Problem session SGT 2015

June 21, 2015

Homology with integer coefficients

Communicated by F. Lazarus.

Let C_{0} be the set of all linear combination of vertices, i.e. $C_{0}=\left\{\sum_{v \in V(G)} \alpha_{v} v\right\}$, and let C_{1} be the set of all linear combinations of edges $C_{1}=\left\{\sum_{e \in E(G)} \alpha_{e} e\right\}$. (Every edge has a default orientation.)

Let f be the function $C_{1} \rightarrow C_{0}, v w \mapsto w-v . H_{1}(G)=\operatorname{Ker}(f)$ is the cycle space of G.

A basis of the cycle space may be easily found using a spanning tree and taking all cycles C_{e} in $T \cup\{e\}$ for all $e \in E(G) \backslash E(T)$. If we add weights, then there is a matroid structure and a minimum-weight basis can be found using the greedy algorithm.

But what happens when we only consider linear combinations of C_{1} with integer coefficients? There are graphs, like the generalized Petersen graph $P_{11,4}$, such that no minimum-weight basis has integer coefficient.

List-colouring peculiar graphs

Communicated by L. Pastor.
$\chi(G)$ is the chromatic number of $G, \operatorname{ch}(G)$ is the choosability of G.
The following conjecture generalizes the celebrated List Colouring Conjecture.
Conjecture 1 (Gravier and Maffray). For any claw-free graph $G, \chi(G)=\operatorname{ch}(G)$.
We are interested in claw-free perfect graphs. Those graphs can be decomposed by clique-cutsets into elementary or peculiar graphs.

Peculiar graphs are those that can be partitioned as in the picture below.

Problem 2. Show that if G is a peculiar perfect graph, then $\operatorname{ch}(G)=\omega(G)$.

Orienting a graph so that all labeling have a monochromatic directed cycle

Communicated by A. Harutyunyan.
Conjecture 3 (Neumann-Lara, 1985). There exists an integer-valued function f such that if $\chi(G) \geq f(k)$, then there exists an orientation D of G such that any k-labelling of the vertices of D will create a monochromatic directed cycle.

Even the existence of $f(2)$ is unknown. Another question is whether $f(k)=$ $O(k \log k)$?

This is motivated by the dichromatic number. The dichromatic number of D, denoted $\vec{\chi}(D)$ is the minimum k such that there is a partition of $V(D)$ into k sets V_{1}, \ldots, V_{k} such that $D\left[V_{i}\right]$ is acyclic.

Conjecture 4 (Erdős, Neumann-Lara). $\vec{\chi}(D) \leq O\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$
Conjecture 5 (Aharoni, Berger, ??). For all digraph D, there is an acylic induced subdigraph of order at least $\Omega\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$.

Helly graphs

Communicated by J. Chalopin.

Let \mathcal{F} be a family of sets. It has the Helly Property if for any subfamily $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of pairwise intersecting sets (i .e. $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}^{\prime}$), then $\bigcap_{A \in \mathcal{F}^{\prime}} A \neq \emptyset$.

A graph G is Helly if the family of all balls (of any radius) have the Helly property.
A graph is 1-Helly, if the family of balls of radius 1 has the Helly. A graph G is clique-Helly if the family of all maximal cliques have the Helly property.

1-Helly graphs are clique-Helly but the opposite does not always hold.
Theorem 6. The following statements are equivalent.

- G is a Helly graph;
- G is 1-Helly and its clique complex is simply connected;
- G is clique-Helly and G is dismantable.

A graph G is dismantable if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that for every $i>1$, there exists $j<i$ such that $N_{G_{i}}\left[v_{i}\right] \subseteq N_{G}\left[v_{j}\right]$, with $G_{i}=G\left[V_{1}, \ldots, v_{n}\right]$.

Problem 7. Is it true that Helly graphs are precisely clique-Helly graphs with a simply connected clique complex ?

Orientations of triangulations on surfaces

Communicated by B. Lévêque.

Theorem 8 (Barát and Thomassen, 2006). If G is the triangulation of any surface, then there is an orientation of G such that $d^{+}(v)=0 \bmod 3$ for every vertex v.

This corresponds to a decomposition of the edge set into claws $\left(K_{1,3}\right)$.
Theorem 9 (Albar, Goncalves, Knauer). If G is the triangulation of any surface, then there is an orientation of G such that $d^{+}(v)=0 \bmod 3$ and $d^{+}(v) \neq 0$ for every vertex v.

Problem 10. If G is the triangulation of any surface, does there exists an orientation such that across any close curve on the surface, all arcs are not going in the same direction?

True when the genus is 1.

Cooperative colouring

Communicated by R. Aharoni.
Theorem 11. If C_{1}, C_{2}, C_{3} are cycles on the same set V, then one can choose independent sets A_{i} of $C_{i} i=1,2,3$ such that $A_{1} \cup A_{2} \cup A_{3}=V$.

It is easy to fond an example showing that two cycles are not enough (even if the cycles are even).

The proof of this theorem is topological.
Problem 12. Give a combinatorial proof of this theorem.

Directed local chromatic number

Communicated by G. Simonyi.
Let D be a digraph. $\vec{\psi}(D)=\min _{c \text { proper colouring }} \max _{v \in V(D)}\left|c\left(N^{+}(v)\right)\right|+1$.
Problem 13. How large can be the difference between $\psi(G)$ and $\max \{\vec{\psi}(D) \mid D$ orientation of $G\}$?
There is a construction where the difference is at least 1 . Can it be at least 2 ?

Colouring k-regular graphs whose neighbourhood are perfect matchings

Communicated by A. Munaro.
Let G be a k-regular graph such that each edge is in exactly one triangle. (equivalently G is k-regular and $G[N(v)]$ is a perfect matching.
Problem 14. If $k=6$, is it true that such a graph is 3 -colourable? For any larger k ?
The answer is 'No'. Actually for any k, there is a regular graph such that each edge is in exactly one triangle and whose chromatic number is at least k.

For convenience, let us say that a graph is nice if every graph is in exactly one triangle. Recall that a graph is eulerian if every vertex has even degree.

Lemma 15. If there is an eulerian graph with maximum degree Δ, then there is a nice Δ-regular graph.
Proof. Let G be an eulerian graph with maximum degree Δ, and let S be the set of vertices of degree $\delta(G)$. Let H be the graph obtained from Δ copies $G_{1}, \ldots, G_{\Delta}$ of G as follows. For every vertex $x \in S$, let x_{i} be the vertex corresponding to x in G_{i}. Add a new vertex z_{x} connected to $x_{1}, \ldots, x_{\Delta}$ and the edges $x_{1} x_{2}, \ldots, x_{\Delta-1} x_{\Delta}$. One easily checks that H is nice, has maximum degree Δ and minimum degree $\delta(G)+2$.

Repeating the process $(\Delta-\delta(G)) / 2$ times we obtain a nice Δ-regular graph.
Now by a well-known result of Erdős, there exists a k colourable graph F with chromatic number k and girth 4 . Let G be the graph obtained form F by ading for every edge $e=u v$ a new vertex x_{e} connected to u and v. Then F is nice, eulerian and has maximum degree $2 \Delta(F)$. Now by Lemma ??, there a $2 \Delta(F)$-regular nice graph with chromatic number k.

Now the question is the following:
Problem 16. What is the maximum chromatic number of an r-regular nice graphs?

Partition of the infinite path into distance-independent sets

Communicated by N. Gastineau.
A set S of vertices in a graph G is s-independent if any two vertices of S are at distance at least s in G.

Problem 17 (Goddard and $\mathrm{Xu}, 2012$). For which lists $\left(s_{1}, \ldots, s_{\ell}\right)$, can you partition the infinite path P_{∞} into k sets X_{1}, \ldots, X_{ℓ} such that each X_{i} is s_{i}-independent.

One can easily see that it is impossible for $(1,3,7)$.

Number of induced cycles in a graph with no $2 K_{3}$-subdivision

Communicated by J.-F. Raymond.

Problem 18. Let G be a graph that contains no induced subdivision of $2 K_{3}$. Is is true that G contains a polynomial number of induced cycles ?

Colour-change-distance between antipodal vertices in 2-edge-coloured hypercube

Communicated by D. Soltész.
Q_{n} s the n-dimensional hypercube. Colour its edges in red or blue
The distance between two vertices u and v is the minimum number of colour changes in a (u, v)-path.

Problem 19. Is it always true that there exists two antipodal vertices at distance at most 1 ?

It is known that if there is no alternating C_{4}, then there are two antipodal vertices at distance 0 .

