
If i = m − 2` + 2, then minA ≥ m − 2` + 2 and minB ≥ m − 2` − 2. Thus A and B are two
`-subsets of {m− 2`+ 2, . . .m}, a set of 2`− 1 elements. Therefore A and B must intersect and
AB /∈ E(KG(m, `)).

A more general way for properly coloring KG(m, `) with m − 2` + 2 colors can be defined
as follows. Partition [m] into m − 2` + 2 odd cardinality subsets T1, · · · , Tm−2`+2. For any

A ∈
([m]
`

)
, color it with any i such that |A ∩ Ti| > |Ti|/2. Such an i exists since otherwise,

|A| =
∑

i |A ∩ Ti| ≤
∑

1≤i≤m−2`+2(|Ti| − 1)/2 =
∑

1≤i≤m−2`+2 |Ti|/2− (m− 2`+ 2)/2 = `− 1.
Now the coloring is proper because any two sets receiving the same colour i must have at least
one element of Ti in common as they both contain more than a half of Ti. Observe that the
coloring given in Lemma 2 is obtained for |T1| = · · · = |Tm−2`+1| = 1 and |Tm−2`+1| = 2`− 1.
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In 1955, Kneser conjectured [7] that χ(KG(m, l)) = m − 2` + 2. This was proved in 1978
by Lovász [11]. (Dates refer to publication year.) The same year another proof was given by
Bárány.

Theorem 3 (Lovász 1978 [11]). χ(KG(m, `)) = m− 2`+ 2.

While Lovász’s proof gave a general lower bound on the chromatic number of graphs in
terms of topology, Bárány’s proof is very specifically tailored for Kneser graphs. On the other
hand, it is very simple and cute. Schrijver used Bárány’s idea in a more general setting thereby
obtaining the result we present below.

Definition 4. Let m, ` ∈ N and m ≥ 2`. The Shrijver Graph SG(m, `) is the subgraph of

KG(m, `) induced by the vertices A that are stable, i.e., the sets A ∈
([m]
`

)
that do not contain

consecutive elements modulo m, i.e., the subsets of [m] that induce a stable (i.e. independent)
set on the m-cycle with vertex set [m] in order.

If m = 2`+ 1, SG(m, `) is a cycle of size m.

By definition, SG(m, `) is a subgraph of KG(m, `), so χ(SG(m, `)) ≤ χ(KG(m, `)). Note that
while KG(m, `) is vertex-transitive, SG(m, `) is not.
Still in 1978, Schrijver [17] generalized Theorem 3:

Theorem 5 (Schrijver [17]). χ(SG(m, `)) = m− 2`+ 2.

In some sense, Theorem 5 is best possible. Indeed, Schrijver also proved that SG(m, `) is
vertex-color-critical. We recall that a graph G is vertex-color-critical if χ(G − v) < χ(G) for
every vertex v ∈ V (G).

We now first give a proof of Theorem 5, which clearly implies the Lovász-Kneser Theorem
(Theorem 3), and then present also a direct proof of Theorem 3.

1.1 Proof of Shrijver’s Theorem

Bárány’s proof [2] used the following lemma.

Lemma 6 (Gale’s lemma). It is possible to place m points on the sphere Sm−2` such that every
open hemisphere contains at least ` points.

To prove his theorem, Schrijver strengthened this lemma.

Lemma 7 (Strong Gale Lemma (Schrijver)). It is always possible to place m points on the
sphere Sm−2` s.t. every open hemisphere contains at least ` points corresponding to a stable
`-subset (i.e., a vertex of SG(m, `)).

The main ingredient of basically all proofs of the Lovász-Kneser and Shrijver’s theorems is
the celebrated Borsuk-Ulam theorem. See the book [13] of Matoušek. (We note that by now
Matoušek [14] found a purely combinatorial proof, too. However, it uses a combinatorial lemma,
called Tucker’s Lemma, which is a combinatorial version of the Borsuk-Ulam theorem. Cf. the
lectures by Frédéric Meunier.) This theorem has many equivalent versions. One of them is the
following.

Theorem 8 (Borsuk-Ulam). Let f : Sd → Rd be a continuous map. There exists x ∈ Sd such
that f(x) = f(−x).

Another, equivalent form we state as a corollary.
A set X ⊆ Sd is said to be antipodal-free if for every x ∈ X we have −x /∈ X.
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Corollary 9. If k antipodal-free open (resp. closed) sets cover Sd, then k ≥ d+ 2.

Proof. Assume for a contradiction that d+ 1 antipodal-free closed sets D1, · · · , Dd+1 cover Sd.
Let f : Sd → Rd be defined by f(x) = (dist(x,D1), · · · ,dist(x,Dd)), where dist stands for
distance. By the Borsuk-Ulam Theorem (Theorem 8), there exists x ∈ Sd such that f(x) =
f(−x). Observe that if fi(x) = 0 for any i ≤ d, then dist(x,Di) = 0 = dist(−x,Di) meaning
that x,−x ∈ Di, a contradiction. So fi(x) > 0 for every i, thus neither of x,−x are in Di for
i ≤ d. Hence, both x and −x must be in Dd+1, a contradiction.

Proving the statement for antipodal-free open sets from here is a routine topological argu-
ment: If an open covering as in the statement is given, then each open set involved in it can be
shrinked a little to obtain closed sets still satisfying the conditions. So no fewer open sets are
enough than closed ones for such a covering.

Proof of Theorem 5. For any x ∈ Sm−2`, let H(x) be the open hemisphere “centered” in x.
Place m points on Sm−2` as in the Strong Gale Lemma. Hence, for any x ∈ Sm−2`, H(x)

contains a stable `-subset. Let us consider a proper coloring of SG(m, `) with t colors. We
define a covering of Sm−2` as follows. For any 1 ≤ i ≤ t, let Ai be the set of x ∈ Sm−2` such
that H(x) contains a stable `-subset with color i.

By the placement,
⋃
i≤tAi = Sm−2`. Moreover, all Ai, 1 ≤ i ≤ t, are open sets.

Assume for a contradiction that both x and −x are in Ai. Then H(x) and H(−x) contain
stable `-subsets with color i. But these sets are disjoint, contradicting the assumption that the
coloring is proper.

Hence, A1, · · · , At satisfy the hypothesis of Corollary 9. Hence, t ≥ m− 2`+ 2.

1.2 Proof of the Lovász-Kneser Theorem, by J. Greene

Greene’s proof [6] of the Lovász-Kneser Theorem is also based on the Borsuk-Ulam Theorem.
It uses a slight variation of Corollary 9.

Corollary 10. If k antipodal-free sets cover Sd, and k− 1 of them are open and the remaining
one is closed, then k ≥ d+ 2.

Proof of Theorem 3. Place m points on Sm−2`+1 in general position (no m − 2` + 2 points on
a great circle). Fix a coloring of KG(m, `) with t colors and let us define A1, · · · , At as in the
previous proof. As before, for any i ≤ t, Ai is open and antipodal-free.

Let B = Sm−2`+1 \
⋃
i≤tAi. The set B is closed. For purpose of contradiction, assume that

both x and −x are in B. Then at most `− 1 points are in H(x) (resp., in H(−x)). Hence, at
least m− 2`+ 2 points are in Sm−2`+1 \ (H(x) ∪H(−x)) contradicting the general position.

Since A1, · · · , At, B cover Sm−2`+1, Corollary 10 implies t ≥ m− 2`+ 2.

The advantage of this proof is that it avoids the use of Gale’s lemma. On the other hand,
it does not seem to generalize for Shrijver graphs.

1.3 Fractional chromatic number

The fractional chromatic number is given by the fractional relaxation of the integer program
defining the chromatic number.

Let us be more precise. A fractional coloring is a collection {S1, . . . , S`} of independent
sets along with corresponding non-negative real weights {w1, . . . , w`} such that the sum of the
weights of the independent sets containing any vertex is at least 1, i.e., ∀v ∈ V,

∑
{Si | v∈Si}wi ≥
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1. Observe that a coloring is simply a fractional coloring in which every weight is 0 or 1. A frac-
tional coloring is a fractional c-coloring if the sum of the weights of the independent sets equals
c, that is

∑
iwi = c. The fractional chromatic number of G, denoted by χf (G), is the infimum

of the real numbers c such that G has a fractional c-coloring. Notice that χf (G) ≤ χ(G).

One of the reasons why Kneser (and Schrijver) graphs are interesting is because they are
graphs with a large gap (as large as we want) between the fractional chromatic number and the
chromatic number. (In some sense Kneser graphs are “the canonical” examples of such graphs.
This has to do with the possibility of defining the fractional chromatic number via the existence
of graph homomorphisms to certain Kneser graphs.) This gap also somehow explains why it is
difficult to bound the chromatic number of Kneser graphs from below, since elementary lower
bounds usually also bound the fractional chromatic number from below.

Proposition 11. χf (KG(m, `)) ≤ m/`.

Proof. Set G = KG(m, `). Because G is vertex-transitive, χf (G) = |V (G)|/α(G) (see [16]),
where α(G) is the maximum size of an independent set of G.

The
(
m−1
`−1
)

sets of
([m]
`

)
containing i form an independent set Si, so α(G) ≥

(
m−1
`−1
)
. Hence

χf (G) ≤ |V (KG(m,`))|
(m−1
`−1 )

=
(m` )

(m−1
`−1 )

= m/`.

We note that α(KG(m, l)) =
(
m−1
`−1
)

by the celebrated Erdős-Ko-Rado theorem, and thus
there is equality in the above Proposition.

It is well-known that χf (G) = 2 if and only if G is bipartite. In contrast, for every ε > 0
and large M , there exists a graph with χf (G) ≤ (2 + ε) and χ(G) ≥M . It suffices to consider
a Kneser graph KG(m, `) with M − 2 + 2` ≤ m ≤ (2 + ε)` and such an m exists if ` ≥ M−2

ε .

Remark 12. There are not very many graph families known with the property of having a
large gap between chromatic and fractional chromatic number. In several of these cases one can
use the topological method to determine the chromatic number. An exceptional family is that
of the shift graphs Hm defined by V (Hm) = {(i, j) | i, j ∈ [m] i < j} and E(Hm) = {(i, j), (k, l) |
j = k or i = l}.

Hm can also be defined as the line graph of the transitive tournament on m points, where
the line graph L( ~D) of a directed graph ~D is defined on the arcs of ~D as vertices with two of
them being connected if the head of one is the tail of the other. It is a nice exercise (see [12]
Problem 9.26) to show that χ(L( ~D)) ≥ log2 χ(D), where χ(D) is simply the chromatic number
of the underlying undirected graph D of ~D. In case of the transitive tournament this gives
χ(Hm) ≥ log2m, which is actually tight.

On the other hand, it is not very difficult to prove that χf (Hm) < 4. Let the complete
directed graph on m vertices be the one containing an arc in both directions between any pair
of its m vertices. Its line graph Sm is vertex-transitive and contains Hm as an induced subgraph.
it is easy to show that Sm has independent sets of size larger than (m2−1)/4, while the number

of its vertices is m(m− 1). This gives χf (Hm) ≤ χ(Sm) = m(m−1)
α(Sm) < 4.

2 Local Chromatic Number

Definition 13. Let c : V → N be a coloring of G = (V,E). For any A ⊆ V , let c(A) = {c(v) |
v ∈ A}.

A coloring c is r-local if it is proper and maxv∈V |c(N [v])| ≤ r where N [v] is the closed
neighborhood of v, i.e., N [v] = N(v) ∪ {v}. Observe that for a proper coloring, |c(N [v])| =
|c(N(v))|+ 1.
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For any graph G = (V,E), let Ψ(G) = minc proper coloring of G maxv∈V |c(N [v])|.

2.1 Around χf ≤ Ψ ≤ χ

By definition, we directly have :

Proposition 14. For any graph G, Ψ(G) ≤ χ(G).

Note that, in any proper coloring with χ(G) colors, any color class contains a vertex that
sees every other color. Hence, any r-local coloring of G with r < χ(G) should use strictly more
than χ(G) colors. It is somewhat counterintuitive that such a waste of colors globally can pay
off locally. But this is actually the case.

Note that if G has an r-local coloring and u, v ∈ V have the same color and see the same
colors, then we can identify them without destroying r-locality. This leads to the following
definition.

Definition 15. Let U(m, r) be the graph defined by

V (U(m, r)) = {(x,A) | x ∈ [m], A ⊆ [m], x /∈ A, |A| = r − 1}
E(U(m, r)) = {{(x,A), (y,B)} | x ∈ B, y ∈ A}.

In essence, for a vertex (x,A), x represents its color and the set A represents the set of colors
of its neighbors. Thus the following proposition is straightforward.

Proposition 16. G admits an r-local coloring if and only if there is an m ∈ N such that a
homomorphism h : G→ U(m, r) exists.

Proposition 17 ([8]). χf (U(m, r)) = r.

Proof. Set G = U(m, r). The graph G is vertex transitive so χf (G) = |V (G)|/α(G). But
|V (G)| = r

(
m
r

)
and α(G) ≥

(
m
r

)
because the sets (x,A) such that x = min(A ∪ {x}) form an

independent set in G. This shows χf (G) ≤ r.
The equality comes from the fact that χf (G) ≥ ω(G) ≥ r. Indeed, the set (x,R \ {x}) for

any r-set R of [m] is a clique in G.

Corollary 18. For any graph G, χf (G) ≤ Ψ(G).

Proof. Let G be a graph with Ψ(G) = r. Then there is a homomorphism from G to U(m, r)
for some m, and χf can only be increased by a homomorphism.

Proposition 14 and Corollary 18 yield

χf (G) ≤ ψ(G) ≤ χ(G) for all graphs G.

It is easy to see that ψ(G) = 2 if and only if χ(G) = 2, and so if and only if χf (G) = 2. In
contrast, for larger values of ψ(G), Erdős et al. [5] proved that χ(G) can be arbitrarily large.

Theorem 19 (Erdős, Füredi, Hajnal, Komjáth, Rödl, Seress 1986, [5]). For any k ≥ 3, there
exists a graph G s.t. Ψ(G) = 3 and χ(G) ≥ k.

Proof. (Sketch.) It can be proved that limm→∞χ(U(m, 3)) = +∞. Since ψ(U(m, 3)) = 3 this
implies the statement.

To verify our claim about the above limit we can use what is said in Remark 12. Note that
each directed graph ~D naturally induces an orientation on L( ~D): the edge of L( ~D) between
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arcs a, b of ~D is oriented from a to b if the head of a is the tail of b. For natural numbers
1 ≤ x < y < z ≤ m the ordered pair (y, xz) consisting of the number y and the 2-element set
xz = {x, z} is a vertex of U(m, 3). On the other hand it can easily be identified with an arc
of the just described oriented version of the shift graph Hm considered as the line graph of the
transitive tournament on m vertices. We can observe that the line graph of this oriented graph
~Hm is isomorphic to the graph induced by U(m, 3) on the above type of vertices. Using the
general inequality mentioned in Remark 12 this gives χ(U(m, 3)) ≥ χ(L( ~Hm)) ≥ log2 log2m
that indeed goes to infinity with m.

2.2 Local chromatic number of Kneser and Schrijver graphs

Since there is an arbitrarily large gap between the fractional chromatic and the chromatic
number of both Kneser and Schrijver graphs Ψ(KG(m, `)) =?, Ψ(SG(m, `)) =? are naturally
occurring questions

This is partially answered by the following.

Theorem 20 (Simonyi and Tardos [19], Simonyi, Tardos and Vrećica[21]). Let χ = m−2`+ 2
be fixed.

For m, ` large enough, Ψ(SG(m, `)) = bχ2 c+ 2.

A proper coloring c : V → N is wide if, for any x, y ∈ V with c(x) = c(y), there is no walk
of length 5 between x and y.

Lemma 21. If G admits a wide coloring with t colors, then Ψ(G) ≤ b t2c+ 2.

Proof. Let c be a wide coloring of G with t colors. Let U = {v ∈ V (G) | |c(N(v))| > t/2}. Let
h, h′ ∈ N(U). Let x, y ∈ U such that h ∈ N(x) and h′ ∈ N(y). There is a color s such that
there are a ∈ N(x) and b ∈ N(y) such that c(a) = c(b) = s. (This is because both c(N(x)) and
c(N(y)) contain more than half of the colors.) If {h, h′} ∈ E(G), then (a, x, h, h′, y, b) is a 5-walk
from a to b, two vertices of the same color, a contradiction. Hence, N(U) is an independent
set. Therefore we can recolor N(U) with one new color. Doing this, every vertex in U has only
1 color in its neighborhood (the new one), and vertices not in U have at most b t2c + 1 colors
in their neighborhood, (the at most b t2c original ones by definition of U plus possibly the new
one). Hence the new coloring is a (b t2c+ 2)-local coloring.

We shall also use another kind of graphs, namely Borsuk graphs, that were introduced by
Erdős and Hajnal [4].

Definition 22. Let 0 < α < 2. The Borsuk graph B(n, α) is defined by V (B(n, α)) = Sn−1

and E(B(n, α)) = {xy | dist(x, y) > α}. (Nodes are linked with “almost” antipodal ones).

The following statement is equivalent to the Borsuk-Ulam Theorem.

Theorem 23 (Borsuk-Ulam theorem in terms of Borsuk graphs). χ(B(n, α)) ≥ n+ 1.

For α < 2 large enough the above inequality is an equality. Indeed, for large α < 2 B(n, α))
can be colored with n + 1 colors: Consider the regular simplex of dimension n inscribed into
Sn−1 and project its n+ 1 facets F1, . . . , Fn+1 onto the sphere from its center. It is easy to see
that if every x ∈ Sn−1 gets color j for some j satisfying that x is in the image of Fj , then no
pair of points of the same color will have a distance close to 2. So this is a proper coloring of
B(n, α) for α < 2 large enough.

In fact, more is true. For every odd k there is an α0 < 2 such that there is no walk of length
k between any pair of points having the same color. For k = 1 this is just the properness of the
coloring, for k = 5 it means that the coloring is wide. Thus by Lemma 21 we get the following
result.
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Theorem 24. For α < 2 large enough we have Ψ(B(n, α)) ≤ bn+1
2 c+ 2.

For Schrijver graphs, the inequality Ψ(SG(m, `)) ≤ bχ2 c + 2 for large enough m, ` is given
a direct, combinatorial proof in [19]. Using a result of Schultz [18], however, a different and
conceptually simpler argument can be used based on the observations discussed above.

Sketch of Proof of Theorem 20. Schultz [18] proved that for every α < 2 and fixed t = m−2`+2
there are large enough m and ` such that there exists a homomorphism from SG(m, l) to
B(m − 2` + 1, α). Since by Theorem 24 and Proposition 16 we have a homomorphism from
B(m− 2`+ 1, α) to U(m− 2l+ 3, bm−2l+2

2 c+ 2) if α < 2 is large enough, it follows that there is

a homomomorphism from SG(m, `) to U(m− 2l+ 3, bm−2l+2
2 c+ 2), so Ψ(SG(m, `)) ≤ b t2c+ 2.

The Zig-Zag Theorem (see below) implies that Ψ(SG(m, l)) ≥ d t2e + 1. This matches the
upper bound for odd t and is one less for even t. To close this gap more involved topological
tools are needed than those we use for the proof of the Zig-zag Theorem. These more involved
tools are outside of our scope here, they may be found in the references of [21].

The remaining part of the section is devoted to a proof of the Zig-Zag Theorem and its
consequences.

2.2.1 Box complexes and the Zig-Zag Theorem.

Definition 25. A Z2-space is a pair (W,µ), where W is a topological space and µ is a continuous
map from W to itself for which µ(µ(x)) is the identity map. (Such a µ is called an involution.)

A Z2-map is a continuous map f between two Z2-spaces (W,µ) and (Y, ν) that “respects”
the involution, that is, for which f(µ(x)) = ν(f(x)) for every x ∈W .

In all these lectures the Z2-spaces are free, meaning that no point is mapped into itself by
the defining involution. When we refer to the sphere Sd as a Z2-space we always mean it being
equipped with the involution mapping every x ∈ Sd to its antipodal pair −x.

Definition 26 (Box complex B0(G)). Let G be a graph. B0(G) is the simplicial complex with
vertices V (G) × {0, 1} and faces {(S × {0}) ∪ (T × {1}) | S, T ⊆ V (G), S ∩ T = ∅, ∀u ∈ S, v ∈
T, uv ∈ E(G)} (the faces are defined by the complete bipartite subgraphs of G with sides S and
T ).

For example, B0(Kt) is homotopy equivalent (meaning “essentially the same” in our context)
to St−1 (check examples for t ∈ {2, 3}).

Definition 27 (Box simplex B(G)). Let G be a graph. B(G) is the simplicial complex with
vertices V (G) × {0, 1} and faces {(S × {0}) ∪ (T × {1}) | S, T ⊆ V (G), S ∩ T = ∅, ∀u ∈ S, v ∈
T, uv ∈ E(G), and (if S = ∅ then ∩v∈T N(v) 6= ∅) and vice versa}

The map exchanging the sides S and T makes both B0(G) and B(G) a Z2-complex (a sim-
plicial complex equipped with a simplicial involution, i.e., one mapping simplices to simplices.)

Lemma 28. If there is a homomorphism from G to H, then there is a Z2-map from B0(G) to
B0(H) and also from B(G) to B(H).

Choosing H = Kt we obtain that χ(G) ≤ t implies the existence of a Z2-map from B0(G)
to St−1 (and from B(G) to St−2).

Definition 29. Let (W,µ) be a Z2-space.
coindex(W,µ) = max{d | ∃ Z2 −map : Sd →Z2 (W,µ)}.
index(W,µ) = min{d | ∃ Z2 −map : (W,µ)→Z2 S

d}.
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A not yet stated version of the Borsuk-Ulam theorem is that if a Z2-map from Sd to Sh

exists, then d ≤ h. This gives

Proposition 30. coindex(W,µ) ≤ index(W,µ).

Proposition 31. coindex(B0(KG(m, l)) ≥ m− 2l + 1.
coindex(B(SG(m, l)) ≥ m− 2l.

Proof. The first statement can be proven from Greene’s proof of the Lovász-Kneser Theorem.
The second statement can be proven from the Strong Gale Lemma.

Given a topological space W , the suspension susp(W ) is obtained by taking the product
W × [0, 1] and identifying the points in W ×{0} and also in W ×{1}. Geometrically it belongs
to erecting a cone on “both sides” of w. As an example susp(Sd) ∼= Sd+1. (The sign ∼= stands
for homeomorphism, while we denote homotopy equivalence by '.) If W is a Z2-space with
involution µ, then µ is extended appropriately to µ∗ : (x, t) 7→ (µ(x),−t).

Proposition 32 (Csorba [3]). For any graph G, B0(G) ' susp(B(G)).

Proposition 33. If there is a map A→Z2 B then there is a map susp(A)→Z2 susp(B).

Lemma 34. coindex(B0(G)) ≥ coindex(B(G)) + 1.
index(B0(G)) ≤ index(B(G)) + 1.

Proof. By definition, there is a Z2-map from Scoindex(B(G)) to B(G). Hence, there is a Z2-
map from Scoindex(B(G))+1 to susp(B(G)) ' B0(G) by Prop. 32. Thus coindex(B0(G)) ≥
coindex(B(G)) + 1. The other statement can be proved similarly.

Putting all inequalities together, it follows:

Theorem 35. For any graph G,
coindex(B(G)) + 2 ≤ coindex(B0(G)) + 1 ≤ index(B0(G)) + 1 ≤ index(B(G)) + 2 ≤ χ(G).

Theorem 36 (Zig-Zag Theorem, cf. Ky Fan [10], Meunier [15], Simonyi and Tardos [19]).
Let G be a graph such that coindex(B0(G)) ≥ t − 1. For any proper coloring of G, there is
a Kbt/2c,dt/2e subgraph colored with t colors such that the colors appear alternating on the two
sides of the bipartition.

Corollary 37. coindex(B0(G)) ≥ t− 1⇒ Ψ(G) ≥ dt/2e+ 1.

Proof. Consider a vertex on the bt/2c size side of our multicolored complete bipartite graph. It
has dt/2e differently colored vertices among its neighbours.

To prove the above theorem, we will use the second version of Ky Fan’s theorem stated
below.

Theorem 38 (Ky Fan [9]). Let A1, · · · , Am be antipodal-free open sets covering Sd. Then, there
exist 1 ≤ k1 < k2 < · · · < kd+2 ≤ m such that there exists x ∈ Sd with x ∈

⋂
1≤i≤d+2(−1)i+1Aki.

If A1, · · · , Am are antipodal-free open sets such that A1, · · · , Am,−A1, · · · ,−Am together
cover Sd, then there exist 1 ≤ k1 < k2 < · · · < kd+1 ≤ m such that there exists x ∈ Sd with
x ∈

⋂
1≤i≤d+1(−1)i+1Aki.

Observe the difference between the two statements above: The price for the looser condition
in the second statement is that we find only d+1 rather than d+2 special sets in the conclusion.
It is worth noting the similarity of this difference to that between the proofs of Bárány and
Greene: To get the same bound for the necessary number of colors Greene allows a less strict
cover but goes one dimension higher.
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Proof of Theorem 36. Let G be topologically t-chromatic, i.e., such that coindex(B0(G)) ≥ t−1.
Consider a proper coloring of it with m colors and let f : St−1 →Z2 B0(G).

For any i ≤ m, let Ai be the set of points x ∈ St−1 such that the minimum simplex
containing f(x) in the interior has a vertex colored i in V (G)×{0}, while the whole simplex is
not entirely in V ×{0}. If the minimum simplex containing f(x) is a subset of V (G)×{0}, then
set x ∈ Am+1. One can check that the conditions of the second version of Ky Fan’s theorem
are satisfied, so its conclusion holds. So by Ky Fan’s Theorem (Theorem 38), there exists x for
which f(x) is in a simplex of B0(G) having all the colors i (odd) in the V (G)×{0} side and all
colors i (even) in the V (G)× {1} side.

The next theorem is also a consequence of the Borsuk-Ulam theorem. (See Bacon’s paper
[1] for many more equivalent forms of the Borsuk-Ulam theorem, where it also appears.)

Theorem 39. If Sd is covered by open antipodal-free sets A1, · · · , Ad+2 ⊆ Sd, then for any
j ∈ {1, · · · , d+ 1}, there exists x ∈ Sd such that x ∈

⋂
1≤i≤j Ai and −x ∈

⋂
j+1≤i≤d+2Ai.

Using Theorem 39 and the techniques developed above the following can be proven. (Try
it!)

Theorem 40 ([20]). If coindex(B(G)) + 2 ≥ d + 2 and χ(G) = d + 2, then for any optimal
proper coloring of G and for any bipartition (A,B) of the color set, there exists a multicolored
K|A|,|B| such that the colors satisfy the partition.

Exercise 1. Recall the definition of Shift graphs Hm from Remark 12: V (Hm) = {(i, j) | i, j ∈
[m] i < j} and E(Hm) = {(i, j), (k, l) | j = k or i = l}. Recall that Hm is isomorphic to the line
graph of the transitive tournament on m vertices and have chromatic number dlog2me. Prove
coindex(B0(Hm)) + 1 < 4. (This means that in case of Hm the left hand side is a very poor
lower bound on the chromatic number.)

Proof. Color each node (i, j) with color j. All complete bipartite graphs have a monochromatic
side. So the result follows from Theorem 36.

Remark 41. We have seen that the lower bound on ψ(SG(m, `)) obtained from the Zig-Zag
Theorem was not sharp for even-chromatic Schrijver graphs: a gap of 1 remained, that was closed
by proving that if coindex(B(G))+2 ≥ t for some graph G, then it already implies the matching
lower bound ψ(G) ≥ bt/2c + 2. The proof of this needed more involved topological tools (cf.
[21] and the references therein). It turns out, however, that the bound obtained via the Zig-Zag
Theorem is also sharp: It is possible that the graph does not satisfy coindex(B(G)) + 2 ≥ t
but does satisfy coindex(B0(G)) + 1 ≥ t (the assumption we had in the Zig-Zag Theorem,
which is a weaker property of the graph, cf. the chain of inequalities in Theorem 35), and the
local chromatic number ψ(G) is equal to dt/2e + 1 also for even t. Thus it matches the lower
bound obtained from the Zig-Zag Theorem. An example for such a graph is U(5, 3) defined in
Definition 15. This means that the local chromatic number is sensitive for the difference between
the weaker graph property coindex(B0(G)) + 1 ≥ t and the stronger coindex(B(G)) + 2 ≥ t,
while the two are not distinguished by the chromatic number.
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Budapest and North-Holland, Amsterdam, 1993.
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