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Abstract

We give nontrivial bounds for the chromatic number of power graphs G* of a planar
graph G. This is done in terms of the inductiveness of the graph, which naturally relates
to a greedy algorithm. We derive a sharp upper bound for the inductiveness of the square
graph G?, in terms of the maximum degree A of G, for large values of A. In general, we
show the inductiveness and chromatic number of G* to be O(AL¥/2]) which is tight. This
leads to a 2-approximation for coloring squares of planar graphs, improving on the previous
best factor of 9.
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1 Introduction

The k-th power G* of a graph G is defined on the same set of vertices as G, and has an edge
between any pair of vertices of distance at most k in G. The topic of this paper is the coloring
of power graphs, or equivalently coloring the underlying graphs so that vertices of distance
at most k receive different colors. We focus on the planar case, long the center of attention
for graph coloring. We upper-bound the chromatic number by the inductiveness of the graph,
ind(G), defined to be maxycg{minyecp (dy (v))}, where H runs through all induced subgraphs
of G. Inductiveness leads to an ordering of the vertices, {vy,...,v,}, such that the number of
pre-neighbors of any v;, d* (v;) = [{v; € Ng(v;) : j > i}, is at most ind(G).

The problem of coloring squares of graphs has been studied recently for its applications to
frequency allocation. Transceivers in a radio network communicate using channels at given radio
frequencies. Graph coloring formalizes this problem well when the constraint is that nearby pairs
of transceivers cannot use the same channel due to interference. However, if two transceivers
are using the same channel and both are adjacent to a third station, a clashing of signals is
experienced at that third node. This can be avoided by additionally requiring all neighbors of
a node to be assigned different colors, i.e. that vertices of distance at most two receive different
colors. This is equivalent to coloring the square of the underlying network. Another application
of this problem, from a completely different direction, is that of approximating certain Hessian
matrices, see [9].

Observe that neighbors of a node in a graph form a clique in the square of the graph.
Thus, the minimum number of colors needed to color any square graph is at least A 4+ 1, where
A = A(G) is the maximum degree of the original graph. As a result, the number of colors used
by our algorithms on power graphs will necessarily be a function of A. We are particularly
interested in the asymptotic behavior as A grows.

The first reference on coloring squares of planar graphs is by Wegner [16], who gave bounds
on the clique number of such graphs. In particular, he gave an instance for which the clique
number is at least 3A/2 4+ 1 (which is largest possible), and conjectured this to be an upper
bound on the chromatic number, for A large. Some work has been done on the case A = 3, as
listed in [5, Problem 2.18].

McCormick [9] showed that the problem of coloring the power of a graph is NP-complete, for
any fixed power, and a later proof was given by Lin and Skiena [8]. McCormick gave a greedy
algorithm with a O(y/n)-approximation for squares of general graphs. Heggernes and Telle [4]
showed that determining if the square of a cubic graph can be colored with 4 colors or less is
NP-complete, while it is easily determined if 3 colors suffice.

Ramanathan and Lloyd [13, 12] showed the problem of coloring squares of planar graphs to
be NP-complete. They also gave an algorithm with a performance ratio of 9, which was the best
result previously known. More generally, they gave a O(q)-ratio for graphs of inductiveness g.
Krumke, Marathe and Ravi [7] showed more precisely that the ratio is 2¢ — 1. They also gave a
polynomial algorithm for graphs of both bounded treewidth and bounded degree, and used that
to give a 2-approximation for bounded-degree planar graphs. Sen and Huson [14] showed that
coloring squares of unit-circle graphs is NP-complete, while a constant approximation algorithm
was given in [15].

This paper attempts to further the knowledge on the colorability and inductiveness of powers
of planar and general graphs. We first show that for large values of A, squares of planar graphs
are 9A /5+1-inductive, implying a 9A /5+2-coloring. This is the tightest possible, since there are
graphs attaining this inductiveness. We combine this with previous results for bounded-degree



graphs to obtain a 2-approximation for coloring that holds for all values of A.

We next show that the power G* of a planar graph G is O(Al#/2)-inductive, for any k > 1.
This gives an asymptotically tight algorithmic bound for the chromatic number of the power
graph. This yields the first constant factor approximation for coloring cubes of planar graphs.
However, the real strength of the current bounds are in giving absolute bounds on the number
of colors used by the algorithm, as opposed to relative approximations, and thus implicitly
bounding the number of colors used by an optimal solution.

Note the fine distinction between coloring the power graph G*, and finding a distance-k
coloring of G. The resulting coloring is naturally the same. However, in the latter case, the
original graph is given. While it is easy to compute the power graph G* from G, Motwani and
Sudan [10] showed that it is NP-hard to compute the k-th root G of a graph G*. All of the
algorithm presented in this paper work without knowledge of the underlying root graph.

Zhou et al. [17] have in independent work given a polynomial algorithm for distance-d coloring
partial-k trees, for any constants d and k. As indicated in Section 4, this immediately implies a
2-approximation for distance-d coloring planar graphs for any d, thus improving and generalizing
our approximation results in that section. Their algorithm, however, appears to be only of a
theoretical interest, with a large polynomial complexity. In comparison, the results given here
apply to the most natural greedy algorithm.

The rest of the paper is organized as follows. We bound the inductiveness of squares of
planar graphs in Section 2, and general powers of planar graphs in Section 3. We consider the
implications of these bounds to approximate colorings of powers of planar graphs in Section 4.

NOTATION: The degree of a vertex v within a graph G is denoted by dg(v) or simply by d(v)
when there is no danger of ambiguity. The maximum degree of G is denoted by A = A(G). For
a vertex v denote by di(v) the degree of v in G*. Distance between two vertices u and v in a,
graph is the number of edges on the shortest path from u to v, and is denoted by d¢(u,v). Let
G[W] denote the subgraph of G induced by vertex subset W.

2 Squares of Planar Graphs

We first take a look at the main technique we use to derive bounds on the inductiveness of a
square graph (and more generally, power graphs). The argument that is used, e.g., to show that
planar graphs are 5-inductive is the following. By Euler’s theorem, any planar graph contains
a vertex of degree at most 5. Place one such node first in the inductive ordering, and remove
it from the graph. Now the remaining graph is planar, so inductively we obtain a 5-inductive
ordering.

The bound of 5 on the minimum degree of a planar graph also implies that squares of
planar graphs are of minimum degree at most 5A. That would seem to imply a 5A-ordering.
However, when a vertex is deleted from the graph, its incident edges are deleted as well, so
vertices originally distance two apart may become much further apart in the remaining graph.
An example of this is shown in Figure 1. Namely, the problem is that an induced subgraph does
not preserve the paths of length two between vertices within the subgraph. The upshot is that
degrees in the remaining graph do not adequately characterize the degree in the remaining part
of the square of the graph. Our solution is to replace the deletion of vertex by the contraction
of an incident edge.

The contraction of an edge wv in graph G is the operation of collapsing the vertices v and
v into a new vertex, giving the simple graph G/uv defined by V(G/uv) = V(G) \ {v} and



Figure 1: The center vertex has degree 5 but 5A + 9 distance-2 neighbors. Whitened vertices
have been deleted from the graph.

E(G) = {ww' € E(G) : w,w' # v} U{uw : vw € E(G)}. Observe that if G is planar, then
G /uw is also planar. This is a property of various classes of graphs that are closed under minor
operations. By the classic theorem of Kuratowski, planar graphs are precisely those graphs for
which repeated contractions do not yield supergraphs of K5 or K3 3. Minor-closedness holds for
various other classes of graphs, e.g. partial-k trees, but not d-inductive graphs in general.

Since our bounds on the inductiveness are functions of A, it is imperative that the contraction
operations do not increase the maximum degree. In summary, in order to show that a power
graph G* is g-inductive, where ¢ is necessarily a function of the maximum degree A, we show
the existence of a vertex v € V(G¥) = V(G) such that

i dk(v) < q, and (1)
e v has a neighbor u such that d(u) + d(v) — 2 < A.

If such an edge wv exists, then the contraction of wv in G yields yield a simple planar graph
G /uv whose distance function is dominated by the one on G (i.e. distances in G /uv are at most
those in G). Further, by the second condition, the maximum degree of G/uv stays at most A.

2.1 Example applications of the contraction technique

We first illustrate the technique on simpler examples.

Counsider graphs that are 2-inductive and minor-closed, e.g. partial-2 trees or series-parallel
graphs. We inductively choose a vertex of degree at most 2 in the graph and contract one of its
incident edges. In this case, the degree of each of its remaining neighbors does not not increase.
Thus, in each step, at most 2A vertices are within distance at most 2 of the selected vertex.
That is, we satisfy (1) with ¢ = 2A, leading to a 2A-inductive ordering of the square graph.

Theorem 2.1 Squares of partial-2 trees are 2A-inductive.

Our second example yields a bound on the inductiveness of planar graphs of small degree
that improves on the 9A-bound of [13] for 5-inductive graphs. A theorem of Kotzin [6] states
that a maximal planar graph contains an edge uv such that d(u) + d(v) < 13. We first argue
that this implies that any maximal planar graph G with A(G) > 11 is 5A + 6-inductive. We
find an edge as guaranteed by Kotzin’s theorem, select the vertex of lower degree, contract the
edge, and inductively apply the argument on the resulting maximal planar graph. The degree of



the lower degree vertex u is at most 6, and that of v at most 13 — d(u) (including the edge uv),
thus the number of distance-2 neighbors of u is at most (d(u) — 1)A + (13 —d(u) — 1) < 5A + 6.
The degree of the new contracted edge is at most (d(u) — 1) + (d(v) — 1) < 11, hence maximum
degree does not increase. The contracted graph is also maximally planar, hence this yields a
5A + 6-inductive ordering of G2.

For a non-maximal planar graph G, we first form an arbitrary maximal supergraph G’, find
an inductive ordering as above, and use that to color G%. Consider a vertex u and let G’ be
the contracted subgraph when v was selected. u had at most 6 neighbors in G, (including v of
degree at most 13 — d¢ (u)). Each neighbor w was either a contracted node of degree at most
11, or a node that had not received any new neighbors. In the latter case, the degree of w in
G is at most A(G); the other neighbors of w do not count as neighbors of u in G?, unless it
is through some other path. Hence, we have a 5A + 6-inductive ordering of the square of any
planar graph with A > 11. We can use that to improve the 9A inductiveness bound of [13] for
every value of A. For smaller values of A, we know that any graph is trivially A%-inductive,
and the above also gives us an upper bound of 61. In particular, we have that the square of any
planar graph is 8 A-inductive. We summarize these arguments in the following theorem.

Theorem 2.2 If G is a planar graph, then ind(G?) < 8A(G). If A(G) > 11, then ind(G?) <
5A(G) + 6.

2.2 Sharp upper bound for large degree graphs

We now turn to the main result of this section, which is that when G is planar and A large
enough, then G? is L%(G)J + l-inductive. The following lemma is the key to this result.

Lemma 2.3 Let G be a simple planar graph of mazimum degree A > 26. Then there exists a
vertex v € V(G) satisfying one of the following conditions:

1. d(v) <25 and at most one neighbor of v has degree > 26.
2. dy(v) < [2A] + 1 and only two neighbors of v in G have degree > 26.

Proof. We assume that we have a fixed planar embedding of G, and hence G is a plane graph.
Let V, = {v € V(G) : d(v) > 26} and V; = V(G) \ V}. If there is a vertex in V; with at most
one neighbor in V}, then we are done, so assume the contrary.

Call a cycle of four vertices in G forbidden, if exactly two opposite vertices of the cycle are
in V}, and the enclosed region formed by the cycle in the plane properly contains at least one
vertex in Vj,. If G contains a forbidden 4-cycle then let G’ be the subgraph of G induced by
the region bounded by a minimal such 4-cycle. (Here, minimal means that no other 4-cycle is
inside.) If G contains no such cycle then let G’ be G.

Consider now the multigraph H with vertex set V;, N V(G’) and with colored edges defined
as follows. For each edge uw in E(G') with both u,w € V}, connect u and w with a red edge.
For each vertex v € V; adjacent to v and w € V), in G' and to no other vertex in V}, connect

u and w in H with a green edge. Finally for v € V; adjacent to uy,us,...,u; € Vj, in G’ in a
clockwise order for £ > 3, connect u; to ug, us to us,...,ux_1 to ux and uy to u; with blue edges
in H.

Since G is planar, we note that H is also a planar multigraph. Hence, we can assume we
have a drawing of H in the plane such that

1. The vertices of H have the same configuration as they have in the plane graph G.



2. For every pair {u,w} of vertices of H connected by green or blue edges, their order with
respect to w and w is the same as the order of the corresponding vertices of V.

By our assumption there is no vertex in V; with at most one neighbor in V}, in G and hence in
G'. Therefore, the degree of a vertex in H is at least that in G'.

Using Euler’s formula for planar graphs, it is easy to show that there are at least three
vertices of V(H) =V, N V(G’) with at most 5 neighbors in H, and hence there is such a vertex
v € V(H) C V(G') that is not on the 4-cycle defining G’ (if G’ was so defined.)

Consider now a neighbor u of this v € V(H). Let my, be the multiplicity of the edge uv in
H. By our definition of G’ there are at most two blue edges connecting v and v since the third
one would imply a forbidden 4-cycle within G’. Also, there is only one red edge connecting u
and v. Hence, if my, > 4 there are at least my, —3 > 1 green edges connecting » and v in
H. We note that all the blue and green edges connecting « and v in H correspond to different
vertices of V; in G'.

Let ¢y, be the number of common neighbors of u and v in G’ (if 4 and v are connected in
G’, then both u and v are counted as well.) The combined closed neighborhood of u and v in G’
has precisely (dgr(u) + 1) 4 (dgr (v) + 1) — ¢yp vertices. Since my, < ¢yy (in fact, my, + 1 < cyy,
if u and v are connected in G’), we have that this closed neighborhood of v and v in G’ contains
at most (dg(u) + 1) + (dgr (v) + 1) — my, vertices.

Letting w run through all the neighbors of v in H, we note that >, my, = dg(v) > dg (v).
Since v has at most 5 neighbors in G’, there must be a neighbor u of v such that m,, > [dg(v)/5]
and hence the combined neighborhood of v and v is at most

der (v) + dgr(u) +2 — [Mw

5
- _4dGE;(U)J+dG,(u)+2
. _9AéG’)J+2
< 9A5(G)J+2.

Since v € V(H) C V}, is in the interior of the 4-cycle defining G’, we have dg (v) = dg(v) > 26
and hence my, > [dg/(v)/5] > 6. Hence, v and v are connected by at least 5 non-red edges.
Choose 5 consecutive non-red edges between u and v, and let 2z, 29, ..., 25 be the neighbors of
uw and v in G', in a clockwise order, corresponding to these chosen non-red edges. The edges
corresponding to 29, z3 and z4 are green, since otherwise we would have a forbidden 4-cycle
within G'.

As reference, we show in Fig. 2 the common neighborhood in G of two vertices u and v,
along with the the corresponding multigraph. Vertices in V}, are in black, blue vertices are grey,
and green vertices are white. Here ¢, is 6, including one red edges, two blue, and three green.

Now, if z;, i € {2,3,4}, is adjacent to a vertex in V; that does not represent a green nor
blue edge between u and v, then by our assumption that every vertex in V; has at least two
neighbors in V}, in the graph G’, one of these neighbors in V}, must be distinct from v and v
and therefore contained in the region formed by the 4-cycle (u, z;—1,v, zi+1). Again this would
imply a forbidden 4-cycle and contradict our definition of G’.

Therefore, the only vertices of V; that z; can possibly be adjacent to in G’ are z; 1 and z;;.
In particular, the neighbors of z3 in G’ are among {u, v, 22,24}, and the neighbors of z, and z4
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Figure 2: Example of a common neighborhood and the corresponding multigraph

are among {u,v, z1,23} and {u,v, 23, z5 } respectively. In any case, the combined neighborhood
of zo and z4 is contained in the closed combined neighborhood of w and v. Hence the number of

vertices of distance at most 2 from z3 are at most L%(G)J + 2 (including z3 itself). L

Theorem 2.4 If G is a planar graph with mazimum degree A > 749, then G? is L%AJ +1-
inductive.

Proof. Assume that A > 25 4+ 25 — 2 and that we have a vertex v of G which satisfies the first
condition of Lemma 2.3. If v has a neighbor u of degree 25 or less, then ds(v) < 600 + A, and
moreover d(v) + d(u) —2 < A. If v has no neighbor of degree 25 or less, then it has only one
neighbor u. In this case d2(v) < A and d(v) + d(u) — 2 < A.

In the proof of Lemma 2.3 we assumed that there is no vertex in V; with at most one neighbor
of V. In that case there is a vertex of G, called z3 in the last paragraph of the proof, with
dy(z3) < L%AJ + 1. Also, z3 has at most two neighbors zy and z4 of V. If 23 has no neighbors
of V; (that is, is connected to neither z9 nor z4), then since the only neighbors of z3 in V}, are u
and v, we have d(z3) + d(v) — 2 = d(z3) + d(u) — 2 < A. If z3 has a neighbor z; or z2 of V}, say
21, then, d(z3) +d(z1) —2 < A.

In any case, we see that we can always find a vertex w of G with dz(w) < max{600 +
A,[2A] + 1}, and such that w has a neighbor w’ with d(w) + d(w') — 2 < A. 0

It turns out that %A + 1 is a sharp upper bound.

>

>

Figure 3: Icosahedron graph, and split edges

Observation 2.5 For any A, there exists a planar graph G of mazimum degree A such that
G? is of minimum degree L%AJ +1.



Proof. Let k = |A/5]. Start with a 5-regular planar graph that contains a perfect matching.
An example is the graph corresponding to the regular icosahedron in Fig. 3, with the edges of
the perfect matching shown in bold. Parallel to each edge of the perfect matching, we add £ —1
paths of length two. Each edge not in the perfect matching is replaced by k parallel paths of
length two. This completes the construction of a simple planar graph G.

Observe that vertices in G are either of degree 2 or degree 5k. The two neighbors of a
degree-2 node share either k£ or k + 1 neighbors (including themselves). Thus, the distance-2
degree of a degree-2 node is at least 2(5k+1) — (k+1) = 9k +1. On the other hand, high-degree
nodes have 5k — 1 low-degree neighbors, which have together 5 additional neighbors, and one
high-degree neighbor, which itself has 5k neighbors. This counts k£ nodes twice, and one node
three times, but still gives a distance-2 degree of 9k + 3. ]

3 General Powers of Planar Graphs

In this section we prove the following theorem.

Theorem 3.1 Let G be a planar graph with mazimum degree A. For any k > 1, GF is
O(A*/21)-colorable. Also, there is a family of graphs that attains this bound. This bound is
also asymptotically tight for the clique number, inductiveness, arboricity, and minimum degree
of G,

Let us first give a construction that matches the bound of the theorem. Given k,A > 1,
consider the tree T of height |k/2| where internal vertices have degree A. The number of vertices
in T is
k2j-1 _ AA -2 -2

A—2 ’

Dap=1+A+AA-1)+AA-1)2+ -+ AA-1)

Observe that T* is a complete graph, thus thus x(7%) = D .-

We now turn to proving the upper bound of the theorem. The rest of this section is divided
up into several subsections, each of which deals with necessary tools to complete the proof of
our main Theorem 3.1 above. First let us set forth some useful terminology.

Notation

A Ek-path is a path of length exactly k. A (k, <)-path is a path of length & or less. If u and v
are two given vertices then an (k;u,v)-path is a path between v and v of length exactly k, and
finally a (k, <;u,v)-path is a path between u and v of length & or less. A vertex w is called a
(k, <;u,v)-link if w is on every (k,<;u,v)-path. N(v) will denote the set of the neighbors of v
in G, and N|v] the closed neighborhood of v, that is N (v) U {v}.

Definition 3.2 For a simple planar graph G, an integer k > 1 and a subset U C V(G), denote
by Pr(G;U) the set of all W withU C W C V(G) and such that any two vertices in U connected
by a (k,<)-path in G, are also connected by a (k,<)-path in G[W].

We will derive the following bound on the size of each minimal element of P (G;U), that is
linear in |U], for any fixed k.

Theorem 3.3 There erists an integer sequence (dg)g>1 with dj, < 105~ such that for every
connected simple planar graph G, every integer k > 1 and every U C V(G), each minimal
element of Px(G;U) has at most di|U| vertices.



Let us get a better grasp of this by examining the first two cases k = 1,2. Clearly U itself
is the only minimal element in P1(G;U), for any U and G, thus d; = 1.

For the case k = 2, let W be a minimal element in Py(G; U), for a given U. We form a graph
G’ on vertex set U as follows. For each w € W \ U, select a pair uj,us in U for which w is a
2-link, and add an edge ujus to G'. Note that G’ is a simple graph, since each w represents the
only path in G[W] between the endpoints of the corresponding edge in G', and it is planar, since
it is an edge contraction of a subgraph of G[W] (where all vertices in W \ U are of degree 2).
By Euler’s formula, |[E(G")| < 3|U| — 6. Since each edge of G’ corresponds to a distinct vertex
of W\ U, we have that |[W| <4|U| — 6. Thus, dy < 4.

Before proving the general case of Theorem 3.3, let us continue and derive our conclusions.

Arboricity

For a graph G, define its arboricity as arb(G) = maxgcqa [%1 . By the Nash-Williams
theorem [11] there are arb(G) edge-disjoint subforests of G that cover all the edges of G.
Arboricity is closely related to inductiveness.

Lemma 3.4 For any graph G, we have arb(G) < ind(G) < 2arb(G).

Proof. Assume first ind(G) = ¢q. We will show that E(G) can be partitioned into g forests.
Given a linear arrangement of the vertices, such that the pre-order is at most ¢, we arbitrarily
color the ¢ edges from a vertex v; to later vertices with ¢ colors. In this way, each color class is
acyclic — since two edges of the same color cannot have the same first-labeled endpoint — and
thus a forest. Therefore arb(G) < ¢, proving the first inequality.

For the other inequality, let ind(G) = ¢. Let H be a subgraph of G such that min,(dg(v)) =
g. Since 2|E(H)| = Y, du(v) > ¢q|V(H)|, we have arb(G) > |E(H)|/|V(H)| > ¢/2, which
completes our lemma. L]
From Lemma 3.4 we have in particular from [13] that arb(G?) < 9A.

Consider now the power graph G* of G. For a vertex set U C V(G), let E¥(U) be the edgeset
of the subgraph of G* induced by U. Then, the arboricity of G¥ is

|E’“(U)|-‘ |

ky —
0 = e

Note that every edge in E¥(U) is represented by at least one (k, <)-path between vertices of
U. Let Wy € Pr(G;U) be a minimal element. By Theorem 3.3, |[Wy;| < 10*1U| and we have
that |E¥(U)] is less than the number of (k, <)-paths in G[Wy]. We note that all (k, <)-paths in
G[Wy] connecting two vertices of U, except the (2, <)-paths, are represented by an edge uv in
G [WU]"“*2 together with edges e and €’ in G, with one endpoint u and v respectively. Hence,

|BRO) < [B*O)[+ D d(u)d(v). (2)
weG[Wylk—2

Degree products over edges
The following lemma will be used in our inductive argument.

Lemma 3.5 If G is a simple graph of maximum degree A and F is a forest with V(F) C V(G),
then

> da(u)dg(v) < 2A[E(F)|.
wveE(F)



Proof. For any graph H, with V(H) C V(G) let
S(H)= Y da(u)da(v).
weE(H)

For each tree T' of F', direct its edge away from an arbitrarily chosen root r. Thus, T" becomes
a directed tree T? in which every vertex but the root has indegree one. For each arc v in T¢
bound the summand d¢g(u)dg(v) from above by Adg(v). Then,

S(T)y< Y AdG(U)ZA( > dG(“)) SA( > dG(U))-
veV

I IeAD) (T)\{r} VeV (T)
As F' is a disjoint union of trees T;, we have that

S(F) = 3" S(T,) < 201B(F).

i=1
U

Arboricity of power graphs.

We now want to show inductively that there is a sequence (ay)72; such that for every planar
G with maximum degree A we have

arb(GF) < a AF/2] (3)

We know at this point that a; = 3 and ay = 9 satisfy (3). We proceed by induction and consider
general k > 3. By (2) we get

BEO) <9AWUI - D+ Y dwd(v),
qu(ﬁM&dk—2
where now Wy is our minimal element of Py (G;U). By the induction hypothesis we have that
arb(G[Wy]*—2) < Oék_QAL%J = ai_9 and hence by the Nash-Williams theorem [11] there are

ar_o edge-disjoint forests Fy, Fy, ..., F,, _, covering all the edges of G[W;]*2. By Lemma 3.5,
and Theorem 3.3,

ap—2

S dwd) = Y Y dw)d(v)
wweG[Wy]k—2 i=1 weE(F;)

Ap—2

> 2A|B(F)|
=1

ak—2(2A(|Wy| - 1))
Zak,2A|WU|
210 oy, A2 ).

IN

VANRVARVAN

Since k > 3 and ay > 1, we can assume |U| > 3. Thus,

IEE(U)] < 9A(U| — 1) +2- 105 g, AR/ ]
< 4108y AR (U] - 1),

Thus, arb(G*) < o, A¥/2] where a; = 3,0 = 9 and oy, = 4-10F~',_y. By an easy induction,
we obtain the following lemma.



Lemma 3.6 If G is a planar graph with a mazimum degree A, and k > 1 is an integer, then
we have arb(G*) < ap AR/2) | where oy, = 2F10%7/4 .

Letting oy be as in the previous lemma, we get by Lemma 3.4 the following corollary.

Corollary 3.7 For a simple planar graph G and an integer k > 1, we have that G* is 20, AL¥/2]
inductive. ]

Proof of Theorem 3.3

We have already proved the theorem in the case where & € {1,2}. When considering the
general case of (k, <)-paths, we proceed by induction on k and assume k& > 3. Let U C V(G)
be given. Let W € Pr(G;U) be a minimal element. Note that every vertex w € W \ U is
nonremouvable, in that there is a pair of vertices {1, U2} in U such that w is a (k, <; Uy, Uw2)-
link in G[W].

Let U' C W \ U be the set of vertices of W that are connected to some vertex in U by an
edge. We want to show that there is a constant ¢ such that |U’| < ¢|U|. We can partition U’ as
U' =U] UU,UU;, where

U ={veU :|Nw)nU| =1},
Uy={velU :|N@w)nU| =2},
Uy={veU :|Nw)nU| > 3}.

When estimating the sizes of U], Uj and U}, the easiest case to deal with is U3. By the following
Lemma 3.8 we have that |Uj| < 2|U| — 4.

Lemma 3.8 For a simple planar graph with vertex set U UV such that every vertex in V is
connected to at least three vertices of U, we have that |V| < 2|U| — 4.

Proof. The bipartite subgraph on (U, V, E) has at most 2(|U|+|V|) —4 edges by Euler’s formula,
but at least 3|V| edges by the degree bound on V. ]
Lemma 3.9 |U;| <9|U|.

Proof. The idea here is to consider the vertices of Uj together with their adjacent vertices of
U. Every 2-path between vertices of U via vertices of U} can be replaced by a single edge. In
that way we get a planar multigraph with vertex set U, in which every edge corresponds to a
vertex of Uj. In this multigraph, many vertices of U could be isolated.

If we now consider one edge (of possible many) between given two vertices of U, then that
edge corresponds uniquely to a vertex w of Uj. Since w is nonremovable, it is crucial either for
connecting the two neighbors of U with a 2-path, or for connecting either of its two neighbors
of U to a third vertex of U. That third vertex must then lie in the face which has w on its
boundary. This allows us to estimate the number of vertices of U; in comparison with |U].

Let us do this in a more precise manner. First note that the number of pairs of vertices of U
that are connected by a 2-path via a vertex from U} is at most 3|U| —6 by the planarity of G[W]
and Euler’s formula. Consider now a fixed pair v and u' of U, connected by such a 2-path. By
the planarity of G[W], we can label all the vertices of U} connecting u and u' as vy, vs,. .., vy
such that this listing is clockwise with respect to u, and ve,...,vg_1 are all inside the 4-cycle
(u,v1,u’,vg). Consider the graph G(u,u') consisting of the vertices u,u’, vy, v, ..., vg along with
all the edges connecting each v; to both u and «’. The union of all the subgraphs G(u, '), where
u,u’ € U, together with the rest of the vertices of U, will form a simple subgraph G2 of G[W]
with vertex set U U U3, in which each vertex of Uj has degree 2. Let U = U, U U;, where U, is
the set of nonisolated vertices of U in GG9, and U; is the set of the isolated ones.
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Every 2-path between vertices of U, via a vertex of U} can be replaced with an edge, giving
a planar multigraph G% in which each edge corresponds to a vertex in Uj. By Euler’s formula
for simple planar graphs, we get the following claim.
Claim 3.10 Consider a connected planar multigraph on n vertices and e edges. For a plane
embedding of it, we call a face a 2-face if it is bounded by 2 edges and 2 vertices. The number
of edges bounding two such 2-faces, is at least e — 6n + 12. L]

Let Uy be the set of vertices of Uj bounding two 4-faces of Gg, each of which is bounded by 2
vertices of U and 2 vertices of Uj. By Claim 3.10 we have

3| = |Us| = 6|U| + 12. (4)

Consider v € UY/, and let u,u’ € U be its neighbors. Call the two 4-faces that v bounds, f,; and
fv2. Since at most one vertex of Uj is crucial for connecting u to u/, we may assume that v is
not so. Since, however, v is nonremovable in G[W], there is a vertex uv” € U \ {u, '} such that
v is either a (k, <;u,u")-link or a (k, <;u',u")-link in G[W]. By the planarity of G[W], this u”
must be contained either within f,; or fyo, since otherwise v is removable. This holds for every
v in UJ.

To summarize, we see that at most 3|U.| — 6 vertices of U} are actual links between their
neighbors. Also, each v that is not a link between its neighbors, has a neighboring 4-face, which
includes an isolated vertex of U;. Therefore

|U3| = (3|Uc| = 6) < 2|Usl. (5)

By (4) and (5) we get
Us| < 2|U;| +9|U.| — 18 < 9|U|.

O

We now derive the the final step towards completion of the proof of Theorem 3.3. Assume we
have successfully found dj,ds,...,d;_1 as in Theorem 3.3, we now prove the following lemma.
Lemma 3.11 For a minimal element W of Pi(G;U), |W| < 84dj_2|U].

Proof. Let Uy C U be the set of vertices that have neighbors in U{. We now have the following
partition
r_
Uy = U Ny (u)
ueU;

where Ny (u) = {v € Uy : uwv € E(G[W])}. Consider the planar graph C[W] we get from G[W]
by contracting Ny [u] to a single vertex u*, for each u € Uy. Let U* = {u" : uw € U1} U (U \ Uh).
If we let U" =W \ (UUU"), then clearly W is a disjoint union of U, U{, U}, U and U”. In view
of this, C[W] will become a graph whose vertices are a disjoint union of U*, U}, U5 and U". For
convenience define a map ¢: W — U* U U, UU, UU" by

c(w) = uw* ifwe NU{[U], for uw € Uy,
w  otherwise.

Note that every (k,<)-path between a pair of vertices of U in G[W] gives a (k — 2, <)-path
between a pair of vertices of U* U Uj U U3.

Let us now show that every vertex of U” is nonremovable in C[W] when considering (k—2, <)-
paths between pairs of vertices of U*UU; UU]. Let v” € U”. Since u” is nonremovable in G[W]
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there is a pair u,u’ of vertices of U such that u” is a (k, <;u,u)-link. Pick a fixed (k, <;u,u')-
path v and let v and v' be the endpoints of v\ {u,u'}. Now u” is a (k —2, <;v,v)-link in G[W],
since otherwise u” would not be a (k, <; u, v')-link in G[W]. That v" is a (k—2, <; ¢(v), ¢(v"))-link
in C[W] can be seen as follows. If «” is not such a link, then there is a (k — 2, <;¢(v), c(v'))-
path 4" not including the vertex u” in C[W]. It then gives a (k, <;u,u)-path v in G[W] not
including «”, which is a contradiction.

By induction hypothesis on k, we now have that the number of vertices of C[W] are bounded,
that is [U* U U, U U3 UU"| < d—o|U* U Uy UUs|. By previous arguments and the fact that
|U*| = |U|, we have

U WU, VU3 UU"| < dpo(|U] +9|U| + 2|U|) = 12dy_»|U].

The only thing left to conclude our inductive argument is to show that |W\ (UUUSUULUU")| =
|U;| < ¢|U] for some constant c.

Let u € U be fixed. For each neighbor v of u in G[W], let p,(v) € U be a vertex such that
vis a (k, <;u,pyu(v))-link. We assume further that for a fixed v and distinct v, all the p,(v) are
distinct.

Claim 3.12 With the notation from above, for each neighbor v of u in G[W], let v, be a
(k, <;u,py(v))-path. Except for the vertex u, all these paths are vertex-disjoint.

Proof. Assume v,, and v,, have a common vertex x other than u. Hence, for i = 1,2, v,, =
YizBi, where 7;; is the path from u to = along ,, and f; the path from z to p,(v;) along ,,. If
now [(y1z) < l(7y2z), then v = v1,83 is a (k, <; u, py (v2))-path not including the vertex vy (since
if vy lies on 7y, then vy is not a link). This contradicts the definition of p,(v2). ]

By Claim 3.12, all the (k, <;u,p,(v))-paths from u to each of the p,(v), are vertex disjoint.
Therefore the number of vertices of IV, Ul (u) is less than the number of edges going out of u* in the
contracted graph C[W]. Since each edge in C[W] connects to at most two vertices of U*, we have
that |U]| < 2|E(C[W])|. Since |E(C[W])| < 3|[V(C[W])|—6 and V(C[W]) =U*UUSUULUTU",

we have

W| = |U*UUsUUUU"| + U]
12dy_5|U| + 2| E(C[W])|
12dy,_|U| + 6|U* WU, U UL U U"|

84d;_,|U].

VAN VANVA

We see from the above display that d = 84dj_» is sufficient in the case for general k provided
that dj_o is known. Therefore the sequence (d)p2; defined inductively by di = 1, dy = 4
and dp = 84dp_o will give us the desired constants. A straightforward induction implies that
d, < 10*~1, and hence we have Theorem 3.3. ]

4 Approximation Algorithms

We can improve the best approximation factor known for coloring squares of planar graphs.
Recall that since neighbors in G' must be colored differently in G?, x(G?) > A + 1. Thus, for
A > 749, Corollary 3.7 yields a 1.8-approximation. Hence, we obtain an asymptotic ratio of 1.8.

For constant values of A, we can use a result of Krumke, Marathe and Ravi [7]. They
stated a 3-approximation, but actually a 2-approximation easily follows from their approach
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which is based on an often-used decomposition due to Baker [2]. The complexity of their
approach is equivalent to the complexity of coloring a partial O(A)-tree. Combined, we obtain
a 2-approximation for any value of A.

Theorem 4.1 The problem of coloring squares of planar graph has a 2-approzimation.

Theorem 3.1 also immediately gives a O(1)-approximation to coloring cubes of planar graphs.
However, better factors are possible.

Zhou et al. [17] independently gave a polynomial algorithm for distance-d coloring partial
k-trees, for any constant d and k. The complexity of their algorithm is O(n(a+ 1)22(1€+1)(d+2)+1
n3), where @ = O(min(A%2,n)) is the number of colors needed. When combined with the
decomposition of Baker, this result yields a 2-approximation for coloring G¢, for any constant
d.

Baker’s result states that the vertex set V' of a planar graph can be partitioned into layers
Vi, Va, ..., such that all edges are between adjacent layers or within the same layer, i.e. if u € V;
and uwv € E, then v € V;_1 UV; U V;11. Now, let V' = U; mod 24<dVi, V' =V = V', and G', G"
be the subgraphs induced by V' and V”. Observe that both G’ and G"” consist of a collection
of disjoint subgraphs Uj, corresponding to Vi U Viip1 U -+ U Vyi4q)- 1. Further, notice that
the subgraphs induced by the U; will also be disjoint in G'? and G"?, since distance between
any pair of nodes in different subgraphs U; is at least d + 1. Thus, G'¢ can be computed by
considering each U; separately. Now, G¢ restricted to U; is a subgraph of the graph Hld, where

H;, = G[U?S;?&@BZ)UJ. H; is a 3d — 2-outerplanar graph, which means that it is a partial
9d — 8-tree by a result of Bodlaender [3]. Hence, we can compute the optimal coloring of each
H; in time O(nQ(gd”)(dH)HH). Thus, we can solve G'? and G"? exactly, and in total, using at

most twice the optimal number of colors.
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