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Homology with integer coefficients
Communicated by F. Lazarus.

Let C0 be the set of all linear combination of vertices, i.e. C0 = {
∑

v∈V (G) αvv},
and letC1 be the set of all linear combinations of edgesC1 = {

∑
e∈E(G) αee} . (Every

edge has a default orientation.)
Let f be the function C1 → C0, vw 7→ w − v. H1(G) = Ker(f) is the cycle

space of G.
A basis of the cycle space may be easily found using a spanning tree and taking all

cyclesCe in T∪{e} for all e ∈ E(G)\E(T ). If we add weights, then there is a matroid
structure and a minimum-weight basis can be found using the greedy algorithm.

But what happens when we only consider linear combinations of C1 with integer
coefficients ? There are graphs, like the generalized Petersen graph P11,4, such that no
minimum-weight basis has integer coefficient.

List-colouring peculiar graphs
Communicated by L. Pastor.

χ(G) is the chromatic number of G, ch(G) is the choosability of G.
The following conjecture generalizes the celebrated List Colouring Conjecture.

Conjecture 1 (Gravier and Maffray). For any claw-free graph G, χ(G) = ch(G).

We are interested in claw-free perfect graphs. Those graphs can be decomposed by
clique-cutsets into elementary or peculiar graphs.

Peculiar graphs are those that can be partitioned as in the picture below.
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Problem 2. Show that if G is a peculiar perfect graph, then ch(G) = ω(G).

Orienting a graph so that all labeling have a monochro-
matic directed cycle
Communicated by A. Harutyunyan.

Conjecture 3 (Neumann-Lara, 1985). There exists an integer-valued function f such
that if χ(G) ≥ f(k), then there exists an orientation D of G such that any k-labelling
of the vertices of D will create a monochromatic directed cycle.

Even the existence of f(2) is unknown. Another question is whether f(k) =
O(k log k) ?

This is motivated by the dichromatic number. The dichromatic number of D,
denoted ~χ(D) is the minimum k such that there is a partition of V (D) into k sets
V1, . . . , Vk such that D[Vi] is acyclic.

Conjecture 4 (Erdős, Neumann-Lara). ~χ(D) ≤ O
(

∆(D)
log ∆(D)

)
Conjecture 5 (Aharoni, Berger, ??). For all digraph D, there is an acylic induced
subdigraph of order at least Ω

(
∆(D)

log ∆(D)

)
.
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Helly graphs
Communicated by J. Chalopin.

Let F be a family of sets. It has the Helly Property if for any subfamily F ′ ⊆ F of
pairwise intersecting sets (i .e. A ∩B 6= ∅ for all A,B ∈ F ′), then

⋂
A∈F ′ A 6= ∅.

A graph G is Helly if the family of all balls (of any radius) have the Helly property.
A graph is 1-Helly, if the family of balls of radius 1 has the Helly . A graph G is

clique-Helly if the family of all maximal cliques have the Helly property.
1-Helly graphs are clique-Helly but the opposite does not always hold.

Theorem 6. The following statements are equivalent.

• G is a Helly graph;

• G is 1-Helly and its clique complex is simply connected;

• G is clique-Helly and G is dismantable.

A graph G is dismantable if there is an ordering v1, . . . , vn of V (G) such that for
every i > 1, there exists j < i such that NGi [vi] ⊆ NG[vj ], with Gi = G[V1, . . . , vn].

Problem 7. Is it true that Helly graphs are precisely clique-Helly graphs with a simply
connected clique complex ?

Orientations of triangulations on surfaces
Communicated by B. Lévêque.

Theorem 8 (Barát and Thomassen, 2006). If G is the triangulation of any surface,
then there is an orientation of G such that d+(v) = 0 mod 3 for every vertex v.

This corresponds to a decomposition of the edge set into claws (K1,3).

Theorem 9 (Albar, Goncalves, Knauer). If G is the triangulation of any surface, then
there is an orientation of G such that d+(v) = 0 mod 3 and d+(v) 6= 0 for every
vertex v.

Problem 10. If G is the triangulation of any surface, does there exists an orientation
such that across any close curve on the surface, all arcs are not going in the same
direction ?

True when the genus is 1.

Cooperative colouring
Communicated by R. Aharoni.

Theorem 11. If C1, C2, C3 are cycles on the same set V , then one can choose inde-
pendent sets Ai of Ci i = 1, 2, 3 such that A1 ∪A2 ∪A3 = V .
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It is easy to fond an example showing that two cycles are not enough (even if the
cycles are even).

The proof of this theorem is topological.

Problem 12. Give a combinatorial proof of this theorem.

Directed local chromatic number
Communicated by G. Simonyi.

Let D be a digraph. ~ψ(D) = minc proper colouring maxv∈V (D) |c(N+(v))|+ 1.

Problem 13. How large can be the difference betweenψ(G) and max{~ψ(D) | D orientation ofG} ?

There is a construction where the difference is at least 1. Can it be at least 2 ?

Colouring k-regular graphs whose neighbourhood are
perfect matchings
Communicated by A. Munaro.

Let G be a k-regular graph such that each edge is in exactly one triangle. (equiva-
lently G is k-regular and G[N(v)] is a perfect matching.

Problem 14. If k = 6, is it true that such a graph is 3-colourable ? For any larger k ?

The answer is ‘No’. Actually for any k, there is a regular graph such that each edge
is in exactly one triangle and whose chromatic number is at least k.

For convenience, let us say that a graph is nice if every graph is in exactly one
triangle. Recall that a graph is eulerian if every vertex has even degree.

Lemma 15. If there is an eulerian graph with maximum degree ∆, then there is a nice
∆-regular graph.

Proof. Let G be an eulerian graph with maximum degree ∆, and let S be the set of
vertices of degree δ(G). Let H be the graph obtained from ∆ copies G1, . . . , G∆ of
G as follows. For every vertex x ∈ S, let xi be the vertex corresponding to x in Gi.
Add a new vertex zx connected to x1, . . . , x∆ and the edges x1x2, . . . , x∆−1x∆. One
easily checks that H is nice, has maximum degree ∆ and minimum degree δ(G) + 2.

Repeating the process (∆− δ(G))/2 times we obtain a nice ∆-regular graph.

Now by a well-known result of Erdős, there exists a kcolourable graph F with
chromatic number k and girth 4. Let G be the graph obtained form F by ading for
every edge e = uv a new vertex xe connected to u and v. Then F is nice, eulerian and
has maximum degree 2∆(F ). Now by Lemma ??, there a 2∆(F )-regular nice graph
with chromatic number k.

Now the question is the following:

Problem 16. What is the maximum chromatic number of an r-regular nice graphs ?
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Partition of the infinite path into distance-independent
sets
Communicated by N. Gastineau.

A set S of vertices in a graph G is s-independent if any two vertices of S are at
distance at least s in G.

Problem 17 (Goddard and Xu, 2012). For which lists (s1, . . . , s`), can you partition
the infinite path P∞ into k sets X1, . . . , X` such that each Xi is si-independent.

One can easily see that it is impossible for (1, 3, 7).

Number of induced cycles in a graph with no 2K3-subdivision
Communicated by J.-F. Raymond.

Problem 18. Let G be a graph that contains no induced subdivision of 2K3. Is is true
that G contains a polynomial number of induced cycles ?

Colour-change-distance between antipodal vertices in 2-
edge-coloured hypercube
Communicated by D. Soltész.

Qn s the n-dimensional hypercube. Colour its edges in red or blue
The distance between two vertices u and v is the minimum number of colour

changes in a (u, v)-path.

Problem 19. Is it always true that there exists two antipodal vertices at distance at
most 1 ?

It is known that if there is no alternating C4, then there are two antipodal vertices
at distance 0.
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