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1 IntrodutionThe k-th power Gk of a graph G is de�ned on the same set of verties as G, and has an edgebetween any pair of verties of distane at most k in G. The topi of this paper is the oloringof power graphs, or equivalently oloring the underlying graphs so that verties of distaneat most k reeive di�erent olors. We fous on the planar ase, long the enter of attentionfor graph oloring. We upper-bound the hromati number by the indutiveness of the graph,ind(G), de�ned to be maxH�Gfminv2H(dH(v))g, where H runs through all indued subgraphsof G. Indutiveness leads to an ordering of the verties, fv1; : : : ; vng, suh that the number ofpre-neighbors of any vi, d+(vi) = jfvj 2 NG(vi) : j > igj, is at most ind(G).The problem of oloring squares of graphs has been studied reently for its appliations tofrequeny alloation. Transeivers in a radio network ommuniate using hannels at given radiofrequenies. Graph oloring formalizes this problem well when the onstraint is that nearby pairsof transeivers annot use the same hannel due to interferene. However, if two transeiversare using the same hannel and both are adjaent to a third station, a lashing of signals isexperiened at that third node. This an be avoided by additionally requiring all neighbors ofa node to be assigned di�erent olors, i.e. that verties of distane at most two reeive di�erentolors. This is equivalent to oloring the square of the underlying network. Another appliationof this problem, from a ompletely di�erent diretion, is that of approximating ertain Hessianmatries, see [9℄.Observe that neighbors of a node in a graph form a lique in the square of the graph.Thus, the minimum number of olors needed to olor any square graph is at least �+ 1, where� = �(G) is the maximum degree of the original graph. As a result, the number of olors usedby our algorithms on power graphs will neessarily be a funtion of �. We are partiularlyinterested in the asymptoti behavior as � grows.The �rst referene on oloring squares of planar graphs is by Wegner [16℄, who gave boundson the lique number of suh graphs. In partiular, he gave an instane for whih the liquenumber is at least 3�=2 + 1 (whih is largest possible), and onjetured this to be an upperbound on the hromati number, for � large. Some work has been done on the ase � = 3, aslisted in [5, Problem 2.18℄.MCormik [9℄ showed that the problem of oloring the power of a graph is NP-omplete, forany �xed power, and a later proof was given by Lin and Skiena [8℄. MCormik gave a greedyalgorithm with a O(pn)-approximation for squares of general graphs. Heggernes and Telle [4℄showed that determining if the square of a ubi graph an be olored with 4 olors or less isNP-omplete, while it is easily determined if 3 olors suÆe.Ramanathan and Lloyd [13, 12℄ showed the problem of oloring squares of planar graphs tobe NP-omplete. They also gave an algorithm with a performane ratio of 9, whih was the bestresult previously known. More generally, they gave a O(q)-ratio for graphs of indutiveness q.Krumke, Marathe and Ravi [7℄ showed more preisely that the ratio is 2q� 1. They also gave apolynomial algorithm for graphs of both bounded treewidth and bounded degree, and used thatto give a 2-approximation for bounded-degree planar graphs. Sen and Huson [14℄ showed thatoloring squares of unit-irle graphs is NP-omplete, while a onstant approximation algorithmwas given in [15℄.This paper attempts to further the knowledge on the olorability and indutiveness of powersof planar and general graphs. We �rst show that for large values of �, squares of planar graphsare 9�=5+1-indutive, implying a 9�=5+2-oloring. This is the tightest possible, sine there aregraphs attaining this indutiveness. We ombine this with previous results for bounded-degree1



graphs to obtain a 2-approximation for oloring that holds for all values of �.We next show that the power Gk of a planar graph G is O(�bk=2)-indutive, for any k � 1.This gives an asymptotially tight algorithmi bound for the hromati number of the powergraph. This yields the �rst onstant fator approximation for oloring ubes of planar graphs.However, the real strength of the urrent bounds are in giving absolute bounds on the numberof olors used by the algorithm, as opposed to relative approximations, and thus impliitlybounding the number of olors used by an optimal solution.Note the �ne distintion between oloring the power graph Gk, and �nding a distane-koloring of G. The resulting oloring is naturally the same. However, in the latter ase, theoriginal graph is given. While it is easy to ompute the power graph Gk from G, Motwani andSudan [10℄ showed that it is NP-hard to ompute the k-th root G of a graph Gk. All of thealgorithm presented in this paper work without knowledge of the underlying root graph.Zhou et al. [17℄ have in independent work given a polynomial algorithm for distane-d oloringpartial-k trees, for any onstants d and k. As indiated in Setion 4, this immediately implies a2-approximation for distane-d oloring planar graphs for any d, thus improving and generalizingour approximation results in that setion. Their algorithm, however, appears to be only of atheoretial interest, with a large polynomial omplexity. In omparison, the results given hereapply to the most natural greedy algorithm.The rest of the paper is organized as follows. We bound the indutiveness of squares ofplanar graphs in Setion 2, and general powers of planar graphs in Setion 3. We onsider theimpliations of these bounds to approximate olorings of powers of planar graphs in Setion 4.Notation: The degree of a vertex v within a graph G is denoted by dG(v) or simply by d(v)when there is no danger of ambiguity. The maximum degree of G is denoted by � = �(G). Fora vertex v denote by dk(v) the degree of v in Gk. Distane between two verties u and v in agraph is the number of edges on the shortest path from u to v, and is denoted by dG(u; v). LetG[W ℄ denote the subgraph of G indued by vertex subset W .2 Squares of Planar GraphsWe �rst take a look at the main tehnique we use to derive bounds on the indutiveness of asquare graph (and more generally, power graphs). The argument that is used, e.g., to show thatplanar graphs are 5-indutive is the following. By Euler's theorem, any planar graph ontainsa vertex of degree at most 5. Plae one suh node �rst in the indutive ordering, and removeit from the graph. Now the remaining graph is planar, so indutively we obtain a 5-indutiveordering.The bound of 5 on the minimum degree of a planar graph also implies that squares ofplanar graphs are of minimum degree at most 5�. That would seem to imply a 5�-ordering.However, when a vertex is deleted from the graph, its inident edges are deleted as well, soverties originally distane two apart may beome muh further apart in the remaining graph.An example of this is shown in Figure 1. Namely, the problem is that an indued subgraph doesnot preserve the paths of length two between verties within the subgraph. The upshot is thatdegrees in the remaining graph do not adequately haraterize the degree in the remaining partof the square of the graph. Our solution is to replae the deletion of vertex by the ontrationof an inident edge.The ontration of an edge uv in graph G is the operation of ollapsing the verties u andv into a new vertex, giving the simple graph G=uv de�ned by V (G=uv) = V (G) n fvg and2
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Figure 1: The enter vertex has degree 5 but 5� + 9 distane-2 neighbors. Whitened vertieshave been deleted from the graph.E(G) = fww0 2 E(G) : w;w0 6= vg [ fuw : vw 2 E(G)g. Observe that if G is planar, thenG=uv is also planar. This is a property of various lasses of graphs that are losed under minoroperations. By the lassi theorem of Kuratowski, planar graphs are preisely those graphs forwhih repeated ontrations do not yield supergraphs of K5 or K3;3. Minor-losedness holds forvarious other lasses of graphs, e.g. partial-k trees, but not d-indutive graphs in general.Sine our bounds on the indutiveness are funtions of �, it is imperative that the ontrationoperations do not inrease the maximum degree. In summary, in order to show that a powergraph Gk is q-indutive, where q is neessarily a funtion of the maximum degree �, we showthe existene of a vertex v 2 V (Gk) = V (G) suh that� dk(v) � q, and� v has a neighbor u suh that d(u) + d(v) � 2 � �: (1)If suh an edge uv exists, then the ontration of uv in G yields yield a simple planar graphG=uv whose distane funtion is dominated by the one on G (i.e. distanes in G=uv are at mostthose in G). Further, by the seond ondition, the maximum degree of G=uv stays at most �.2.1 Example appliations of the ontration tehniqueWe �rst illustrate the tehnique on simpler examples.Consider graphs that are 2-indutive and minor-losed, e.g. partial-2 trees or series-parallelgraphs. We indutively hoose a vertex of degree at most 2 in the graph and ontrat one of itsinident edges. In this ase, the degree of eah of its remaining neighbors does not not inrease.Thus, in eah step, at most 2� verties are within distane at most 2 of the seleted vertex.That is, we satisfy (1) with q = 2�, leading to a 2�-indutive ordering of the square graph.Theorem 2.1 Squares of partial-2 trees are 2�-indutive.Our seond example yields a bound on the indutiveness of planar graphs of small degreethat improves on the 9�-bound of [13℄ for 5-indutive graphs. A theorem of Kotzin [6℄ statesthat a maximal planar graph ontains an edge uv suh that d(u) + d(v) � 13. We �rst arguethat this implies that any maximal planar graph G with �(G) � 11 is 5� + 6-indutive. We�nd an edge as guaranteed by Kotzin's theorem, selet the vertex of lower degree, ontrat theedge, and indutively apply the argument on the resulting maximal planar graph. The degree of3



the lower degree vertex u is at most 6, and that of v at most 13� d(u) (inluding the edge uv),thus the number of distane-2 neighbors of u is at most (d(u)� 1)�+ (13� d(u)� 1) � 5�+6.The degree of the new ontrated edge is at most (d(u)� 1) + (d(v)� 1) � 11, hene maximumdegree does not inrease. The ontrated graph is also maximally planar, hene this yields a5� + 6-indutive ordering of G2.For a non-maximal planar graph G, we �rst form an arbitrary maximal supergraph G0, �ndan indutive ordering as above, and use that to olor G2. Consider a vertex u and let G0v bethe ontrated subgraph when v was seleted. u had at most 6 neighbors in G0u (inluding v ofdegree at most 13 � dG0v (u)). Eah neighbor w was either a ontrated node of degree at most11, or a node that had not reeived any new neighbors. In the latter ase, the degree of w inG is at most �(G); the other neighbors of w do not ount as neighbors of u in G2, unless itis through some other path. Hene, we have a 5� + 6-indutive ordering of the square of anyplanar graph with � � 11. We an use that to improve the 9� indutiveness bound of [13℄ forevery value of �. For smaller values of �, we know that any graph is trivially �2-indutive,and the above also gives us an upper bound of 61. In partiular, we have that the square of anyplanar graph is 8�-indutive. We summarize these arguments in the following theorem.Theorem 2.2 If G is a planar graph, then ind(G2) � 8�(G). If �(G) � 11, then ind(G2) �5�(G) + 6.2.2 Sharp upper bound for large degree graphsWe now turn to the main result of this setion, whih is that when G is planar and � largeenough, then G2 is b9�(G)5 + 1-indutive. The following lemma is the key to this result.Lemma 2.3 Let G be a simple planar graph of maximum degree � � 26. Then there exists avertex v 2 V (G) satisfying one of the following onditions:1. d(v) � 25 and at most one neighbor of v has degree � 26.2. d2(v) � b95�+ 1 and only two neighbors of v in G have degree � 26.Proof. We assume that we have a �xed planar embedding of G, and hene G is a plane graph.Let Vh = fv 2 V (G) : d(v) � 26g and Vl = V (G) n Vh. If there is a vertex in Vl with at mostone neighbor in Vh, then we are done, so assume the ontrary.Call a yle of four verties in G forbidden, if exatly two opposite verties of the yle arein Vh and the enlosed region formed by the yle in the plane properly ontains at least onevertex in Vh. If G ontains a forbidden 4-yle then let G0 be the subgraph of G indued bythe region bounded by a minimal suh 4-yle. (Here, minimal means that no other 4-yle isinside.) If G ontains no suh yle then let G0 be G.Consider now the multigraph H with vertex set Vh \ V (G0) and with olored edges de�nedas follows. For eah edge uw in E(G0) with both u;w 2 Vh onnet u and w with a red edge.For eah vertex v 2 Vl adjaent to u and w 2 Vh in G0 and to no other vertex in Vh, onnetu and w in H with a green edge. Finally for v 2 Vl adjaent to u1; u2; : : : ; uk 2 Vh in G0 in alokwise order for k � 3, onnet u1 to u2, u2 to u3,. . . ,uk�1 to uk and uk to u1 with blue edgesin H.Sine G is planar, we note that H is also a planar multigraph. Hene, we an assume wehave a drawing of H in the plane suh that1. The verties of H have the same on�guration as they have in the plane graph G.4



2. For every pair fu;wg of verties of H onneted by green or blue edges, their order withrespet to u and w is the same as the order of the orresponding verties of Vl.By our assumption there is no vertex in Vl with at most one neighbor in Vh in G and hene inG0. Therefore, the degree of a vertex in H is at least that in G0.Using Euler's formula for planar graphs, it is easy to show that there are at least threeverties of V (H) = Vh \ V (G0) with at most 5 neighbors in H, and hene there is suh a vertexv 2 V (H) � V (G0) that is not on the 4-yle de�ning G0 (if G0 was so de�ned.)Consider now a neighbor u of this v 2 V (H). Let muv be the multipliity of the edge uv inH. By our de�nition of G0 there are at most two blue edges onneting u and v sine the thirdone would imply a forbidden 4-yle within G0. Also, there is only one red edge onneting uand v. Hene, if muv � 4 there are at least muv � 3 � 1 green edges onneting u and v inH. We note that all the blue and green edges onneting u and v in H orrespond to di�erentverties of Vl in G0.Let uv be the number of ommon neighbors of u and v in G0 (if u and v are onneted inG0, then both u and v are ounted as well.) The ombined losed neighborhood of u and v in G0has preisely (dG0(u) + 1) + (dG0(v) + 1)� uv verties. Sine muv � uv (in fat, muv +1 � uv,if u and v are onneted in G0), we have that this losed neighborhood of u and v in G0 ontainsat most (dG0(u) + 1) + (dG0(v) + 1)�muv verties.Letting w run through all the neighbors of v in H, we note that Pwmvw = dH(v) � dG0(v).Sine v has at most 5 neighbors inG0, there must be a neighbor u of v suh thatmuv � ddG0(v)=5eand hene the ombined neighborhood of u and v is at mostdG0(v) + dG0(u) + 2� �dG0(v)5 �= �4dG0(v)5 �+ dG0(u) + 2� �9�(G0)5 �+ 2� �9�(G)5 �+ 2:Sine v 2 V (H) � Vh is in the interior of the 4-yle de�ning G0, we have dG0(v) = dG(v) � 26and hene muv � ddG0(v)=5e � 6. Hene, u and v are onneted by at least 5 non-red edges.Choose 5 onseutive non-red edges between u and v, and let z1; z2; : : : ; z5 be the neighbors ofu and v in G0, in a lokwise order, orresponding to these hosen non-red edges. The edgesorresponding to z2, z3 and z4 are green, sine otherwise we would have a forbidden 4-ylewithin G0.As referene, we show in Fig. 2 the ommon neighborhood in G of two verties u and v,along with the the orresponding multigraph. Verties in Vh are in blak, blue verties are grey,and green verties are white. Here uv is 6, inluding one red edges, two blue, and three green.Now, if zi, i 2 f2; 3; 4g, is adjaent to a vertex in Vl that does not represent a green norblue edge between u and v, then by our assumption that every vertex in Vl has at least twoneighbors in Vh in the graph G0, one of these neighbors in Vh must be distint from u and vand therefore ontained in the region formed by the 4-yle (u; zi�1; v; zi+1). Again this wouldimply a forbidden 4-yle and ontradit our de�nition of G0.Therefore, the only verties of Vl that zi an possibly be adjaent to in G0 are zi�1 and zi+1.In partiular, the neighbors of z3 in G0 are among fu; v; z2; z4g, and the neighbors of z2 and z45
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Figure 2: Example of a ommon neighborhood and the orresponding multigraphare among fu; v; z1; z3g and fu; v; z3; z5g respetively. In any ase, the ombined neighborhoodof z2 and z4 is ontained in the losed ombined neighborhood of u and v. Hene the number ofverties of distane at most 2 from z3 are at most b9�(G)5 + 2 (inluding z3 itself).Theorem 2.4 If G is a planar graph with maximum degree � � 749, then G2 is b95� + 1-indutive.Proof. Assume that � � 25 + 25� 2 and that we have a vertex v of G whih satis�es the �rstondition of Lemma 2.3. If v has a neighbor u of degree 25 or less, then d2(v) � 600 + �, andmoreover d(v) + d(u) � 2 � �. If v has no neighbor of degree 25 or less, then it has only oneneighbor u. In this ase d2(v) � � and d(v) + d(u) � 2 � �.In the proof of Lemma 2.3 we assumed that there is no vertex in Vl with at most one neighborof Vh. In that ase there is a vertex of G, alled z3 in the last paragraph of the proof, withd2(z3) � b95�+ 1. Also, z3 has at most two neighbors z2 and z4 of Vl. If z3 has no neighborsof Vl (that is, is onneted to neither z2 nor z4), then sine the only neighbors of z3 in Vh are uand v, we have d(z3) + d(v)� 2 = d(z3) + d(u)� 2 � �. If z3 has a neighbor z1 or z2 of Vl, sayz1, then, d(z3) + d(z1)� 2 � �.In any ase, we see that we an always �nd a vertex w of G with d2(w) � maxf600 +�; b95�+ 1g, and suh that w has a neighbor w0 with d(w) + d(w0)� 2 � �.It turns out that 95�+ 1 is a sharp upper bound.

Figure 3: Iosahedron graph, and split edgesObservation 2.5 For any �, there exists a planar graph G of maximum degree � suh thatG2 is of minimum degree b95�+ 1. 6



Proof. Let k = b�=5. Start with a 5-regular planar graph that ontains a perfet mathing.An example is the graph orresponding to the regular iosahedron in Fig. 3, with the edges ofthe perfet mathing shown in bold. Parallel to eah edge of the perfet mathing, we add k� 1paths of length two. Eah edge not in the perfet mathing is replaed by k parallel paths oflength two. This ompletes the onstrution of a simple planar graph G.Observe that verties in G are either of degree 2 or degree 5k. The two neighbors of adegree-2 node share either k or k + 1 neighbors (inluding themselves). Thus, the distane-2degree of a degree-2 node is at least 2(5k+1)� (k+1) = 9k+1. On the other hand, high-degreenodes have 5k � 1 low-degree neighbors, whih have together 5 additional neighbors, and onehigh-degree neighbor, whih itself has 5k neighbors. This ounts k nodes twie, and one nodethree times, but still gives a distane-2 degree of 9k + 3.3 General Powers of Planar GraphsIn this setion we prove the following theorem.Theorem 3.1 Let G be a planar graph with maximum degree �. For any k � 1, Gk isO(�bk=2)-olorable. Also, there is a family of graphs that attains this bound. This bound isalso asymptotially tight for the lique number, indutiveness, arboriity, and minimum degreeof Gk.Let us �rst give a onstrution that mathes the bound of the theorem. Given k;� � 1,onsider the tree T of height bk=2 where internal verties have degree �. The number of vertiesin T isD�;k = 1 +�+�(�� 1) + �(�� 1)2 + � � �+�(�� 1)bk=2�1 = �(�� 1)bk=2 � 2�� 2 :Observe that T k is a omplete graph, thus thus �(T k) = D�;k.We now turn to proving the upper bound of the theorem. The rest of this setion is dividedup into several subsetions, eah of whih deals with neessary tools to omplete the proof ofour main Theorem 3.1 above. First let us set forth some useful terminology.NotationA k-path is a path of length exatly k. A (k;�)-path is a path of length k or less. If u and vare two given verties then an (k;u; v)-path is a path between u and v of length exatly k, and�nally a (k;�;u; v)-path is a path between u and v of length k or less. A vertex w is alled a(k;�;u; v)-link if w is on every (k;�;u; v)-path. N(v) will denote the set of the neighbors of vin G, and N [v℄ the losed neighborhood of v, that is N(v) [ fvg.De�nition 3.2 For a simple planar graph G, an integer k � 1 and a subset U � V (G), denoteby Pk(G;U) the set of all W with U �W � V (G) and suh that any two verties in U onnetedby a (k;�)-path in G, are also onneted by a (k;�)-path in G[W ℄.We will derive the following bound on the size of eah minimal element of Pk(G;U), that islinear in jU j, for any �xed k.Theorem 3.3 There exists an integer sequene (dk)k�1 with dk � 10k�1, suh that for everyonneted simple planar graph G, every integer k � 1 and every U � V (G), eah minimalelement of Pk(G;U) has at most dkjU j verties.7



Let us get a better grasp of this by examining the �rst two ases k = 1; 2. Clearly U itselfis the only minimal element in P1(G;U), for any U and G, thus d1 = 1.For the ase k = 2, let W be a minimal element in P2(G;U), for a given U . We form a graphG0 on vertex set U as follows. For eah w 2 W n U , selet a pair u1; u2 in U for whih w is a2-link, and add an edge u1u2 to G0. Note that G0 is a simple graph, sine eah w represents theonly path in G[W ℄ between the endpoints of the orresponding edge in G0, and it is planar, sineit is an edge ontration of a subgraph of G[W ℄ (where all verties in W n U are of degree 2).By Euler's formula, jE(G0)j � 3jU j � 6. Sine eah edge of G0 orresponds to a distint vertexof W n U , we have that jW j � 4jU j � 6. Thus, d2 � 4.Before proving the general ase of Theorem 3.3, let us ontinue and derive our onlusions.ArboriityFor a graph G, de�ne its arboriity as arb(G) = maxH�G l jE(H)jjV (H)j�1m : By the Nash-Williamstheorem [11℄ there are arb(G) edge-disjoint subforests of G that over all the edges of G.Arboriity is losely related to indutiveness.Lemma 3.4 For any graph G, we have arb(G) � ind(G) < 2 arb(G).Proof. Assume �rst ind(G) = q. We will show that E(G) an be partitioned into q forests.Given a linear arrangement of the verties, suh that the pre-order is at most q, we arbitrarilyolor the q edges from a vertex vi to later verties with q olors. In this way, eah olor lass isayli { sine two edges of the same olor annot have the same �rst-labeled endpoint { andthus a forest. Therefore arb(G) � q, proving the �rst inequality.For the other inequality, let ind(G) = q. Let H be a subgraph of G suh that minv(dH(v)) =q. Sine 2jE(H)j = Pv dH(v) � qjV (H)j, we have arb(G) > jE(H)j=jV (H)j � q=2, whihompletes our lemma.From Lemma 3.4 we have in partiular from [13℄ that arb(G2) � 9�.Consider now the power graph Gk of G. For a vertex set U � V (G), let Ek(U) be the edgesetof the subgraph of Gk indued by U . Then, the arboriity of Gk isarb(Gk) = maxU�V (G) & jEk(U)jjU j � 1 ' :Note that every edge in Ek(U) is represented by at least one (k;�)-path between verties ofU . Let WU 2 Pk(G;U) be a minimal element. By Theorem 3.3, jWU j � 10k�1jU j and we havethat jEk(U)j is less than the number of (k;�)-paths in G[WU ℄. We note that all (k;�)-paths inG[WU ℄ onneting two verties of U , exept the (2;�)-paths, are represented by an edge uv inG[WU ℄k�2 together with edges e and e0 in G, with one endpoint u and v respetively. Hene,jEk(U)j � jE2(U)j+ Xuv2G[WU ℄k�2 d(u)d(v): (2)Degree produts over edgesThe following lemma will be used in our indutive argument.Lemma 3.5 If G is a simple graph of maximum degree � and F is a forest with V (F ) � V (G),then Xuv2E(F ) dG(u)dG(v) � 2�jE(F )j:8



Proof. For any graph H, with V (H) � V (G) letS(H) = Xuv2E(H) dG(u)dG(v):For eah tree T of F , diret its edge away from an arbitrarily hosen root r. Thus, T beomesa direted tree T d in whih every vertex but the root has indegree one. For eah ar ~uv in T dbound the summand dG(u)dG(v) from above by �dG(v). Then,S(T ) � X~uv2E(T d)�dG(v) = �0� Xv2V (T )nfrgdG(v)1A � �0� Xv2V (T ) dG(v)1A :As F is a disjoint union of trees Ti, we have thatS(F ) = kXi=1 S(Ti) � 2�jE(F )j:Arboriity of power graphs.We now want to show indutively that there is a sequene (�k)1k=1 suh that for every planarG with maximum degree � we have arb(Gk) � �k�bk=2: (3)We know at this point that �1 = 3 and �2 = 9 satisfy (3). We proeed by indution and onsidergeneral k � 3. By (2) we getjEk(U)j � 9�(jU j � 1) + Xuv2G[WU ℄k�2d(u)d(v);where now WU is our minimal element of Pk(G;U). By the indution hypothesis we have thatarb(G[WU ℄k�2) � �k�2�b k�22  = ak�2 and hene by the Nash-Williams theorem [11℄ there areak�2 edge-disjoint forests F1; F2; : : : ; Fak�2 overing all the edges of G[WU ℄k�2. By Lemma 3.5,and Theorem 3.3, Xuv2G[WU ℄k�2 d(u)d(v) = ak�2Xi=1 Xuv2E(Fi) d(u)d(v)� ak�2Xi=1 2�jE(Fi)j� ak�2(2�(jWU j � 1))< 2ak�2�jWU j� 2 � 10k�1�k�2�bk=2jU j:Sine k � 3 and �k � 1, we an assume jU j � 3. Thus,jEk(U)j � 9�(jU j � 1) + 2 � 10k�1�k�2�bk=2jU j� 4 � 10k�1�k�2�bk=2(jU j � 1):Thus, arb(Gk) � �k�bk=2, where �1 = 3; �2 = 9 and �k = 4 �10k�1�k�2. By an easy indution,we obtain the following lemma. 9



Lemma 3.6 If G is a planar graph with a maximum degree �, and k � 1 is an integer, thenwe have arb(Gk) � �k�bk=2, where �k = 2k10k2=4.Letting �k be as in the previous lemma, we get by Lemma 3.4 the following orollary.Corollary 3.7 For a simple planar graph G and an integer k � 1, we have that Gk is 2�k�bk=2-indutive.Proof of Theorem 3.3We have already proved the theorem in the ase where k 2 f1; 2g. When onsidering thegeneral ase of (k;�)-paths, we proeed by indution on k and assume k � 3. Let U � V (G)be given. Let W 2 Pk(G;U) be a minimal element. Note that every vertex w 2 W n U isnonremovable, in that there is a pair of verties fuw1; uw2g in U suh that w is a (k;�;uw1; uw2)-link in G[W ℄.Let U 0 � W n U be the set of verties of W that are onneted to some vertex in U by anedge. We want to show that there is a onstant  suh that jU 0j � jU j. We an partition U 0 asU 0 = U 01 [ U 02 [ U 03, where U 01 = fv 2 U 0 : jN(v) \ U j = 1g;U 02 = fv 2 U 0 : jN(v) \ U j = 2g;U 03 = fv 2 U 0 : jN(v) \ U j � 3g:When estimating the sizes of U 01, U 02 and U 03, the easiest ase to deal with is U 03. By the followingLemma 3.8 we have that jU 03j � 2jU j � 4.Lemma 3.8 For a simple planar graph with vertex set U [ V suh that every vertex in V isonneted to at least three verties of U , we have that jV j � 2jU j � 4.Proof. The bipartite subgraph on (U; V;E) has at most 2(jU j+jV j)�4 edges by Euler's formula,but at least 3jV j edges by the degree bound on V .Lemma 3.9 jU 02j � 9jU j.Proof. The idea here is to onsider the verties of U 02 together with their adjaent verties ofU . Every 2-path between verties of U via verties of U 02 an be replaed by a single edge. Inthat way we get a planar multigraph with vertex set U , in whih every edge orresponds to avertex of U 02. In this multigraph, many verties of U ould be isolated.If we now onsider one edge (of possible many) between given two verties of U , then thatedge orresponds uniquely to a vertex w of U 02. Sine w is nonremovable, it is ruial either foronneting the two neighbors of U with a 2-path, or for onneting either of its two neighborsof U to a third vertex of U . That third vertex must then lie in the fae whih has w on itsboundary. This allows us to estimate the number of verties of U 02 in omparison with jU j.Let us do this in a more preise manner. First note that the number of pairs of verties of Uthat are onneted by a 2-path via a vertex from U 02 is at most 3jU j�6 by the planarity of G[W ℄and Euler's formula. Consider now a �xed pair u and u0 of U , onneted by suh a 2-path. Bythe planarity of G[W ℄, we an label all the verties of U 02 onneting u and u0 as v1; v2; : : : ; vksuh that this listing is lokwise with respet to u, and v2; : : : ; vk�1 are all inside the 4-yle(u; v1; u0; vk). Consider the graph G(u; u0) onsisting of the verties u; u0; v1; v2; : : : ; vk along withall the edges onneting eah vi to both u and u0. The union of all the subgraphs G(u; u0), whereu; u0 2 U , together with the rest of the verties of U , will form a simple subgraph G2 of G[W ℄with vertex set U [ U 02, in whih eah vertex of U 02 has degree 2. Let U = U [ Ui, where U isthe set of nonisolated verties of U in G2, and Ui is the set of the isolated ones.10



Every 2-path between verties of U via a vertex of U 02 an be replaed with an edge, givinga planar multigraph G02 in whih eah edge orresponds to a vertex in U 02. By Euler's formulafor simple planar graphs, we get the following laim.Claim 3.10 Consider a onneted planar multigraph on n verties and e edges. For a planeembedding of it, we all a fae a 2-fae if it is bounded by 2 edges and 2 verties. The numberof edges bounding two suh 2-faes, is at least e� 6n+ 12.Let U 002 be the set of verties of U 02 bounding two 4-faes of G2, eah of whih is bounded by 2verties of U and 2 verties of U 02. By Claim 3.10 we havejU 002 j � jU 02j � 6jUj+ 12: (4)Consider v 2 U 002 , and let u; u0 2 U be its neighbors. Call the two 4-faes that v bounds, fv1 andfv2. Sine at most one vertex of U 02 is ruial for onneting u to u0, we may assume that v isnot so. Sine, however, v is nonremovable in G[W ℄, there is a vertex u00 2 U n fu; u0g suh thatv is either a (k;�;u; u00)-link or a (k;�;u0; u00)-link in G[W ℄. By the planarity of G[W ℄, this u00must be ontained either within fv1 or fv2, sine otherwise v is removable. This holds for everyv in U 002 .To summarize, we see that at most 3jUj � 6 verties of U 002 are atual links between theirneighbors. Also, eah v that is not a link between its neighbors, has a neighboring 4-fae, whihinludes an isolated vertex of Ui. ThereforejU 002 j � (3jUj � 6) � 2jUij: (5)By (4) and (5) we get jU 02j � 2jUij+ 9jUj � 18 < 9jU j:We now derive the the �nal step towards ompletion of the proof of Theorem 3.3. Assume wehave suessfully found d1; d2; : : : ; dk�1 as in Theorem 3.3, we now prove the following lemma.Lemma 3.11 For a minimal element W of Pk(G;U), jW j � 84dk�2jU j.Proof. Let U1 � U be the set of verties that have neighbors in U 01. We now have the followingpartition U 01 = [u2U1NU 01(u)where NU 01(u) = fv 2 U 01 : uv 2 E(G[W ℄)g. Consider the planar graph C[W ℄ we get from G[W ℄by ontrating NU 01 [u℄ to a single vertex u�, for eah u 2 U1. Let U� = fu� : u 2 U1g [ (U nU1).If we let U 00 =W n (U [U 0), then learly W is a disjoint union of U;U 01; U 02; U 03 and U 00. In viewof this, C[W ℄ will beome a graph whose verties are a disjoint union of U�; U 02; U 03 and U 00. Foronveniene de�ne a map  : W ! U� [ U 02 [ U 03 [ U 00 by(w) = ( u� if w 2 NU 01 [u℄, for u 2 U1,w otherwise.Note that every (k;�)-path between a pair of verties of U in G[W ℄ gives a (k � 2;�)-pathbetween a pair of verties of U� [ U 02 [ U 03.Let us now show that every vertex of U 00 is nonremovable in C[W ℄ when onsidering (k�2;�)-paths between pairs of verties of U�[U 02[U 03. Let u00 2 U 00. Sine u00 is nonremovable in G[W ℄11



there is a pair u; u0 of verties of U suh that u00 is a (k;�;u; u0)-link. Pik a �xed (k;�;u; u0)-path  and let v and v0 be the endpoints of  nfu; u0g. Now u00 is a (k�2;�; v; v0)-link in G[W ℄,sine otherwise u00 would not be a (k;�;u; u0)-link inG[W ℄. That u00 is a (k�2;�; (v); (v0))-linkin C[W ℄ an be seen as follows. If u00 is not suh a link, then there is a (k � 2;�; (v); (v0))-path 0 not inluding the vertex u00 in C[W ℄. It then gives a (k;�;u; u0)-path 00 in G[W ℄ notinluding u00, whih is a ontradition.By indution hypothesis on k, we now have that the number of verties of C[W ℄ are bounded,that is jU� [ U 02 [ U 03 [ U 00j � dk�2jU� [ U 02 [ U 03j. By previous arguments and the fat thatjU�j = jU j, we havejU� [ U 02 [ U 03 [ U 00j � dk�2(jU j+ 9jU j+ 2jU j) = 12dk�2jU j:The only thing left to onlude our indutive argument is to show that jW n(U [U 02[U 03[U 00)j =jU 01j � jU j for some onstant .Let u 2 U be �xed. For eah neighbor v of u in G[W ℄, let pu(v) 2 U be a vertex suh thatv is a (k;�;u; pu(v))-link. We assume further that for a �xed u and distint v, all the pu(v) aredistint.Claim 3.12 With the notation from above, for eah neighbor v of u in G[W ℄, let v be a(k;�;u; pu(v))-path. Exept for the vertex u, all these paths are vertex-disjoint.Proof. Assume v1 and v2 have a ommon vertex x other than u. Hene, for i = 1; 2, vi =ix�i, where ix is the path from u to x along vi and �i the path from x to pu(vi) along vi . Ifnow l(1x) � l(2x), then 0 = 1x�2 is a (k;�;u; pu(v2))-path not inluding the vertex v2 (sineif v2 lies on 1x then v2 is not a link). This ontradits the de�nition of pu(v2).By Claim 3.12, all the (k;�;u; pu(v))-paths from u to eah of the pu(v), are vertex disjoint.Therefore the number of verties of NU 01(u) is less than the number of edges going out of u� in theontrated graph C[W ℄. Sine eah edge in C[W ℄ onnets to at most two verties of U�, we havethat jU 01j � 2jE(C[W ℄)j. Sine jE(C[W ℄)j � 3jV (C[W ℄)j � 6 and V (C[W ℄) = U� [U 02 [U 03[U 00,we have jW j = jU� [ U 02 [ U 03 [ U 00j+ jU 01j� 12dk�2jU j+ 2jE(C[W ℄)j� 12dk�2jU j+ 6jU� [ U 02 [ U 03 [ U 00j� 84dk�2jU j:We see from the above display that dk = 84dk�2 is suÆient in the ase for general k providedthat dk�2 is known. Therefore the sequene (dk)1k=1 de�ned indutively by d1 = 1, d2 = 4and dk = 84dk�2 will give us the desired onstants. A straightforward indution implies thatdk � 10k�1, and hene we have Theorem 3.3.4 Approximation AlgorithmsWe an improve the best approximation fator known for oloring squares of planar graphs.Reall that sine neighbors in G must be olored di�erently in G2, �(G2) � � + 1. Thus, for� � 749, Corollary 3.7 yields a 1.8-approximation. Hene, we obtain an asymptoti ratio of 1.8.For onstant values of �, we an use a result of Krumke, Marathe and Ravi [7℄. Theystated a 3-approximation, but atually a 2-approximation easily follows from their approah12



whih is based on an often-used deomposition due to Baker [2℄. The omplexity of theirapproah is equivalent to the omplexity of oloring a partial O(�)-tree. Combined, we obtaina 2-approximation for any value of �.Theorem 4.1 The problem of oloring squares of planar graph has a 2-approximation.Theorem 3.1 also immediately gives a O(1)-approximation to oloring ubes of planar graphs.However, better fators are possible.Zhou et al. [17℄ independently gave a polynomial algorithm for distane-d oloring partialk-trees, for any onstant d and k. The omplexity of their algorithm is O(n(�+1)22(k+1)(d+2)+1 +n3), where � = O(min(�d=2; n)) is the number of olors needed. When ombined with thedeomposition of Baker, this result yields a 2-approximation for oloring Gd, for any onstantd. Baker's result states that the vertex set V of a planar graph an be partitioned into layersV1; V2; : : :, suh that all edges are between adjaent layers or within the same layer, i.e. if u 2 Viand uv 2 E, then v 2 Vi�1 [ Vi [ Vi+1. Now, let V 0 = [i mod 2d<dVi, V 00 = V � V 0, and G0, G00be the subgraphs indued by V 0 and V 00. Observe that both G0 and G00 onsist of a olletionof disjoint subgraphs Ui, orresponding to Vdi [ Vdi+1 [ � � � [ Vd(i+1)�1. Further, notie thatthe subgraphs indued by the Ui will also be disjoint in G0d and G00d, sine distane betweenany pair of nodes in di�erent subgraphs Ui is at least d + 1. Thus, G0d an be omputed byonsidering eah Ui separately. Now, Gd restrited to Ui is a subgraph of the graph Hdi , whereHi = G[[d(i+1)�(d�2)j=di�(d�1) Ui℄. Hi is a 3d � 2-outerplanar graph, whih means that it is a partial9d � 8-tree by a result of Bodlaender [3℄. Hene, we an ompute the optimal oloring of eahHi in time O(n2(9d+7)(d+2)+1+1). Thus, we an solve G02 and G002 exatly, and in total, using atmost twie the optimal number of olors.AknowledgementsWe thank Madhav Marathe for introduing this problem to us, and Jan Kratohv��l for helpfulomments. Geir would like to thank the Department of Mathematis at Arizona State Universityfor their hospitality. Magn�us would like to thank the Department of Communiations Systemsat Kyoto University for their hospitality.Referenes[1℄ G. Agnarsson and M. M. Halld�orsson. Coloring powers of planar graphs. In Pro. 11thAnn. ACM-SIAM Symp. on Disrete Algorithms, pages 654{662. ACM-SIAM, 2000.[2℄ B. S. Baker. Approximation algorithms for NP-omplete problems on planar graphs.J. ACM, 41:153{180, Jan. 1994.[3℄ H. L. Bodlaender. Planar graphs with bounded treewidth. Tehnial Report RUU-CS-88-14,Dept. of Comp. Si., Univ. of Utreht, 1988.[4℄ P. Heggernes and J. A. Telle. Partitioning graphs into generalized dominating sets. NordiJ. Computing, 5(2):128{143, Summer 1998.[5℄ T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley Intersiene, 1995.http://www.imada.sdu.dk/Researh/Graphol/.13
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