
Coloring Powers of Planar Graphs�Geir Agnarssony Magn�us M. Halld�orssonzAbstra
tWe give nontrivial bounds for the 
hromati
 number of power graphs Gk of a planargraph G. This is done in terms of the indu
tiveness of the graph, whi
h naturally relatesto a greedy algorithm. We derive a sharp upper bound for the indu
tiveness of the squaregraph G2, in terms of the maximum degree � of G, for large values of �. In general, weshow the indu
tiveness and 
hromati
 number of Gk to be O(�bk=2
), whi
h is tight. Thisleads to a 2-approximation for 
oloring squares of planar graphs, improving on the previousbest fa
tor of 9.

�Earlier version of this paper appeared in SODA '00 [1℄.yS
ien
e Institute, University of I
eland, geira�raunvis.hi.is.zS
ien
e Institute, University of I
eland, mmh�hi.is. Work done in part at the Graduate S
hool of Informati
s,Kyoto University. 1



1 Introdu
tionThe k-th power Gk of a graph G is de�ned on the same set of verti
es as G, and has an edgebetween any pair of verti
es of distan
e at most k in G. The topi
 of this paper is the 
oloringof power graphs, or equivalently 
oloring the underlying graphs so that verti
es of distan
eat most k re
eive di�erent 
olors. We fo
us on the planar 
ase, long the 
enter of attentionfor graph 
oloring. We upper-bound the 
hromati
 number by the indu
tiveness of the graph,ind(G), de�ned to be maxH�Gfminv2H(dH(v))g, where H runs through all indu
ed subgraphsof G. Indu
tiveness leads to an ordering of the verti
es, fv1; : : : ; vng, su
h that the number ofpre-neighbors of any vi, d+(vi) = jfvj 2 NG(vi) : j > igj, is at most ind(G).The problem of 
oloring squares of graphs has been studied re
ently for its appli
ations tofrequen
y allo
ation. Trans
eivers in a radio network 
ommuni
ate using 
hannels at given radiofrequen
ies. Graph 
oloring formalizes this problem well when the 
onstraint is that nearby pairsof trans
eivers 
annot use the same 
hannel due to interferen
e. However, if two trans
eiversare using the same 
hannel and both are adja
ent to a third station, a 
lashing of signals isexperien
ed at that third node. This 
an be avoided by additionally requiring all neighbors ofa node to be assigned di�erent 
olors, i.e. that verti
es of distan
e at most two re
eive di�erent
olors. This is equivalent to 
oloring the square of the underlying network. Another appli
ationof this problem, from a 
ompletely di�erent dire
tion, is that of approximating 
ertain Hessianmatri
es, see [9℄.Observe that neighbors of a node in a graph form a 
lique in the square of the graph.Thus, the minimum number of 
olors needed to 
olor any square graph is at least �+ 1, where� = �(G) is the maximum degree of the original graph. As a result, the number of 
olors usedby our algorithms on power graphs will ne
essarily be a fun
tion of �. We are parti
ularlyinterested in the asymptoti
 behavior as � grows.The �rst referen
e on 
oloring squares of planar graphs is by Wegner [16℄, who gave boundson the 
lique number of su
h graphs. In parti
ular, he gave an instan
e for whi
h the 
liquenumber is at least 3�=2 + 1 (whi
h is largest possible), and 
onje
tured this to be an upperbound on the 
hromati
 number, for � large. Some work has been done on the 
ase � = 3, aslisted in [5, Problem 2.18℄.M
Cormi
k [9℄ showed that the problem of 
oloring the power of a graph is NP-
omplete, forany �xed power, and a later proof was given by Lin and Skiena [8℄. M
Cormi
k gave a greedyalgorithm with a O(pn)-approximation for squares of general graphs. Heggernes and Telle [4℄showed that determining if the square of a 
ubi
 graph 
an be 
olored with 4 
olors or less isNP-
omplete, while it is easily determined if 3 
olors suÆ
e.Ramanathan and Lloyd [13, 12℄ showed the problem of 
oloring squares of planar graphs tobe NP-
omplete. They also gave an algorithm with a performan
e ratio of 9, whi
h was the bestresult previously known. More generally, they gave a O(q)-ratio for graphs of indu
tiveness q.Krumke, Marathe and Ravi [7℄ showed more pre
isely that the ratio is 2q� 1. They also gave apolynomial algorithm for graphs of both bounded treewidth and bounded degree, and used thatto give a 2-approximation for bounded-degree planar graphs. Sen and Huson [14℄ showed that
oloring squares of unit-
ir
le graphs is NP-
omplete, while a 
onstant approximation algorithmwas given in [15℄.This paper attempts to further the knowledge on the 
olorability and indu
tiveness of powersof planar and general graphs. We �rst show that for large values of �, squares of planar graphsare 9�=5+1-indu
tive, implying a 9�=5+2-
oloring. This is the tightest possible, sin
e there aregraphs attaining this indu
tiveness. We 
ombine this with previous results for bounded-degree1



graphs to obtain a 2-approximation for 
oloring that holds for all values of �.We next show that the power Gk of a planar graph G is O(�bk=2
)-indu
tive, for any k � 1.This gives an asymptoti
ally tight algorithmi
 bound for the 
hromati
 number of the powergraph. This yields the �rst 
onstant fa
tor approximation for 
oloring 
ubes of planar graphs.However, the real strength of the 
urrent bounds are in giving absolute bounds on the numberof 
olors used by the algorithm, as opposed to relative approximations, and thus impli
itlybounding the number of 
olors used by an optimal solution.Note the �ne distin
tion between 
oloring the power graph Gk, and �nding a distan
e-k
oloring of G. The resulting 
oloring is naturally the same. However, in the latter 
ase, theoriginal graph is given. While it is easy to 
ompute the power graph Gk from G, Motwani andSudan [10℄ showed that it is NP-hard to 
ompute the k-th root G of a graph Gk. All of thealgorithm presented in this paper work without knowledge of the underlying root graph.Zhou et al. [17℄ have in independent work given a polynomial algorithm for distan
e-d 
oloringpartial-k trees, for any 
onstants d and k. As indi
ated in Se
tion 4, this immediately implies a2-approximation for distan
e-d 
oloring planar graphs for any d, thus improving and generalizingour approximation results in that se
tion. Their algorithm, however, appears to be only of atheoreti
al interest, with a large polynomial 
omplexity. In 
omparison, the results given hereapply to the most natural greedy algorithm.The rest of the paper is organized as follows. We bound the indu
tiveness of squares ofplanar graphs in Se
tion 2, and general powers of planar graphs in Se
tion 3. We 
onsider theimpli
ations of these bounds to approximate 
olorings of powers of planar graphs in Se
tion 4.Notation: The degree of a vertex v within a graph G is denoted by dG(v) or simply by d(v)when there is no danger of ambiguity. The maximum degree of G is denoted by � = �(G). Fora vertex v denote by dk(v) the degree of v in Gk. Distan
e between two verti
es u and v in agraph is the number of edges on the shortest path from u to v, and is denoted by dG(u; v). LetG[W ℄ denote the subgraph of G indu
ed by vertex subset W .2 Squares of Planar GraphsWe �rst take a look at the main te
hnique we use to derive bounds on the indu
tiveness of asquare graph (and more generally, power graphs). The argument that is used, e.g., to show thatplanar graphs are 5-indu
tive is the following. By Euler's theorem, any planar graph 
ontainsa vertex of degree at most 5. Pla
e one su
h node �rst in the indu
tive ordering, and removeit from the graph. Now the remaining graph is planar, so indu
tively we obtain a 5-indu
tiveordering.The bound of 5 on the minimum degree of a planar graph also implies that squares ofplanar graphs are of minimum degree at most 5�. That would seem to imply a 5�-ordering.However, when a vertex is deleted from the graph, its in
ident edges are deleted as well, soverti
es originally distan
e two apart may be
ome mu
h further apart in the remaining graph.An example of this is shown in Figure 1. Namely, the problem is that an indu
ed subgraph doesnot preserve the paths of length two between verti
es within the subgraph. The upshot is thatdegrees in the remaining graph do not adequately 
hara
terize the degree in the remaining partof the square of the graph. Our solution is to repla
e the deletion of vertex by the 
ontra
tionof an in
ident edge.The 
ontra
tion of an edge uv in graph G is the operation of 
ollapsing the verti
es u andv into a new vertex, giving the simple graph G=uv de�ned by V (G=uv) = V (G) n fvg and2
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Figure 1: The 
enter vertex has degree 5 but 5� + 9 distan
e-2 neighbors. Whitened verti
eshave been deleted from the graph.E(G) = fww0 2 E(G) : w;w0 6= vg [ fuw : vw 2 E(G)g. Observe that if G is planar, thenG=uv is also planar. This is a property of various 
lasses of graphs that are 
losed under minoroperations. By the 
lassi
 theorem of Kuratowski, planar graphs are pre
isely those graphs forwhi
h repeated 
ontra
tions do not yield supergraphs of K5 or K3;3. Minor-
losedness holds forvarious other 
lasses of graphs, e.g. partial-k trees, but not d-indu
tive graphs in general.Sin
e our bounds on the indu
tiveness are fun
tions of �, it is imperative that the 
ontra
tionoperations do not in
rease the maximum degree. In summary, in order to show that a powergraph Gk is q-indu
tive, where q is ne
essarily a fun
tion of the maximum degree �, we showthe existen
e of a vertex v 2 V (Gk) = V (G) su
h that� dk(v) � q, and� v has a neighbor u su
h that d(u) + d(v) � 2 � �: (1)If su
h an edge uv exists, then the 
ontra
tion of uv in G yields yield a simple planar graphG=uv whose distan
e fun
tion is dominated by the one on G (i.e. distan
es in G=uv are at mostthose in G). Further, by the se
ond 
ondition, the maximum degree of G=uv stays at most �.2.1 Example appli
ations of the 
ontra
tion te
hniqueWe �rst illustrate the te
hnique on simpler examples.Consider graphs that are 2-indu
tive and minor-
losed, e.g. partial-2 trees or series-parallelgraphs. We indu
tively 
hoose a vertex of degree at most 2 in the graph and 
ontra
t one of itsin
ident edges. In this 
ase, the degree of ea
h of its remaining neighbors does not not in
rease.Thus, in ea
h step, at most 2� verti
es are within distan
e at most 2 of the sele
ted vertex.That is, we satisfy (1) with q = 2�, leading to a 2�-indu
tive ordering of the square graph.Theorem 2.1 Squares of partial-2 trees are 2�-indu
tive.Our se
ond example yields a bound on the indu
tiveness of planar graphs of small degreethat improves on the 9�-bound of [13℄ for 5-indu
tive graphs. A theorem of Kotzin [6℄ statesthat a maximal planar graph 
ontains an edge uv su
h that d(u) + d(v) � 13. We �rst arguethat this implies that any maximal planar graph G with �(G) � 11 is 5� + 6-indu
tive. We�nd an edge as guaranteed by Kotzin's theorem, sele
t the vertex of lower degree, 
ontra
t theedge, and indu
tively apply the argument on the resulting maximal planar graph. The degree of3



the lower degree vertex u is at most 6, and that of v at most 13� d(u) (in
luding the edge uv),thus the number of distan
e-2 neighbors of u is at most (d(u)� 1)�+ (13� d(u)� 1) � 5�+6.The degree of the new 
ontra
ted edge is at most (d(u)� 1) + (d(v)� 1) � 11, hen
e maximumdegree does not in
rease. The 
ontra
ted graph is also maximally planar, hen
e this yields a5� + 6-indu
tive ordering of G2.For a non-maximal planar graph G, we �rst form an arbitrary maximal supergraph G0, �ndan indu
tive ordering as above, and use that to 
olor G2. Consider a vertex u and let G0v bethe 
ontra
ted subgraph when v was sele
ted. u had at most 6 neighbors in G0u (in
luding v ofdegree at most 13 � dG0v (u)). Ea
h neighbor w was either a 
ontra
ted node of degree at most11, or a node that had not re
eived any new neighbors. In the latter 
ase, the degree of w inG is at most �(G); the other neighbors of w do not 
ount as neighbors of u in G2, unless itis through some other path. Hen
e, we have a 5� + 6-indu
tive ordering of the square of anyplanar graph with � � 11. We 
an use that to improve the 9� indu
tiveness bound of [13℄ forevery value of �. For smaller values of �, we know that any graph is trivially �2-indu
tive,and the above also gives us an upper bound of 61. In parti
ular, we have that the square of anyplanar graph is 8�-indu
tive. We summarize these arguments in the following theorem.Theorem 2.2 If G is a planar graph, then ind(G2) � 8�(G). If �(G) � 11, then ind(G2) �5�(G) + 6.2.2 Sharp upper bound for large degree graphsWe now turn to the main result of this se
tion, whi
h is that when G is planar and � largeenough, then G2 is b9�(G)5 
+ 1-indu
tive. The following lemma is the key to this result.Lemma 2.3 Let G be a simple planar graph of maximum degree � � 26. Then there exists avertex v 2 V (G) satisfying one of the following 
onditions:1. d(v) � 25 and at most one neighbor of v has degree � 26.2. d2(v) � b95�
+ 1 and only two neighbors of v in G have degree � 26.Proof. We assume that we have a �xed planar embedding of G, and hen
e G is a plane graph.Let Vh = fv 2 V (G) : d(v) � 26g and Vl = V (G) n Vh. If there is a vertex in Vl with at mostone neighbor in Vh, then we are done, so assume the 
ontrary.Call a 
y
le of four verti
es in G forbidden, if exa
tly two opposite verti
es of the 
y
le arein Vh and the en
losed region formed by the 
y
le in the plane properly 
ontains at least onevertex in Vh. If G 
ontains a forbidden 4-
y
le then let G0 be the subgraph of G indu
ed bythe region bounded by a minimal su
h 4-
y
le. (Here, minimal means that no other 4-
y
le isinside.) If G 
ontains no su
h 
y
le then let G0 be G.Consider now the multigraph H with vertex set Vh \ V (G0) and with 
olored edges de�nedas follows. For ea
h edge uw in E(G0) with both u;w 2 Vh 
onne
t u and w with a red edge.For ea
h vertex v 2 Vl adja
ent to u and w 2 Vh in G0 and to no other vertex in Vh, 
onne
tu and w in H with a green edge. Finally for v 2 Vl adja
ent to u1; u2; : : : ; uk 2 Vh in G0 in a
lo
kwise order for k � 3, 
onne
t u1 to u2, u2 to u3,. . . ,uk�1 to uk and uk to u1 with blue edgesin H.Sin
e G is planar, we note that H is also a planar multigraph. Hen
e, we 
an assume wehave a drawing of H in the plane su
h that1. The verti
es of H have the same 
on�guration as they have in the plane graph G.4



2. For every pair fu;wg of verti
es of H 
onne
ted by green or blue edges, their order withrespe
t to u and w is the same as the order of the 
orresponding verti
es of Vl.By our assumption there is no vertex in Vl with at most one neighbor in Vh in G and hen
e inG0. Therefore, the degree of a vertex in H is at least that in G0.Using Euler's formula for planar graphs, it is easy to show that there are at least threeverti
es of V (H) = Vh \ V (G0) with at most 5 neighbors in H, and hen
e there is su
h a vertexv 2 V (H) � V (G0) that is not on the 4-
y
le de�ning G0 (if G0 was so de�ned.)Consider now a neighbor u of this v 2 V (H). Let muv be the multipli
ity of the edge uv inH. By our de�nition of G0 there are at most two blue edges 
onne
ting u and v sin
e the thirdone would imply a forbidden 4-
y
le within G0. Also, there is only one red edge 
onne
ting uand v. Hen
e, if muv � 4 there are at least muv � 3 � 1 green edges 
onne
ting u and v inH. We note that all the blue and green edges 
onne
ting u and v in H 
orrespond to di�erentverti
es of Vl in G0.Let 
uv be the number of 
ommon neighbors of u and v in G0 (if u and v are 
onne
ted inG0, then both u and v are 
ounted as well.) The 
ombined 
losed neighborhood of u and v in G0has pre
isely (dG0(u) + 1) + (dG0(v) + 1)� 
uv verti
es. Sin
e muv � 
uv (in fa
t, muv +1 � 
uv,if u and v are 
onne
ted in G0), we have that this 
losed neighborhood of u and v in G0 
ontainsat most (dG0(u) + 1) + (dG0(v) + 1)�muv verti
es.Letting w run through all the neighbors of v in H, we note that Pwmvw = dH(v) � dG0(v).Sin
e v has at most 5 neighbors inG0, there must be a neighbor u of v su
h thatmuv � ddG0(v)=5eand hen
e the 
ombined neighborhood of u and v is at mostdG0(v) + dG0(u) + 2� �dG0(v)5 �= �4dG0(v)5 �+ dG0(u) + 2� �9�(G0)5 �+ 2� �9�(G)5 �+ 2:Sin
e v 2 V (H) � Vh is in the interior of the 4-
y
le de�ning G0, we have dG0(v) = dG(v) � 26and hen
e muv � ddG0(v)=5e � 6. Hen
e, u and v are 
onne
ted by at least 5 non-red edges.Choose 5 
onse
utive non-red edges between u and v, and let z1; z2; : : : ; z5 be the neighbors ofu and v in G0, in a 
lo
kwise order, 
orresponding to these 
hosen non-red edges. The edges
orresponding to z2, z3 and z4 are green, sin
e otherwise we would have a forbidden 4-
y
lewithin G0.As referen
e, we show in Fig. 2 the 
ommon neighborhood in G of two verti
es u and v,along with the the 
orresponding multigraph. Verti
es in Vh are in bla
k, blue verti
es are grey,and green verti
es are white. Here 
uv is 6, in
luding one red edges, two blue, and three green.Now, if zi, i 2 f2; 3; 4g, is adja
ent to a vertex in Vl that does not represent a green norblue edge between u and v, then by our assumption that every vertex in Vl has at least twoneighbors in Vh in the graph G0, one of these neighbors in Vh must be distin
t from u and vand therefore 
ontained in the region formed by the 4-
y
le (u; zi�1; v; zi+1). Again this wouldimply a forbidden 4-
y
le and 
ontradi
t our de�nition of G0.Therefore, the only verti
es of Vl that zi 
an possibly be adja
ent to in G0 are zi�1 and zi+1.In parti
ular, the neighbors of z3 in G0 are among fu; v; z2; z4g, and the neighbors of z2 and z45
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Figure 2: Example of a 
ommon neighborhood and the 
orresponding multigraphare among fu; v; z1; z3g and fu; v; z3; z5g respe
tively. In any 
ase, the 
ombined neighborhoodof z2 and z4 is 
ontained in the 
losed 
ombined neighborhood of u and v. Hen
e the number ofverti
es of distan
e at most 2 from z3 are at most b9�(G)5 
+ 2 (in
luding z3 itself).Theorem 2.4 If G is a planar graph with maximum degree � � 749, then G2 is b95�
 + 1-indu
tive.Proof. Assume that � � 25 + 25� 2 and that we have a vertex v of G whi
h satis�es the �rst
ondition of Lemma 2.3. If v has a neighbor u of degree 25 or less, then d2(v) � 600 + �, andmoreover d(v) + d(u) � 2 � �. If v has no neighbor of degree 25 or less, then it has only oneneighbor u. In this 
ase d2(v) � � and d(v) + d(u) � 2 � �.In the proof of Lemma 2.3 we assumed that there is no vertex in Vl with at most one neighborof Vh. In that 
ase there is a vertex of G, 
alled z3 in the last paragraph of the proof, withd2(z3) � b95�
+ 1. Also, z3 has at most two neighbors z2 and z4 of Vl. If z3 has no neighborsof Vl (that is, is 
onne
ted to neither z2 nor z4), then sin
e the only neighbors of z3 in Vh are uand v, we have d(z3) + d(v)� 2 = d(z3) + d(u)� 2 � �. If z3 has a neighbor z1 or z2 of Vl, sayz1, then, d(z3) + d(z1)� 2 � �.In any 
ase, we see that we 
an always �nd a vertex w of G with d2(w) � maxf600 +�; b95�
+ 1g, and su
h that w has a neighbor w0 with d(w) + d(w0)� 2 � �.It turns out that 95�+ 1 is a sharp upper bound.

Figure 3: I
osahedron graph, and split edgesObservation 2.5 For any �, there exists a planar graph G of maximum degree � su
h thatG2 is of minimum degree b95�
+ 1. 6



Proof. Let k = b�=5
. Start with a 5-regular planar graph that 
ontains a perfe
t mat
hing.An example is the graph 
orresponding to the regular i
osahedron in Fig. 3, with the edges ofthe perfe
t mat
hing shown in bold. Parallel to ea
h edge of the perfe
t mat
hing, we add k� 1paths of length two. Ea
h edge not in the perfe
t mat
hing is repla
ed by k parallel paths oflength two. This 
ompletes the 
onstru
tion of a simple planar graph G.Observe that verti
es in G are either of degree 2 or degree 5k. The two neighbors of adegree-2 node share either k or k + 1 neighbors (in
luding themselves). Thus, the distan
e-2degree of a degree-2 node is at least 2(5k+1)� (k+1) = 9k+1. On the other hand, high-degreenodes have 5k � 1 low-degree neighbors, whi
h have together 5 additional neighbors, and onehigh-degree neighbor, whi
h itself has 5k neighbors. This 
ounts k nodes twi
e, and one nodethree times, but still gives a distan
e-2 degree of 9k + 3.3 General Powers of Planar GraphsIn this se
tion we prove the following theorem.Theorem 3.1 Let G be a planar graph with maximum degree �. For any k � 1, Gk isO(�bk=2
)-
olorable. Also, there is a family of graphs that attains this bound. This bound isalso asymptoti
ally tight for the 
lique number, indu
tiveness, arbori
ity, and minimum degreeof Gk.Let us �rst give a 
onstru
tion that mat
hes the bound of the theorem. Given k;� � 1,
onsider the tree T of height bk=2
 where internal verti
es have degree �. The number of verti
esin T isD�;k = 1 +�+�(�� 1) + �(�� 1)2 + � � �+�(�� 1)bk=2
�1 = �(�� 1)bk=2
 � 2�� 2 :Observe that T k is a 
omplete graph, thus thus �(T k) = D�;k.We now turn to proving the upper bound of the theorem. The rest of this se
tion is dividedup into several subse
tions, ea
h of whi
h deals with ne
essary tools to 
omplete the proof ofour main Theorem 3.1 above. First let us set forth some useful terminology.NotationA k-path is a path of length exa
tly k. A (k;�)-path is a path of length k or less. If u and vare two given verti
es then an (k;u; v)-path is a path between u and v of length exa
tly k, and�nally a (k;�;u; v)-path is a path between u and v of length k or less. A vertex w is 
alled a(k;�;u; v)-link if w is on every (k;�;u; v)-path. N(v) will denote the set of the neighbors of vin G, and N [v℄ the 
losed neighborhood of v, that is N(v) [ fvg.De�nition 3.2 For a simple planar graph G, an integer k � 1 and a subset U � V (G), denoteby Pk(G;U) the set of all W with U �W � V (G) and su
h that any two verti
es in U 
onne
tedby a (k;�)-path in G, are also 
onne
ted by a (k;�)-path in G[W ℄.We will derive the following bound on the size of ea
h minimal element of Pk(G;U), that islinear in jU j, for any �xed k.Theorem 3.3 There exists an integer sequen
e (dk)k�1 with dk � 10k�1, su
h that for every
onne
ted simple planar graph G, every integer k � 1 and every U � V (G), ea
h minimalelement of Pk(G;U) has at most dkjU j verti
es.7



Let us get a better grasp of this by examining the �rst two 
ases k = 1; 2. Clearly U itselfis the only minimal element in P1(G;U), for any U and G, thus d1 = 1.For the 
ase k = 2, let W be a minimal element in P2(G;U), for a given U . We form a graphG0 on vertex set U as follows. For ea
h w 2 W n U , sele
t a pair u1; u2 in U for whi
h w is a2-link, and add an edge u1u2 to G0. Note that G0 is a simple graph, sin
e ea
h w represents theonly path in G[W ℄ between the endpoints of the 
orresponding edge in G0, and it is planar, sin
eit is an edge 
ontra
tion of a subgraph of G[W ℄ (where all verti
es in W n U are of degree 2).By Euler's formula, jE(G0)j � 3jU j � 6. Sin
e ea
h edge of G0 
orresponds to a distin
t vertexof W n U , we have that jW j � 4jU j � 6. Thus, d2 � 4.Before proving the general 
ase of Theorem 3.3, let us 
ontinue and derive our 
on
lusions.Arbori
ityFor a graph G, de�ne its arbori
ity as arb(G) = maxH�G l jE(H)jjV (H)j�1m : By the Nash-Williamstheorem [11℄ there are arb(G) edge-disjoint subforests of G that 
over all the edges of G.Arbori
ity is 
losely related to indu
tiveness.Lemma 3.4 For any graph G, we have arb(G) � ind(G) < 2 arb(G).Proof. Assume �rst ind(G) = q. We will show that E(G) 
an be partitioned into q forests.Given a linear arrangement of the verti
es, su
h that the pre-order is at most q, we arbitrarily
olor the q edges from a vertex vi to later verti
es with q 
olors. In this way, ea
h 
olor 
lass isa
y
li
 { sin
e two edges of the same 
olor 
annot have the same �rst-labeled endpoint { andthus a forest. Therefore arb(G) � q, proving the �rst inequality.For the other inequality, let ind(G) = q. Let H be a subgraph of G su
h that minv(dH(v)) =q. Sin
e 2jE(H)j = Pv dH(v) � qjV (H)j, we have arb(G) > jE(H)j=jV (H)j � q=2, whi
h
ompletes our lemma.From Lemma 3.4 we have in parti
ular from [13℄ that arb(G2) � 9�.Consider now the power graph Gk of G. For a vertex set U � V (G), let Ek(U) be the edgesetof the subgraph of Gk indu
ed by U . Then, the arbori
ity of Gk isarb(Gk) = maxU�V (G) & jEk(U)jjU j � 1 ' :Note that every edge in Ek(U) is represented by at least one (k;�)-path between verti
es ofU . Let WU 2 Pk(G;U) be a minimal element. By Theorem 3.3, jWU j � 10k�1jU j and we havethat jEk(U)j is less than the number of (k;�)-paths in G[WU ℄. We note that all (k;�)-paths inG[WU ℄ 
onne
ting two verti
es of U , ex
ept the (2;�)-paths, are represented by an edge uv inG[WU ℄k�2 together with edges e and e0 in G, with one endpoint u and v respe
tively. Hen
e,jEk(U)j � jE2(U)j+ Xuv2G[WU ℄k�2 d(u)d(v): (2)Degree produ
ts over edgesThe following lemma will be used in our indu
tive argument.Lemma 3.5 If G is a simple graph of maximum degree � and F is a forest with V (F ) � V (G),then Xuv2E(F ) dG(u)dG(v) � 2�jE(F )j:8



Proof. For any graph H, with V (H) � V (G) letS(H) = Xuv2E(H) dG(u)dG(v):For ea
h tree T of F , dire
t its edge away from an arbitrarily 
hosen root r. Thus, T be
omesa dire
ted tree T d in whi
h every vertex but the root has indegree one. For ea
h ar
 ~uv in T dbound the summand dG(u)dG(v) from above by �dG(v). Then,S(T ) � X~uv2E(T d)�dG(v) = �0� Xv2V (T )nfrgdG(v)1A � �0� Xv2V (T ) dG(v)1A :As F is a disjoint union of trees Ti, we have thatS(F ) = kXi=1 S(Ti) � 2�jE(F )j:Arbori
ity of power graphs.We now want to show indu
tively that there is a sequen
e (�k)1k=1 su
h that for every planarG with maximum degree � we have arb(Gk) � �k�bk=2
: (3)We know at this point that �1 = 3 and �2 = 9 satisfy (3). We pro
eed by indu
tion and 
onsidergeneral k � 3. By (2) we getjEk(U)j � 9�(jU j � 1) + Xuv2G[WU ℄k�2d(u)d(v);where now WU is our minimal element of Pk(G;U). By the indu
tion hypothesis we have thatarb(G[WU ℄k�2) � �k�2�b k�22 
 = ak�2 and hen
e by the Nash-Williams theorem [11℄ there areak�2 edge-disjoint forests F1; F2; : : : ; Fak�2 
overing all the edges of G[WU ℄k�2. By Lemma 3.5,and Theorem 3.3, Xuv2G[WU ℄k�2 d(u)d(v) = ak�2Xi=1 Xuv2E(Fi) d(u)d(v)� ak�2Xi=1 2�jE(Fi)j� ak�2(2�(jWU j � 1))< 2ak�2�jWU j� 2 � 10k�1�k�2�bk=2
jU j:Sin
e k � 3 and �k � 1, we 
an assume jU j � 3. Thus,jEk(U)j � 9�(jU j � 1) + 2 � 10k�1�k�2�bk=2
jU j� 4 � 10k�1�k�2�bk=2
(jU j � 1):Thus, arb(Gk) � �k�bk=2
, where �1 = 3; �2 = 9 and �k = 4 �10k�1�k�2. By an easy indu
tion,we obtain the following lemma. 9



Lemma 3.6 If G is a planar graph with a maximum degree �, and k � 1 is an integer, thenwe have arb(Gk) � �k�bk=2
, where �k = 2k10k2=4.Letting �k be as in the previous lemma, we get by Lemma 3.4 the following 
orollary.Corollary 3.7 For a simple planar graph G and an integer k � 1, we have that Gk is 2�k�bk=2
-indu
tive.Proof of Theorem 3.3We have already proved the theorem in the 
ase where k 2 f1; 2g. When 
onsidering thegeneral 
ase of (k;�)-paths, we pro
eed by indu
tion on k and assume k � 3. Let U � V (G)be given. Let W 2 Pk(G;U) be a minimal element. Note that every vertex w 2 W n U isnonremovable, in that there is a pair of verti
es fuw1; uw2g in U su
h that w is a (k;�;uw1; uw2)-link in G[W ℄.Let U 0 � W n U be the set of verti
es of W that are 
onne
ted to some vertex in U by anedge. We want to show that there is a 
onstant 
 su
h that jU 0j � 
jU j. We 
an partition U 0 asU 0 = U 01 [ U 02 [ U 03, where U 01 = fv 2 U 0 : jN(v) \ U j = 1g;U 02 = fv 2 U 0 : jN(v) \ U j = 2g;U 03 = fv 2 U 0 : jN(v) \ U j � 3g:When estimating the sizes of U 01, U 02 and U 03, the easiest 
ase to deal with is U 03. By the followingLemma 3.8 we have that jU 03j � 2jU j � 4.Lemma 3.8 For a simple planar graph with vertex set U [ V su
h that every vertex in V is
onne
ted to at least three verti
es of U , we have that jV j � 2jU j � 4.Proof. The bipartite subgraph on (U; V;E) has at most 2(jU j+jV j)�4 edges by Euler's formula,but at least 3jV j edges by the degree bound on V .Lemma 3.9 jU 02j � 9jU j.Proof. The idea here is to 
onsider the verti
es of U 02 together with their adja
ent verti
es ofU . Every 2-path between verti
es of U via verti
es of U 02 
an be repla
ed by a single edge. Inthat way we get a planar multigraph with vertex set U , in whi
h every edge 
orresponds to avertex of U 02. In this multigraph, many verti
es of U 
ould be isolated.If we now 
onsider one edge (of possible many) between given two verti
es of U , then thatedge 
orresponds uniquely to a vertex w of U 02. Sin
e w is nonremovable, it is 
ru
ial either for
onne
ting the two neighbors of U with a 2-path, or for 
onne
ting either of its two neighborsof U to a third vertex of U . That third vertex must then lie in the fa
e whi
h has w on itsboundary. This allows us to estimate the number of verti
es of U 02 in 
omparison with jU j.Let us do this in a more pre
ise manner. First note that the number of pairs of verti
es of Uthat are 
onne
ted by a 2-path via a vertex from U 02 is at most 3jU j�6 by the planarity of G[W ℄and Euler's formula. Consider now a �xed pair u and u0 of U , 
onne
ted by su
h a 2-path. Bythe planarity of G[W ℄, we 
an label all the verti
es of U 02 
onne
ting u and u0 as v1; v2; : : : ; vksu
h that this listing is 
lo
kwise with respe
t to u, and v2; : : : ; vk�1 are all inside the 4-
y
le(u; v1; u0; vk). Consider the graph G(u; u0) 
onsisting of the verti
es u; u0; v1; v2; : : : ; vk along withall the edges 
onne
ting ea
h vi to both u and u0. The union of all the subgraphs G(u; u0), whereu; u0 2 U , together with the rest of the verti
es of U , will form a simple subgraph G2 of G[W ℄with vertex set U [ U 02, in whi
h ea
h vertex of U 02 has degree 2. Let U = U
 [ Ui, where U
 isthe set of nonisolated verti
es of U in G2, and Ui is the set of the isolated ones.10



Every 2-path between verti
es of U
 via a vertex of U 02 
an be repla
ed with an edge, givinga planar multigraph G02 in whi
h ea
h edge 
orresponds to a vertex in U 02. By Euler's formulafor simple planar graphs, we get the following 
laim.Claim 3.10 Consider a 
onne
ted planar multigraph on n verti
es and e edges. For a planeembedding of it, we 
all a fa
e a 2-fa
e if it is bounded by 2 edges and 2 verti
es. The numberof edges bounding two su
h 2-fa
es, is at least e� 6n+ 12.Let U 002 be the set of verti
es of U 02 bounding two 4-fa
es of G2, ea
h of whi
h is bounded by 2verti
es of U and 2 verti
es of U 02. By Claim 3.10 we havejU 002 j � jU 02j � 6jU
j+ 12: (4)Consider v 2 U 002 , and let u; u0 2 U be its neighbors. Call the two 4-fa
es that v bounds, fv1 andfv2. Sin
e at most one vertex of U 02 is 
ru
ial for 
onne
ting u to u0, we may assume that v isnot so. Sin
e, however, v is nonremovable in G[W ℄, there is a vertex u00 2 U n fu; u0g su
h thatv is either a (k;�;u; u00)-link or a (k;�;u0; u00)-link in G[W ℄. By the planarity of G[W ℄, this u00must be 
ontained either within fv1 or fv2, sin
e otherwise v is removable. This holds for everyv in U 002 .To summarize, we see that at most 3jU
j � 6 verti
es of U 002 are a
tual links between theirneighbors. Also, ea
h v that is not a link between its neighbors, has a neighboring 4-fa
e, whi
hin
ludes an isolated vertex of Ui. ThereforejU 002 j � (3jU
j � 6) � 2jUij: (5)By (4) and (5) we get jU 02j � 2jUij+ 9jU
j � 18 < 9jU j:We now derive the the �nal step towards 
ompletion of the proof of Theorem 3.3. Assume wehave su

essfully found d1; d2; : : : ; dk�1 as in Theorem 3.3, we now prove the following lemma.Lemma 3.11 For a minimal element W of Pk(G;U), jW j � 84dk�2jU j.Proof. Let U1 � U be the set of verti
es that have neighbors in U 01. We now have the followingpartition U 01 = [u2U1NU 01(u)where NU 01(u) = fv 2 U 01 : uv 2 E(G[W ℄)g. Consider the planar graph C[W ℄ we get from G[W ℄by 
ontra
ting NU 01 [u℄ to a single vertex u�, for ea
h u 2 U1. Let U� = fu� : u 2 U1g [ (U nU1).If we let U 00 =W n (U [U 0), then 
learly W is a disjoint union of U;U 01; U 02; U 03 and U 00. In viewof this, C[W ℄ will be
ome a graph whose verti
es are a disjoint union of U�; U 02; U 03 and U 00. For
onvenien
e de�ne a map 
 : W ! U� [ U 02 [ U 03 [ U 00 by
(w) = ( u� if w 2 NU 01 [u℄, for u 2 U1,w otherwise.Note that every (k;�)-path between a pair of verti
es of U in G[W ℄ gives a (k � 2;�)-pathbetween a pair of verti
es of U� [ U 02 [ U 03.Let us now show that every vertex of U 00 is nonremovable in C[W ℄ when 
onsidering (k�2;�)-paths between pairs of verti
es of U�[U 02[U 03. Let u00 2 U 00. Sin
e u00 is nonremovable in G[W ℄11



there is a pair u; u0 of verti
es of U su
h that u00 is a (k;�;u; u0)-link. Pi
k a �xed (k;�;u; u0)-path 
 and let v and v0 be the endpoints of 
 nfu; u0g. Now u00 is a (k�2;�; v; v0)-link in G[W ℄,sin
e otherwise u00 would not be a (k;�;u; u0)-link inG[W ℄. That u00 is a (k�2;�; 
(v); 
(v0))-linkin C[W ℄ 
an be seen as follows. If u00 is not su
h a link, then there is a (k � 2;�; 
(v); 
(v0))-path 
0 not in
luding the vertex u00 in C[W ℄. It then gives a (k;�;u; u0)-path 
00 in G[W ℄ notin
luding u00, whi
h is a 
ontradi
tion.By indu
tion hypothesis on k, we now have that the number of verti
es of C[W ℄ are bounded,that is jU� [ U 02 [ U 03 [ U 00j � dk�2jU� [ U 02 [ U 03j. By previous arguments and the fa
t thatjU�j = jU j, we havejU� [ U 02 [ U 03 [ U 00j � dk�2(jU j+ 9jU j+ 2jU j) = 12dk�2jU j:The only thing left to 
on
lude our indu
tive argument is to show that jW n(U [U 02[U 03[U 00)j =jU 01j � 
jU j for some 
onstant 
.Let u 2 U be �xed. For ea
h neighbor v of u in G[W ℄, let pu(v) 2 U be a vertex su
h thatv is a (k;�;u; pu(v))-link. We assume further that for a �xed u and distin
t v, all the pu(v) aredistin
t.Claim 3.12 With the notation from above, for ea
h neighbor v of u in G[W ℄, let 
v be a(k;�;u; pu(v))-path. Ex
ept for the vertex u, all these paths are vertex-disjoint.Proof. Assume 
v1 and 
v2 have a 
ommon vertex x other than u. Hen
e, for i = 1; 2, 
vi =
ix�i, where 
ix is the path from u to x along 
vi and �i the path from x to pu(vi) along 
vi . Ifnow l(
1x) � l(
2x), then 
0 = 
1x�2 is a (k;�;u; pu(v2))-path not in
luding the vertex v2 (sin
eif v2 lies on 
1x then v2 is not a link). This 
ontradi
ts the de�nition of pu(v2).By Claim 3.12, all the (k;�;u; pu(v))-paths from u to ea
h of the pu(v), are vertex disjoint.Therefore the number of verti
es of NU 01(u) is less than the number of edges going out of u� in the
ontra
ted graph C[W ℄. Sin
e ea
h edge in C[W ℄ 
onne
ts to at most two verti
es of U�, we havethat jU 01j � 2jE(C[W ℄)j. Sin
e jE(C[W ℄)j � 3jV (C[W ℄)j � 6 and V (C[W ℄) = U� [U 02 [U 03[U 00,we have jW j = jU� [ U 02 [ U 03 [ U 00j+ jU 01j� 12dk�2jU j+ 2jE(C[W ℄)j� 12dk�2jU j+ 6jU� [ U 02 [ U 03 [ U 00j� 84dk�2jU j:We see from the above display that dk = 84dk�2 is suÆ
ient in the 
ase for general k providedthat dk�2 is known. Therefore the sequen
e (dk)1k=1 de�ned indu
tively by d1 = 1, d2 = 4and dk = 84dk�2 will give us the desired 
onstants. A straightforward indu
tion implies thatdk � 10k�1, and hen
e we have Theorem 3.3.4 Approximation AlgorithmsWe 
an improve the best approximation fa
tor known for 
oloring squares of planar graphs.Re
all that sin
e neighbors in G must be 
olored di�erently in G2, �(G2) � � + 1. Thus, for� � 749, Corollary 3.7 yields a 1.8-approximation. Hen
e, we obtain an asymptoti
 ratio of 1.8.For 
onstant values of �, we 
an use a result of Krumke, Marathe and Ravi [7℄. Theystated a 3-approximation, but a
tually a 2-approximation easily follows from their approa
h12



whi
h is based on an often-used de
omposition due to Baker [2℄. The 
omplexity of theirapproa
h is equivalent to the 
omplexity of 
oloring a partial O(�)-tree. Combined, we obtaina 2-approximation for any value of �.Theorem 4.1 The problem of 
oloring squares of planar graph has a 2-approximation.Theorem 3.1 also immediately gives a O(1)-approximation to 
oloring 
ubes of planar graphs.However, better fa
tors are possible.Zhou et al. [17℄ independently gave a polynomial algorithm for distan
e-d 
oloring partialk-trees, for any 
onstant d and k. The 
omplexity of their algorithm is O(n(�+1)22(k+1)(d+2)+1 +n3), where � = O(min(�d=2; n)) is the number of 
olors needed. When 
ombined with thede
omposition of Baker, this result yields a 2-approximation for 
oloring Gd, for any 
onstantd. Baker's result states that the vertex set V of a planar graph 
an be partitioned into layersV1; V2; : : :, su
h that all edges are between adja
ent layers or within the same layer, i.e. if u 2 Viand uv 2 E, then v 2 Vi�1 [ Vi [ Vi+1. Now, let V 0 = [i mod 2d<dVi, V 00 = V � V 0, and G0, G00be the subgraphs indu
ed by V 0 and V 00. Observe that both G0 and G00 
onsist of a 
olle
tionof disjoint subgraphs Ui, 
orresponding to Vdi [ Vdi+1 [ � � � [ Vd(i+1)�1. Further, noti
e thatthe subgraphs indu
ed by the Ui will also be disjoint in G0d and G00d, sin
e distan
e betweenany pair of nodes in di�erent subgraphs Ui is at least d + 1. Thus, G0d 
an be 
omputed by
onsidering ea
h Ui separately. Now, Gd restri
ted to Ui is a subgraph of the graph Hdi , whereHi = G[[d(i+1)�(d�2)j=di�(d�1) Ui℄. Hi is a 3d � 2-outerplanar graph, whi
h means that it is a partial9d � 8-tree by a result of Bodlaender [3℄. Hen
e, we 
an 
ompute the optimal 
oloring of ea
hHi in time O(n2(9d+7)(d+2)+1+1). Thus, we 
an solve G02 and G002 exa
tly, and in total, using atmost twi
e the optimal number of 
olors.A
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