Problem session SGT 2015

June 21, 2015

Homology with integer coefficients

Communicated by F. Lazarus.

Let C_0 be the set of all linear combination of vertices, i.e. $C_0 = \{\sum_{v \in V(G)} \alpha_v v\}$, and let C_1 be the set of all linear combinations of edges $C_1 = \{\sum_{e \in E(G)} \alpha_e e\}$. (Every edge has a default orientation.)

Let f be the function $C_1 \to C_0$, $vw \mapsto w - v$. $H_1(G) = Ker(f)$ is the cycle space of G.

A basis of the cycle space may be easily found using a spanning tree and taking all cycles C_e in $T \cup \{e\}$ for all $e \in E(G) \setminus E(T)$. If we add weights, then there is a matroid structure and a minimum-weight basis can be found using the greedy algorithm.

But what happens when we only consider linear combinations of C_1 with integer coefficients? There are graphs, like the generalized Petersen graph $P_{11,4}$, such that no minimum-weight basis has integer coefficient.

List-colouring peculiar graphs

Communicated by L. Pastor.

 $\chi(G)$ is the chromatic number of G, ch(G) is the choosability of G.

The following conjecture generalizes the celebrated List Colouring Conjecture.

Conjecture 1 (Gravier and Maffray). For any claw-free graph G, $\chi(G) = ch(G)$.

We are interested in claw-free perfect graphs. Those graphs can be decomposed by clique-cutsets into *elementary* or *peculiar* graphs.

Peculiar graphs are those that can be partitioned as in the picture below.

Problem 2. Show that if G is a peculiar perfect graph, then $ch(G) = \omega(G)$.

Orienting a graph so that all labeling have a monochromatic directed cycle

Communicated by A. Harutyunyan.

Conjecture 3 (Neumann-Lara, 1985). There exists an integer-valued function f such that if $\chi(G) \ge f(k)$, then there exists an orientation D of G such that any k-labelling of the vertices of D will create a monochromatic directed cycle.

Even the existence of f(2) is unknown. Another question is whether $f(k) = O(k \log k)$?

This is motivated by the *dichromatic number*. The *dichromatic number* of D, denoted $\vec{\chi}(D)$ is the minimum k such that there is a partition of V(D) into k sets V_1, \ldots, V_k such that $D[V_i]$ is acyclic.

Conjecture 4 (Erdős, Neumann-Lara). $\vec{\chi}(D) \leq O\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$

Conjecture 5 (Aharoni, Berger, ??). For all digraph D, there is an acylic induced subdigraph of order at least $\Omega\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$.

Helly graphs

Communicated by J. Chalopin.

Let \mathcal{F} be a family of sets. It has the *Helly Property* if for any subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of pairwise intersecting sets (i.e. $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}'$), then $\bigcap_{A \in \mathcal{F}'} A \neq \emptyset$.

A graph G is *Helly* if the family of all balls (of any radius) have the Helly property. A graph is 1-*Helly*, if the family of balls of radius 1 has the Helly . A graph G is *clique-Helly* if the family of all maximal cliques have the Helly property.

1-Helly graphs are clique-Helly but the opposite does not always hold.

Theorem 6. The following statements are equivalent.

- G is a Helly graph;
- *G* is 1-Helly and its clique complex is simply connected;
- *G* is clique-Helly and *G* is dismantable.

A graph G is *dismantable* if there is an ordering v_1, \ldots, v_n of V(G) such that for every i > 1, there exists j < i such that $N_{G_i}[v_i] \subseteq N_G[v_j]$, with $G_i = G[V_1, \ldots, v_n]$.

Problem 7. Is it true that Helly graphs are precisely clique-Helly graphs with a simply connected clique complex ?

Orientations of triangulations on surfaces

Communicated by B. Lévêque.

Theorem 8 (Barát and Thomassen, 2006). If G is the triangulation of any surface, then there is an orientation of G such that $d^+(v) = 0 \mod 3$ for every vertex v.

This corresponds to a decomposition of the edge set into claws $(K_{1,3})$.

Theorem 9 (Albar, Goncalves, Knauer). If G is the triangulation of any surface, then there is an orientation of G such that $d^+(v) = 0 \mod 3$ and $d^+(v) \neq 0$ for every vertex v.

Problem 10. If G is the triangulation of any surface, does there exists an orientation such that across any close curve on the surface, all arcs are not going in the same direction ?

True when the genus is 1.

Cooperative colouring

Communicated by R. Aharoni.

Theorem 11. If C_1 , C_2 , C_3 are cycles on the same set V, then one can choose independent sets A_i of C_i i = 1, 2, 3 such that $A_1 \cup A_2 \cup A_3 = V$.

It is easy to fond an example showing that two cycles are not enough (even if the cycles are even).

The proof of this theorem is topological.

Problem 12. Give a combinatorial proof of this theorem.

Directed local chromatic number

Communicated by G. Simonyi.

Let D be a digraph. $\vec{\psi}(D) = \min_{c \text{ proper colouring }} \max_{v \in V(D)} |c(N^+(v))| + 1.$

Problem 13. How large can be the difference between $\psi(G)$ and $\max\{\psi(D) \mid D \text{ orientation of } G\}$?

There is a construction where the difference is at least 1. Can it be at least 2?

Colouring *k*-regular graphs whose neighbourhood are perfect matchings

Communicated by A. Munaro.

Let G be a k-regular graph such that each edge is in exactly one triangle. (equivalently G is k-regular and G[N(v)] is a perfect matching.

Problem 14. If k = 6, is it true that such a graph is 3-colourable ? For any larger k ?

The answer is 'No'. Actually for any k, there is a regular graph such that each edge is in exactly one triangle and whose chromatic number is at least k.

For convenience, let us say that a graph is *nice* if every graph is in exactly one triangle. Recall that a graph is *eulerian* if every vertex has even degree.

Lemma 15. If there is an eulerian graph with maximum degree Δ , then there is a nice Δ -regular graph.

Proof. Let G be an eulerian graph with maximum degree Δ , and let S be the set of vertices of degree $\delta(G)$. Let H be the graph obtained from Δ copies G_1, \ldots, G_{Δ} of G as follows. For every vertex $x \in S$, let x_i be the vertex corresponding to x in G_i . Add a new vertex z_x connected to x_1, \ldots, x_{Δ} and the edges $x_1x_2, \ldots, x_{\Delta-1}x_{\Delta}$. One easily checks that H is nice, has maximum degree Δ and minimum degree $\delta(G) + 2$.

Repeating the process $(\Delta - \delta(G))/2$ times we obtain a nice Δ -regular graph. \Box

Now by a well-known result of Erdős, there exists a kcolourable graph F with chromatic number k and girth 4. Let G be the graph obtained form F by adding for every edge e = uv a new vertex x_e connected to u and v. Then F is nice, eulerian and has maximum degree $2\Delta(F)$. Now by Lemma ??, there a $2\Delta(F)$ -regular nice graph with chromatic number k.

Now the question is the following:

Problem 16. What is the maximum chromatic number of an *r*-regular nice graphs ?

Partition of the infinite path into distance-independent sets

Communicated by N. Gastineau.

A set S of vertices in a graph G is *s*-independent if any two vertices of S are at distance at least s in G.

Problem 17 (Goddard and Xu, 2012). For which lists (s_1, \ldots, s_ℓ) , can you partition the infinite path P_{∞} into k sets X_1, \ldots, X_ℓ such that each X_i is s_i -independent.

One can easily see that it is impossible for (1, 3, 7).

Number of induced cycles in a graph with no $2K_3$ -subdivision

Communicated by J.-F. Raymond.

Problem 18. Let G be a graph that contains no induced subdivision of $2K_3$. Is is true that G contains a polynomial number of induced cycles ?

Colour-change-distance between antipodal vertices in 2edge-coloured hypercube

Communicated by D. Soltész.

 Q_n s the *n*-dimensional hypercube. Colour its edges in red or blue

The distance between two vertices u and v is the minimum number of colour changes in a (u, v)-path.

Problem 19. Is it always true that there exists two antipodal vertices at distance at most 1?

It is known that if there is no alternating C_4 , then there are two antipodal vertices at distance 0.